00001
00002 #ifndef OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H
00003 #define OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "sensor_msgs/Image.h"
00014 #include "sensor_msgs/CameraInfo.h"
00015 #include "sensor_msgs/Image.h"
00016 #include "sensor_msgs/CameraInfo.h"
00017 #include "sensor_msgs/PointCloud2.h"
00018 #include "stereo_msgs/DisparityImage.h"
00019
00020 namespace object_segmentation_gui
00021 {
00022 template <class ContainerAllocator>
00023 struct ObjectSegmentationGuiGoal_ : public ros::Message
00024 {
00025 typedef ObjectSegmentationGuiGoal_<ContainerAllocator> Type;
00026
00027 ObjectSegmentationGuiGoal_()
00028 : image()
00029 , camera_info()
00030 , wide_field()
00031 , wide_camera_info()
00032 , point_cloud()
00033 , disparity_image()
00034 {
00035 }
00036
00037 ObjectSegmentationGuiGoal_(const ContainerAllocator& _alloc)
00038 : image(_alloc)
00039 , camera_info(_alloc)
00040 , wide_field(_alloc)
00041 , wide_camera_info(_alloc)
00042 , point_cloud(_alloc)
00043 , disparity_image(_alloc)
00044 {
00045 }
00046
00047 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type;
00048 ::sensor_msgs::Image_<ContainerAllocator> image;
00049
00050 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type;
00051 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info;
00052
00053 typedef ::sensor_msgs::Image_<ContainerAllocator> _wide_field_type;
00054 ::sensor_msgs::Image_<ContainerAllocator> wide_field;
00055
00056 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _wide_camera_info_type;
00057 ::sensor_msgs::CameraInfo_<ContainerAllocator> wide_camera_info;
00058
00059 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _point_cloud_type;
00060 ::sensor_msgs::PointCloud2_<ContainerAllocator> point_cloud;
00061
00062 typedef ::stereo_msgs::DisparityImage_<ContainerAllocator> _disparity_image_type;
00063 ::stereo_msgs::DisparityImage_<ContainerAllocator> disparity_image;
00064
00065
00066 private:
00067 static const char* __s_getDataType_() { return "object_segmentation_gui/ObjectSegmentationGuiGoal"; }
00068 public:
00069 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00070
00071 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00072
00073 private:
00074 static const char* __s_getMD5Sum_() { return "e1d5b6113ada0dd63b3fd30b2ac9f913"; }
00075 public:
00076 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00077
00078 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00079
00080 private:
00081 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00082 sensor_msgs/Image image\n\
00083 sensor_msgs/CameraInfo camera_info\n\
00084 sensor_msgs/Image wide_field\n\
00085 sensor_msgs/CameraInfo wide_camera_info\n\
00086 \n\
00087 sensor_msgs/PointCloud2 point_cloud\n\
00088 stereo_msgs/DisparityImage disparity_image\n\
00089 \n\
00090 \n\
00091 ================================================================================\n\
00092 MSG: sensor_msgs/Image\n\
00093 # This message contains an uncompressed image\n\
00094 # (0, 0) is at top-left corner of image\n\
00095 #\n\
00096 \n\
00097 Header header # Header timestamp should be acquisition time of image\n\
00098 # Header frame_id should be optical frame of camera\n\
00099 # origin of frame should be optical center of cameara\n\
00100 # +x should point to the right in the image\n\
00101 # +y should point down in the image\n\
00102 # +z should point into to plane of the image\n\
00103 # If the frame_id here and the frame_id of the CameraInfo\n\
00104 # message associated with the image conflict\n\
00105 # the behavior is undefined\n\
00106 \n\
00107 uint32 height # image height, that is, number of rows\n\
00108 uint32 width # image width, that is, number of columns\n\
00109 \n\
00110 # The legal values for encoding are in file src/image_encodings.cpp\n\
00111 # If you want to standardize a new string format, join\n\
00112 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00113 \n\
00114 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00115 # taken from the list of strings in src/image_encodings.cpp\n\
00116 \n\
00117 uint8 is_bigendian # is this data bigendian?\n\
00118 uint32 step # Full row length in bytes\n\
00119 uint8[] data # actual matrix data, size is (step * rows)\n\
00120 \n\
00121 ================================================================================\n\
00122 MSG: std_msgs/Header\n\
00123 # Standard metadata for higher-level stamped data types.\n\
00124 # This is generally used to communicate timestamped data \n\
00125 # in a particular coordinate frame.\n\
00126 # \n\
00127 # sequence ID: consecutively increasing ID \n\
00128 uint32 seq\n\
00129 #Two-integer timestamp that is expressed as:\n\
00130 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00131 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00132 # time-handling sugar is provided by the client library\n\
00133 time stamp\n\
00134 #Frame this data is associated with\n\
00135 # 0: no frame\n\
00136 # 1: global frame\n\
00137 string frame_id\n\
00138 \n\
00139 ================================================================================\n\
00140 MSG: sensor_msgs/CameraInfo\n\
00141 # This message defines meta information for a camera. It should be in a\n\
00142 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00143 # image topics named:\n\
00144 #\n\
00145 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00146 # image - monochrome, distorted\n\
00147 # image_color - color, distorted\n\
00148 # image_rect - monochrome, rectified\n\
00149 # image_rect_color - color, rectified\n\
00150 #\n\
00151 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00152 # for producing the four processed image topics from image_raw and\n\
00153 # camera_info. The meaning of the camera parameters are described in\n\
00154 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00155 #\n\
00156 # The image_geometry package provides a user-friendly interface to\n\
00157 # common operations using this meta information. If you want to, e.g.,\n\
00158 # project a 3d point into image coordinates, we strongly recommend\n\
00159 # using image_geometry.\n\
00160 #\n\
00161 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00162 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00163 # indicates an uncalibrated camera.\n\
00164 \n\
00165 #######################################################################\n\
00166 # Image acquisition info #\n\
00167 #######################################################################\n\
00168 \n\
00169 # Time of image acquisition, camera coordinate frame ID\n\
00170 Header header # Header timestamp should be acquisition time of image\n\
00171 # Header frame_id should be optical frame of camera\n\
00172 # origin of frame should be optical center of camera\n\
00173 # +x should point to the right in the image\n\
00174 # +y should point down in the image\n\
00175 # +z should point into the plane of the image\n\
00176 \n\
00177 \n\
00178 #######################################################################\n\
00179 # Calibration Parameters #\n\
00180 #######################################################################\n\
00181 # These are fixed during camera calibration. Their values will be the #\n\
00182 # same in all messages until the camera is recalibrated. Note that #\n\
00183 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00184 # #\n\
00185 # The internal parameters can be used to warp a raw (distorted) image #\n\
00186 # to: #\n\
00187 # 1. An undistorted image (requires D and K) #\n\
00188 # 2. A rectified image (requires D, K, R) #\n\
00189 # The projection matrix P projects 3D points into the rectified image.#\n\
00190 #######################################################################\n\
00191 \n\
00192 # The image dimensions with which the camera was calibrated. Normally\n\
00193 # this will be the full camera resolution in pixels.\n\
00194 uint32 height\n\
00195 uint32 width\n\
00196 \n\
00197 # The distortion model used. Supported models are listed in\n\
00198 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00199 # simple model of radial and tangential distortion - is sufficent.\n\
00200 string distortion_model\n\
00201 \n\
00202 # The distortion parameters, size depending on the distortion model.\n\
00203 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00204 float64[] D\n\
00205 \n\
00206 # Intrinsic camera matrix for the raw (distorted) images.\n\
00207 # [fx 0 cx]\n\
00208 # K = [ 0 fy cy]\n\
00209 # [ 0 0 1]\n\
00210 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00211 # coordinates using the focal lengths (fx, fy) and principal point\n\
00212 # (cx, cy).\n\
00213 float64[9] K # 3x3 row-major matrix\n\
00214 \n\
00215 # Rectification matrix (stereo cameras only)\n\
00216 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00217 # stereo image plane so that epipolar lines in both stereo images are\n\
00218 # parallel.\n\
00219 float64[9] R # 3x3 row-major matrix\n\
00220 \n\
00221 # Projection/camera matrix\n\
00222 # [fx' 0 cx' Tx]\n\
00223 # P = [ 0 fy' cy' Ty]\n\
00224 # [ 0 0 1 0]\n\
00225 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00226 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00227 # is the normal camera intrinsic matrix for the rectified image.\n\
00228 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00229 # coordinates using the focal lengths (fx', fy') and principal point\n\
00230 # (cx', cy') - these may differ from the values in K.\n\
00231 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00232 # also have R = the identity and P[1:3,1:3] = K.\n\
00233 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00234 # position of the optical center of the second camera in the first\n\
00235 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00236 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00237 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00238 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00239 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00240 # the rectified image is given by:\n\
00241 # [u v w]' = P * [X Y Z 1]'\n\
00242 # x = u / w\n\
00243 # y = v / w\n\
00244 # This holds for both images of a stereo pair.\n\
00245 float64[12] P # 3x4 row-major matrix\n\
00246 \n\
00247 \n\
00248 #######################################################################\n\
00249 # Operational Parameters #\n\
00250 #######################################################################\n\
00251 # These define the image region actually captured by the camera #\n\
00252 # driver. Although they affect the geometry of the output image, they #\n\
00253 # may be changed freely without recalibrating the camera. #\n\
00254 #######################################################################\n\
00255 \n\
00256 # Binning refers here to any camera setting which combines rectangular\n\
00257 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00258 # resolution of the output image to\n\
00259 # (width / binning_x) x (height / binning_y).\n\
00260 # The default values binning_x = binning_y = 0 is considered the same\n\
00261 # as binning_x = binning_y = 1 (no subsampling).\n\
00262 uint32 binning_x\n\
00263 uint32 binning_y\n\
00264 \n\
00265 # Region of interest (subwindow of full camera resolution), given in\n\
00266 # full resolution (unbinned) image coordinates. A particular ROI\n\
00267 # always denotes the same window of pixels on the camera sensor,\n\
00268 # regardless of binning settings.\n\
00269 # The default setting of roi (all values 0) is considered the same as\n\
00270 # full resolution (roi.width = width, roi.height = height).\n\
00271 RegionOfInterest roi\n\
00272 \n\
00273 ================================================================================\n\
00274 MSG: sensor_msgs/RegionOfInterest\n\
00275 # This message is used to specify a region of interest within an image.\n\
00276 #\n\
00277 # When used to specify the ROI setting of the camera when the image was\n\
00278 # taken, the height and width fields should either match the height and\n\
00279 # width fields for the associated image; or height = width = 0\n\
00280 # indicates that the full resolution image was captured.\n\
00281 \n\
00282 uint32 x_offset # Leftmost pixel of the ROI\n\
00283 # (0 if the ROI includes the left edge of the image)\n\
00284 uint32 y_offset # Topmost pixel of the ROI\n\
00285 # (0 if the ROI includes the top edge of the image)\n\
00286 uint32 height # Height of ROI\n\
00287 uint32 width # Width of ROI\n\
00288 \n\
00289 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00290 # ROI in this message. Typically this should be False if the full image\n\
00291 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00292 # used).\n\
00293 bool do_rectify\n\
00294 \n\
00295 ================================================================================\n\
00296 MSG: sensor_msgs/PointCloud2\n\
00297 # This message holds a collection of N-dimensional points, which may\n\
00298 # contain additional information such as normals, intensity, etc. The\n\
00299 # point data is stored as a binary blob, its layout described by the\n\
00300 # contents of the \"fields\" array.\n\
00301 \n\
00302 # The point cloud data may be organized 2d (image-like) or 1d\n\
00303 # (unordered). Point clouds organized as 2d images may be produced by\n\
00304 # camera depth sensors such as stereo or time-of-flight.\n\
00305 \n\
00306 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00307 # points).\n\
00308 Header header\n\
00309 \n\
00310 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00311 # 1 and width is the length of the point cloud.\n\
00312 uint32 height\n\
00313 uint32 width\n\
00314 \n\
00315 # Describes the channels and their layout in the binary data blob.\n\
00316 PointField[] fields\n\
00317 \n\
00318 bool is_bigendian # Is this data bigendian?\n\
00319 uint32 point_step # Length of a point in bytes\n\
00320 uint32 row_step # Length of a row in bytes\n\
00321 uint8[] data # Actual point data, size is (row_step*height)\n\
00322 \n\
00323 bool is_dense # True if there are no invalid points\n\
00324 \n\
00325 ================================================================================\n\
00326 MSG: sensor_msgs/PointField\n\
00327 # This message holds the description of one point entry in the\n\
00328 # PointCloud2 message format.\n\
00329 uint8 INT8 = 1\n\
00330 uint8 UINT8 = 2\n\
00331 uint8 INT16 = 3\n\
00332 uint8 UINT16 = 4\n\
00333 uint8 INT32 = 5\n\
00334 uint8 UINT32 = 6\n\
00335 uint8 FLOAT32 = 7\n\
00336 uint8 FLOAT64 = 8\n\
00337 \n\
00338 string name # Name of field\n\
00339 uint32 offset # Offset from start of point struct\n\
00340 uint8 datatype # Datatype enumeration, see above\n\
00341 uint32 count # How many elements in the field\n\
00342 \n\
00343 ================================================================================\n\
00344 MSG: stereo_msgs/DisparityImage\n\
00345 # Separate header for compatibility with current TimeSynchronizer.\n\
00346 # Likely to be removed in a later release, use image.header instead.\n\
00347 Header header\n\
00348 \n\
00349 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00350 # x-offset between the principal points of the two cameras (in the case\n\
00351 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00352 sensor_msgs/Image image\n\
00353 \n\
00354 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00355 float32 f # Focal length, pixels\n\
00356 float32 T # Baseline, world units\n\
00357 \n\
00358 # Subwindow of (potentially) valid disparity values.\n\
00359 sensor_msgs/RegionOfInterest valid_window\n\
00360 \n\
00361 # The range of disparities searched.\n\
00362 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00363 # The disparity search range defines the horopter, or 3D volume that the\n\
00364 # stereo algorithm can \"see\". Points with Z outside of:\n\
00365 # Z_min = fT / max_disparity\n\
00366 # Z_max = fT / min_disparity\n\
00367 # could not be found.\n\
00368 float32 min_disparity\n\
00369 float32 max_disparity\n\
00370 \n\
00371 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00372 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00373 float32 delta_d\n\
00374 \n\
00375 "; }
00376 public:
00377 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00378
00379 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00380
00381 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00382 {
00383 ros::serialization::OStream stream(write_ptr, 1000000000);
00384 ros::serialization::serialize(stream, image);
00385 ros::serialization::serialize(stream, camera_info);
00386 ros::serialization::serialize(stream, wide_field);
00387 ros::serialization::serialize(stream, wide_camera_info);
00388 ros::serialization::serialize(stream, point_cloud);
00389 ros::serialization::serialize(stream, disparity_image);
00390 return stream.getData();
00391 }
00392
00393 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00394 {
00395 ros::serialization::IStream stream(read_ptr, 1000000000);
00396 ros::serialization::deserialize(stream, image);
00397 ros::serialization::deserialize(stream, camera_info);
00398 ros::serialization::deserialize(stream, wide_field);
00399 ros::serialization::deserialize(stream, wide_camera_info);
00400 ros::serialization::deserialize(stream, point_cloud);
00401 ros::serialization::deserialize(stream, disparity_image);
00402 return stream.getData();
00403 }
00404
00405 ROS_DEPRECATED virtual uint32_t serializationLength() const
00406 {
00407 uint32_t size = 0;
00408 size += ros::serialization::serializationLength(image);
00409 size += ros::serialization::serializationLength(camera_info);
00410 size += ros::serialization::serializationLength(wide_field);
00411 size += ros::serialization::serializationLength(wide_camera_info);
00412 size += ros::serialization::serializationLength(point_cloud);
00413 size += ros::serialization::serializationLength(disparity_image);
00414 return size;
00415 }
00416
00417 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > Ptr;
00418 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> const> ConstPtr;
00419 };
00420 typedef ::object_segmentation_gui::ObjectSegmentationGuiGoal_<std::allocator<void> > ObjectSegmentationGuiGoal;
00421
00422 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiGoal> ObjectSegmentationGuiGoalPtr;
00423 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiGoal const> ObjectSegmentationGuiGoalConstPtr;
00424
00425
00426 template<typename ContainerAllocator>
00427 std::ostream& operator<<(std::ostream& s, const ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> & v)
00428 {
00429 ros::message_operations::Printer< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> >::stream(s, "", v);
00430 return s;}
00431
00432 }
00433
00434 namespace ros
00435 {
00436 namespace message_traits
00437 {
00438 template<class ContainerAllocator>
00439 struct MD5Sum< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > {
00440 static const char* value()
00441 {
00442 return "e1d5b6113ada0dd63b3fd30b2ac9f913";
00443 }
00444
00445 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); }
00446 static const uint64_t static_value1 = 0xe1d5b6113ada0dd6ULL;
00447 static const uint64_t static_value2 = 0x3b3fd30b2ac9f913ULL;
00448 };
00449
00450 template<class ContainerAllocator>
00451 struct DataType< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > {
00452 static const char* value()
00453 {
00454 return "object_segmentation_gui/ObjectSegmentationGuiGoal";
00455 }
00456
00457 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); }
00458 };
00459
00460 template<class ContainerAllocator>
00461 struct Definition< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> > {
00462 static const char* value()
00463 {
00464 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00465 sensor_msgs/Image image\n\
00466 sensor_msgs/CameraInfo camera_info\n\
00467 sensor_msgs/Image wide_field\n\
00468 sensor_msgs/CameraInfo wide_camera_info\n\
00469 \n\
00470 sensor_msgs/PointCloud2 point_cloud\n\
00471 stereo_msgs/DisparityImage disparity_image\n\
00472 \n\
00473 \n\
00474 ================================================================================\n\
00475 MSG: sensor_msgs/Image\n\
00476 # This message contains an uncompressed image\n\
00477 # (0, 0) is at top-left corner of image\n\
00478 #\n\
00479 \n\
00480 Header header # Header timestamp should be acquisition time of image\n\
00481 # Header frame_id should be optical frame of camera\n\
00482 # origin of frame should be optical center of cameara\n\
00483 # +x should point to the right in the image\n\
00484 # +y should point down in the image\n\
00485 # +z should point into to plane of the image\n\
00486 # If the frame_id here and the frame_id of the CameraInfo\n\
00487 # message associated with the image conflict\n\
00488 # the behavior is undefined\n\
00489 \n\
00490 uint32 height # image height, that is, number of rows\n\
00491 uint32 width # image width, that is, number of columns\n\
00492 \n\
00493 # The legal values for encoding are in file src/image_encodings.cpp\n\
00494 # If you want to standardize a new string format, join\n\
00495 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00496 \n\
00497 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00498 # taken from the list of strings in src/image_encodings.cpp\n\
00499 \n\
00500 uint8 is_bigendian # is this data bigendian?\n\
00501 uint32 step # Full row length in bytes\n\
00502 uint8[] data # actual matrix data, size is (step * rows)\n\
00503 \n\
00504 ================================================================================\n\
00505 MSG: std_msgs/Header\n\
00506 # Standard metadata for higher-level stamped data types.\n\
00507 # This is generally used to communicate timestamped data \n\
00508 # in a particular coordinate frame.\n\
00509 # \n\
00510 # sequence ID: consecutively increasing ID \n\
00511 uint32 seq\n\
00512 #Two-integer timestamp that is expressed as:\n\
00513 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00514 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00515 # time-handling sugar is provided by the client library\n\
00516 time stamp\n\
00517 #Frame this data is associated with\n\
00518 # 0: no frame\n\
00519 # 1: global frame\n\
00520 string frame_id\n\
00521 \n\
00522 ================================================================================\n\
00523 MSG: sensor_msgs/CameraInfo\n\
00524 # This message defines meta information for a camera. It should be in a\n\
00525 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00526 # image topics named:\n\
00527 #\n\
00528 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00529 # image - monochrome, distorted\n\
00530 # image_color - color, distorted\n\
00531 # image_rect - monochrome, rectified\n\
00532 # image_rect_color - color, rectified\n\
00533 #\n\
00534 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00535 # for producing the four processed image topics from image_raw and\n\
00536 # camera_info. The meaning of the camera parameters are described in\n\
00537 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00538 #\n\
00539 # The image_geometry package provides a user-friendly interface to\n\
00540 # common operations using this meta information. If you want to, e.g.,\n\
00541 # project a 3d point into image coordinates, we strongly recommend\n\
00542 # using image_geometry.\n\
00543 #\n\
00544 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00545 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00546 # indicates an uncalibrated camera.\n\
00547 \n\
00548 #######################################################################\n\
00549 # Image acquisition info #\n\
00550 #######################################################################\n\
00551 \n\
00552 # Time of image acquisition, camera coordinate frame ID\n\
00553 Header header # Header timestamp should be acquisition time of image\n\
00554 # Header frame_id should be optical frame of camera\n\
00555 # origin of frame should be optical center of camera\n\
00556 # +x should point to the right in the image\n\
00557 # +y should point down in the image\n\
00558 # +z should point into the plane of the image\n\
00559 \n\
00560 \n\
00561 #######################################################################\n\
00562 # Calibration Parameters #\n\
00563 #######################################################################\n\
00564 # These are fixed during camera calibration. Their values will be the #\n\
00565 # same in all messages until the camera is recalibrated. Note that #\n\
00566 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00567 # #\n\
00568 # The internal parameters can be used to warp a raw (distorted) image #\n\
00569 # to: #\n\
00570 # 1. An undistorted image (requires D and K) #\n\
00571 # 2. A rectified image (requires D, K, R) #\n\
00572 # The projection matrix P projects 3D points into the rectified image.#\n\
00573 #######################################################################\n\
00574 \n\
00575 # The image dimensions with which the camera was calibrated. Normally\n\
00576 # this will be the full camera resolution in pixels.\n\
00577 uint32 height\n\
00578 uint32 width\n\
00579 \n\
00580 # The distortion model used. Supported models are listed in\n\
00581 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00582 # simple model of radial and tangential distortion - is sufficent.\n\
00583 string distortion_model\n\
00584 \n\
00585 # The distortion parameters, size depending on the distortion model.\n\
00586 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00587 float64[] D\n\
00588 \n\
00589 # Intrinsic camera matrix for the raw (distorted) images.\n\
00590 # [fx 0 cx]\n\
00591 # K = [ 0 fy cy]\n\
00592 # [ 0 0 1]\n\
00593 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00594 # coordinates using the focal lengths (fx, fy) and principal point\n\
00595 # (cx, cy).\n\
00596 float64[9] K # 3x3 row-major matrix\n\
00597 \n\
00598 # Rectification matrix (stereo cameras only)\n\
00599 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00600 # stereo image plane so that epipolar lines in both stereo images are\n\
00601 # parallel.\n\
00602 float64[9] R # 3x3 row-major matrix\n\
00603 \n\
00604 # Projection/camera matrix\n\
00605 # [fx' 0 cx' Tx]\n\
00606 # P = [ 0 fy' cy' Ty]\n\
00607 # [ 0 0 1 0]\n\
00608 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00609 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00610 # is the normal camera intrinsic matrix for the rectified image.\n\
00611 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00612 # coordinates using the focal lengths (fx', fy') and principal point\n\
00613 # (cx', cy') - these may differ from the values in K.\n\
00614 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00615 # also have R = the identity and P[1:3,1:3] = K.\n\
00616 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00617 # position of the optical center of the second camera in the first\n\
00618 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00619 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00620 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00621 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00622 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00623 # the rectified image is given by:\n\
00624 # [u v w]' = P * [X Y Z 1]'\n\
00625 # x = u / w\n\
00626 # y = v / w\n\
00627 # This holds for both images of a stereo pair.\n\
00628 float64[12] P # 3x4 row-major matrix\n\
00629 \n\
00630 \n\
00631 #######################################################################\n\
00632 # Operational Parameters #\n\
00633 #######################################################################\n\
00634 # These define the image region actually captured by the camera #\n\
00635 # driver. Although they affect the geometry of the output image, they #\n\
00636 # may be changed freely without recalibrating the camera. #\n\
00637 #######################################################################\n\
00638 \n\
00639 # Binning refers here to any camera setting which combines rectangular\n\
00640 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00641 # resolution of the output image to\n\
00642 # (width / binning_x) x (height / binning_y).\n\
00643 # The default values binning_x = binning_y = 0 is considered the same\n\
00644 # as binning_x = binning_y = 1 (no subsampling).\n\
00645 uint32 binning_x\n\
00646 uint32 binning_y\n\
00647 \n\
00648 # Region of interest (subwindow of full camera resolution), given in\n\
00649 # full resolution (unbinned) image coordinates. A particular ROI\n\
00650 # always denotes the same window of pixels on the camera sensor,\n\
00651 # regardless of binning settings.\n\
00652 # The default setting of roi (all values 0) is considered the same as\n\
00653 # full resolution (roi.width = width, roi.height = height).\n\
00654 RegionOfInterest roi\n\
00655 \n\
00656 ================================================================================\n\
00657 MSG: sensor_msgs/RegionOfInterest\n\
00658 # This message is used to specify a region of interest within an image.\n\
00659 #\n\
00660 # When used to specify the ROI setting of the camera when the image was\n\
00661 # taken, the height and width fields should either match the height and\n\
00662 # width fields for the associated image; or height = width = 0\n\
00663 # indicates that the full resolution image was captured.\n\
00664 \n\
00665 uint32 x_offset # Leftmost pixel of the ROI\n\
00666 # (0 if the ROI includes the left edge of the image)\n\
00667 uint32 y_offset # Topmost pixel of the ROI\n\
00668 # (0 if the ROI includes the top edge of the image)\n\
00669 uint32 height # Height of ROI\n\
00670 uint32 width # Width of ROI\n\
00671 \n\
00672 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00673 # ROI in this message. Typically this should be False if the full image\n\
00674 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00675 # used).\n\
00676 bool do_rectify\n\
00677 \n\
00678 ================================================================================\n\
00679 MSG: sensor_msgs/PointCloud2\n\
00680 # This message holds a collection of N-dimensional points, which may\n\
00681 # contain additional information such as normals, intensity, etc. The\n\
00682 # point data is stored as a binary blob, its layout described by the\n\
00683 # contents of the \"fields\" array.\n\
00684 \n\
00685 # The point cloud data may be organized 2d (image-like) or 1d\n\
00686 # (unordered). Point clouds organized as 2d images may be produced by\n\
00687 # camera depth sensors such as stereo or time-of-flight.\n\
00688 \n\
00689 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00690 # points).\n\
00691 Header header\n\
00692 \n\
00693 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00694 # 1 and width is the length of the point cloud.\n\
00695 uint32 height\n\
00696 uint32 width\n\
00697 \n\
00698 # Describes the channels and their layout in the binary data blob.\n\
00699 PointField[] fields\n\
00700 \n\
00701 bool is_bigendian # Is this data bigendian?\n\
00702 uint32 point_step # Length of a point in bytes\n\
00703 uint32 row_step # Length of a row in bytes\n\
00704 uint8[] data # Actual point data, size is (row_step*height)\n\
00705 \n\
00706 bool is_dense # True if there are no invalid points\n\
00707 \n\
00708 ================================================================================\n\
00709 MSG: sensor_msgs/PointField\n\
00710 # This message holds the description of one point entry in the\n\
00711 # PointCloud2 message format.\n\
00712 uint8 INT8 = 1\n\
00713 uint8 UINT8 = 2\n\
00714 uint8 INT16 = 3\n\
00715 uint8 UINT16 = 4\n\
00716 uint8 INT32 = 5\n\
00717 uint8 UINT32 = 6\n\
00718 uint8 FLOAT32 = 7\n\
00719 uint8 FLOAT64 = 8\n\
00720 \n\
00721 string name # Name of field\n\
00722 uint32 offset # Offset from start of point struct\n\
00723 uint8 datatype # Datatype enumeration, see above\n\
00724 uint32 count # How many elements in the field\n\
00725 \n\
00726 ================================================================================\n\
00727 MSG: stereo_msgs/DisparityImage\n\
00728 # Separate header for compatibility with current TimeSynchronizer.\n\
00729 # Likely to be removed in a later release, use image.header instead.\n\
00730 Header header\n\
00731 \n\
00732 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00733 # x-offset between the principal points of the two cameras (in the case\n\
00734 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00735 sensor_msgs/Image image\n\
00736 \n\
00737 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00738 float32 f # Focal length, pixels\n\
00739 float32 T # Baseline, world units\n\
00740 \n\
00741 # Subwindow of (potentially) valid disparity values.\n\
00742 sensor_msgs/RegionOfInterest valid_window\n\
00743 \n\
00744 # The range of disparities searched.\n\
00745 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00746 # The disparity search range defines the horopter, or 3D volume that the\n\
00747 # stereo algorithm can \"see\". Points with Z outside of:\n\
00748 # Z_min = fT / max_disparity\n\
00749 # Z_max = fT / min_disparity\n\
00750 # could not be found.\n\
00751 float32 min_disparity\n\
00752 float32 max_disparity\n\
00753 \n\
00754 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00755 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00756 float32 delta_d\n\
00757 \n\
00758 ";
00759 }
00760
00761 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> &) { return value(); }
00762 };
00763
00764 }
00765 }
00766
00767 namespace ros
00768 {
00769 namespace serialization
00770 {
00771
00772 template<class ContainerAllocator> struct Serializer< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> >
00773 {
00774 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00775 {
00776 stream.next(m.image);
00777 stream.next(m.camera_info);
00778 stream.next(m.wide_field);
00779 stream.next(m.wide_camera_info);
00780 stream.next(m.point_cloud);
00781 stream.next(m.disparity_image);
00782 }
00783
00784 ROS_DECLARE_ALLINONE_SERIALIZER;
00785 };
00786 }
00787 }
00788
00789 namespace ros
00790 {
00791 namespace message_operations
00792 {
00793
00794 template<class ContainerAllocator>
00795 struct Printer< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> >
00796 {
00797 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> & v)
00798 {
00799 s << indent << "image: ";
00800 s << std::endl;
00801 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image);
00802 s << indent << "camera_info: ";
00803 s << std::endl;
00804 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info);
00805 s << indent << "wide_field: ";
00806 s << std::endl;
00807 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.wide_field);
00808 s << indent << "wide_camera_info: ";
00809 s << std::endl;
00810 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.wide_camera_info);
00811 s << indent << "point_cloud: ";
00812 s << std::endl;
00813 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.point_cloud);
00814 s << indent << "disparity_image: ";
00815 s << std::endl;
00816 Printer< ::stereo_msgs::DisparityImage_<ContainerAllocator> >::stream(s, indent + " ", v.disparity_image);
00817 }
00818 };
00819
00820
00821 }
00822 }
00823
00824 #endif // OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIGOAL_H
00825