00001
00002 #ifndef OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTION_H
00003 #define OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "object_segmentation_gui/ObjectSegmentationGuiActionGoal.h"
00014 #include "object_segmentation_gui/ObjectSegmentationGuiActionResult.h"
00015 #include "object_segmentation_gui/ObjectSegmentationGuiActionFeedback.h"
00016
00017 namespace object_segmentation_gui
00018 {
00019 template <class ContainerAllocator>
00020 struct ObjectSegmentationGuiAction_ : public ros::Message
00021 {
00022 typedef ObjectSegmentationGuiAction_<ContainerAllocator> Type;
00023
00024 ObjectSegmentationGuiAction_()
00025 : action_goal()
00026 , action_result()
00027 , action_feedback()
00028 {
00029 }
00030
00031 ObjectSegmentationGuiAction_(const ContainerAllocator& _alloc)
00032 : action_goal(_alloc)
00033 , action_result(_alloc)
00034 , action_feedback(_alloc)
00035 {
00036 }
00037
00038 typedef ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> _action_goal_type;
00039 ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> action_goal;
00040
00041 typedef ::object_segmentation_gui::ObjectSegmentationGuiActionResult_<ContainerAllocator> _action_result_type;
00042 ::object_segmentation_gui::ObjectSegmentationGuiActionResult_<ContainerAllocator> action_result;
00043
00044 typedef ::object_segmentation_gui::ObjectSegmentationGuiActionFeedback_<ContainerAllocator> _action_feedback_type;
00045 ::object_segmentation_gui::ObjectSegmentationGuiActionFeedback_<ContainerAllocator> action_feedback;
00046
00047
00048 private:
00049 static const char* __s_getDataType_() { return "object_segmentation_gui/ObjectSegmentationGuiAction"; }
00050 public:
00051 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00052
00053 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00054
00055 private:
00056 static const char* __s_getMD5Sum_() { return "9ae0186047e48cafc8bab03144e71d1d"; }
00057 public:
00058 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00059
00060 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00061
00062 private:
00063 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00064 \n\
00065 ObjectSegmentationGuiActionGoal action_goal\n\
00066 ObjectSegmentationGuiActionResult action_result\n\
00067 ObjectSegmentationGuiActionFeedback action_feedback\n\
00068 \n\
00069 ================================================================================\n\
00070 MSG: object_segmentation_gui/ObjectSegmentationGuiActionGoal\n\
00071 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00072 \n\
00073 Header header\n\
00074 actionlib_msgs/GoalID goal_id\n\
00075 ObjectSegmentationGuiGoal goal\n\
00076 \n\
00077 ================================================================================\n\
00078 MSG: std_msgs/Header\n\
00079 # Standard metadata for higher-level stamped data types.\n\
00080 # This is generally used to communicate timestamped data \n\
00081 # in a particular coordinate frame.\n\
00082 # \n\
00083 # sequence ID: consecutively increasing ID \n\
00084 uint32 seq\n\
00085 #Two-integer timestamp that is expressed as:\n\
00086 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00087 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00088 # time-handling sugar is provided by the client library\n\
00089 time stamp\n\
00090 #Frame this data is associated with\n\
00091 # 0: no frame\n\
00092 # 1: global frame\n\
00093 string frame_id\n\
00094 \n\
00095 ================================================================================\n\
00096 MSG: actionlib_msgs/GoalID\n\
00097 # The stamp should store the time at which this goal was requested.\n\
00098 # It is used by an action server when it tries to preempt all\n\
00099 # goals that were requested before a certain time\n\
00100 time stamp\n\
00101 \n\
00102 # The id provides a way to associate feedback and\n\
00103 # result message with specific goal requests. The id\n\
00104 # specified must be unique.\n\
00105 string id\n\
00106 \n\
00107 \n\
00108 ================================================================================\n\
00109 MSG: object_segmentation_gui/ObjectSegmentationGuiGoal\n\
00110 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00111 sensor_msgs/Image image\n\
00112 sensor_msgs/CameraInfo camera_info\n\
00113 sensor_msgs/Image wide_field\n\
00114 sensor_msgs/CameraInfo wide_camera_info\n\
00115 \n\
00116 sensor_msgs/PointCloud2 point_cloud\n\
00117 stereo_msgs/DisparityImage disparity_image\n\
00118 \n\
00119 \n\
00120 ================================================================================\n\
00121 MSG: sensor_msgs/Image\n\
00122 # This message contains an uncompressed image\n\
00123 # (0, 0) is at top-left corner of image\n\
00124 #\n\
00125 \n\
00126 Header header # Header timestamp should be acquisition time of image\n\
00127 # Header frame_id should be optical frame of camera\n\
00128 # origin of frame should be optical center of cameara\n\
00129 # +x should point to the right in the image\n\
00130 # +y should point down in the image\n\
00131 # +z should point into to plane of the image\n\
00132 # If the frame_id here and the frame_id of the CameraInfo\n\
00133 # message associated with the image conflict\n\
00134 # the behavior is undefined\n\
00135 \n\
00136 uint32 height # image height, that is, number of rows\n\
00137 uint32 width # image width, that is, number of columns\n\
00138 \n\
00139 # The legal values for encoding are in file src/image_encodings.cpp\n\
00140 # If you want to standardize a new string format, join\n\
00141 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00142 \n\
00143 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00144 # taken from the list of strings in src/image_encodings.cpp\n\
00145 \n\
00146 uint8 is_bigendian # is this data bigendian?\n\
00147 uint32 step # Full row length in bytes\n\
00148 uint8[] data # actual matrix data, size is (step * rows)\n\
00149 \n\
00150 ================================================================================\n\
00151 MSG: sensor_msgs/CameraInfo\n\
00152 # This message defines meta information for a camera. It should be in a\n\
00153 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00154 # image topics named:\n\
00155 #\n\
00156 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00157 # image - monochrome, distorted\n\
00158 # image_color - color, distorted\n\
00159 # image_rect - monochrome, rectified\n\
00160 # image_rect_color - color, rectified\n\
00161 #\n\
00162 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00163 # for producing the four processed image topics from image_raw and\n\
00164 # camera_info. The meaning of the camera parameters are described in\n\
00165 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00166 #\n\
00167 # The image_geometry package provides a user-friendly interface to\n\
00168 # common operations using this meta information. If you want to, e.g.,\n\
00169 # project a 3d point into image coordinates, we strongly recommend\n\
00170 # using image_geometry.\n\
00171 #\n\
00172 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00173 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00174 # indicates an uncalibrated camera.\n\
00175 \n\
00176 #######################################################################\n\
00177 # Image acquisition info #\n\
00178 #######################################################################\n\
00179 \n\
00180 # Time of image acquisition, camera coordinate frame ID\n\
00181 Header header # Header timestamp should be acquisition time of image\n\
00182 # Header frame_id should be optical frame of camera\n\
00183 # origin of frame should be optical center of camera\n\
00184 # +x should point to the right in the image\n\
00185 # +y should point down in the image\n\
00186 # +z should point into the plane of the image\n\
00187 \n\
00188 \n\
00189 #######################################################################\n\
00190 # Calibration Parameters #\n\
00191 #######################################################################\n\
00192 # These are fixed during camera calibration. Their values will be the #\n\
00193 # same in all messages until the camera is recalibrated. Note that #\n\
00194 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00195 # #\n\
00196 # The internal parameters can be used to warp a raw (distorted) image #\n\
00197 # to: #\n\
00198 # 1. An undistorted image (requires D and K) #\n\
00199 # 2. A rectified image (requires D, K, R) #\n\
00200 # The projection matrix P projects 3D points into the rectified image.#\n\
00201 #######################################################################\n\
00202 \n\
00203 # The image dimensions with which the camera was calibrated. Normally\n\
00204 # this will be the full camera resolution in pixels.\n\
00205 uint32 height\n\
00206 uint32 width\n\
00207 \n\
00208 # The distortion model used. Supported models are listed in\n\
00209 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00210 # simple model of radial and tangential distortion - is sufficent.\n\
00211 string distortion_model\n\
00212 \n\
00213 # The distortion parameters, size depending on the distortion model.\n\
00214 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00215 float64[] D\n\
00216 \n\
00217 # Intrinsic camera matrix for the raw (distorted) images.\n\
00218 # [fx 0 cx]\n\
00219 # K = [ 0 fy cy]\n\
00220 # [ 0 0 1]\n\
00221 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00222 # coordinates using the focal lengths (fx, fy) and principal point\n\
00223 # (cx, cy).\n\
00224 float64[9] K # 3x3 row-major matrix\n\
00225 \n\
00226 # Rectification matrix (stereo cameras only)\n\
00227 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00228 # stereo image plane so that epipolar lines in both stereo images are\n\
00229 # parallel.\n\
00230 float64[9] R # 3x3 row-major matrix\n\
00231 \n\
00232 # Projection/camera matrix\n\
00233 # [fx' 0 cx' Tx]\n\
00234 # P = [ 0 fy' cy' Ty]\n\
00235 # [ 0 0 1 0]\n\
00236 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00237 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00238 # is the normal camera intrinsic matrix for the rectified image.\n\
00239 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00240 # coordinates using the focal lengths (fx', fy') and principal point\n\
00241 # (cx', cy') - these may differ from the values in K.\n\
00242 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00243 # also have R = the identity and P[1:3,1:3] = K.\n\
00244 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00245 # position of the optical center of the second camera in the first\n\
00246 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00247 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00248 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00249 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00250 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00251 # the rectified image is given by:\n\
00252 # [u v w]' = P * [X Y Z 1]'\n\
00253 # x = u / w\n\
00254 # y = v / w\n\
00255 # This holds for both images of a stereo pair.\n\
00256 float64[12] P # 3x4 row-major matrix\n\
00257 \n\
00258 \n\
00259 #######################################################################\n\
00260 # Operational Parameters #\n\
00261 #######################################################################\n\
00262 # These define the image region actually captured by the camera #\n\
00263 # driver. Although they affect the geometry of the output image, they #\n\
00264 # may be changed freely without recalibrating the camera. #\n\
00265 #######################################################################\n\
00266 \n\
00267 # Binning refers here to any camera setting which combines rectangular\n\
00268 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00269 # resolution of the output image to\n\
00270 # (width / binning_x) x (height / binning_y).\n\
00271 # The default values binning_x = binning_y = 0 is considered the same\n\
00272 # as binning_x = binning_y = 1 (no subsampling).\n\
00273 uint32 binning_x\n\
00274 uint32 binning_y\n\
00275 \n\
00276 # Region of interest (subwindow of full camera resolution), given in\n\
00277 # full resolution (unbinned) image coordinates. A particular ROI\n\
00278 # always denotes the same window of pixels on the camera sensor,\n\
00279 # regardless of binning settings.\n\
00280 # The default setting of roi (all values 0) is considered the same as\n\
00281 # full resolution (roi.width = width, roi.height = height).\n\
00282 RegionOfInterest roi\n\
00283 \n\
00284 ================================================================================\n\
00285 MSG: sensor_msgs/RegionOfInterest\n\
00286 # This message is used to specify a region of interest within an image.\n\
00287 #\n\
00288 # When used to specify the ROI setting of the camera when the image was\n\
00289 # taken, the height and width fields should either match the height and\n\
00290 # width fields for the associated image; or height = width = 0\n\
00291 # indicates that the full resolution image was captured.\n\
00292 \n\
00293 uint32 x_offset # Leftmost pixel of the ROI\n\
00294 # (0 if the ROI includes the left edge of the image)\n\
00295 uint32 y_offset # Topmost pixel of the ROI\n\
00296 # (0 if the ROI includes the top edge of the image)\n\
00297 uint32 height # Height of ROI\n\
00298 uint32 width # Width of ROI\n\
00299 \n\
00300 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00301 # ROI in this message. Typically this should be False if the full image\n\
00302 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00303 # used).\n\
00304 bool do_rectify\n\
00305 \n\
00306 ================================================================================\n\
00307 MSG: sensor_msgs/PointCloud2\n\
00308 # This message holds a collection of N-dimensional points, which may\n\
00309 # contain additional information such as normals, intensity, etc. The\n\
00310 # point data is stored as a binary blob, its layout described by the\n\
00311 # contents of the \"fields\" array.\n\
00312 \n\
00313 # The point cloud data may be organized 2d (image-like) or 1d\n\
00314 # (unordered). Point clouds organized as 2d images may be produced by\n\
00315 # camera depth sensors such as stereo or time-of-flight.\n\
00316 \n\
00317 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00318 # points).\n\
00319 Header header\n\
00320 \n\
00321 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00322 # 1 and width is the length of the point cloud.\n\
00323 uint32 height\n\
00324 uint32 width\n\
00325 \n\
00326 # Describes the channels and their layout in the binary data blob.\n\
00327 PointField[] fields\n\
00328 \n\
00329 bool is_bigendian # Is this data bigendian?\n\
00330 uint32 point_step # Length of a point in bytes\n\
00331 uint32 row_step # Length of a row in bytes\n\
00332 uint8[] data # Actual point data, size is (row_step*height)\n\
00333 \n\
00334 bool is_dense # True if there are no invalid points\n\
00335 \n\
00336 ================================================================================\n\
00337 MSG: sensor_msgs/PointField\n\
00338 # This message holds the description of one point entry in the\n\
00339 # PointCloud2 message format.\n\
00340 uint8 INT8 = 1\n\
00341 uint8 UINT8 = 2\n\
00342 uint8 INT16 = 3\n\
00343 uint8 UINT16 = 4\n\
00344 uint8 INT32 = 5\n\
00345 uint8 UINT32 = 6\n\
00346 uint8 FLOAT32 = 7\n\
00347 uint8 FLOAT64 = 8\n\
00348 \n\
00349 string name # Name of field\n\
00350 uint32 offset # Offset from start of point struct\n\
00351 uint8 datatype # Datatype enumeration, see above\n\
00352 uint32 count # How many elements in the field\n\
00353 \n\
00354 ================================================================================\n\
00355 MSG: stereo_msgs/DisparityImage\n\
00356 # Separate header for compatibility with current TimeSynchronizer.\n\
00357 # Likely to be removed in a later release, use image.header instead.\n\
00358 Header header\n\
00359 \n\
00360 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00361 # x-offset between the principal points of the two cameras (in the case\n\
00362 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00363 sensor_msgs/Image image\n\
00364 \n\
00365 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00366 float32 f # Focal length, pixels\n\
00367 float32 T # Baseline, world units\n\
00368 \n\
00369 # Subwindow of (potentially) valid disparity values.\n\
00370 sensor_msgs/RegionOfInterest valid_window\n\
00371 \n\
00372 # The range of disparities searched.\n\
00373 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00374 # The disparity search range defines the horopter, or 3D volume that the\n\
00375 # stereo algorithm can \"see\". Points with Z outside of:\n\
00376 # Z_min = fT / max_disparity\n\
00377 # Z_max = fT / min_disparity\n\
00378 # could not be found.\n\
00379 float32 min_disparity\n\
00380 float32 max_disparity\n\
00381 \n\
00382 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00383 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00384 float32 delta_d\n\
00385 \n\
00386 ================================================================================\n\
00387 MSG: object_segmentation_gui/ObjectSegmentationGuiActionResult\n\
00388 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00389 \n\
00390 Header header\n\
00391 actionlib_msgs/GoalStatus status\n\
00392 ObjectSegmentationGuiResult result\n\
00393 \n\
00394 ================================================================================\n\
00395 MSG: actionlib_msgs/GoalStatus\n\
00396 GoalID goal_id\n\
00397 uint8 status\n\
00398 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00399 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00400 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00401 # and has since completed its execution (Terminal State)\n\
00402 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00403 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00404 # to some failure (Terminal State)\n\
00405 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00406 # because the goal was unattainable or invalid (Terminal State)\n\
00407 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00408 # and has not yet completed execution\n\
00409 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00410 # but the action server has not yet confirmed that the goal is canceled\n\
00411 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00412 # and was successfully cancelled (Terminal State)\n\
00413 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00414 # sent over the wire by an action server\n\
00415 \n\
00416 #Allow for the user to associate a string with GoalStatus for debugging\n\
00417 string text\n\
00418 \n\
00419 \n\
00420 ================================================================================\n\
00421 MSG: object_segmentation_gui/ObjectSegmentationGuiResult\n\
00422 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00423 # The information for the plane that has been detected\n\
00424 tabletop_object_detector/Table table\n\
00425 \n\
00426 # The raw clusters detected in the scan \n\
00427 sensor_msgs/PointCloud[] clusters\n\
00428 \n\
00429 # Whether the detection has succeeded or failed\n\
00430 int32 NO_CLOUD_RECEIVED = 1\n\
00431 int32 NO_TABLE = 2\n\
00432 int32 OTHER_ERROR = 3\n\
00433 int32 SUCCESS = 4\n\
00434 int32 result\n\
00435 \n\
00436 \n\
00437 ================================================================================\n\
00438 MSG: tabletop_object_detector/Table\n\
00439 # Informs that a planar table has been detected at a given location\n\
00440 \n\
00441 # The pose gives you the transform that take you to the coordinate system\n\
00442 # of the table, with the origin somewhere in the table plane and the \n\
00443 # z axis normal to the plane\n\
00444 geometry_msgs/PoseStamped pose\n\
00445 \n\
00446 # These values give you the observed extents of the table, along x and y,\n\
00447 # in the table's own coordinate system (above)\n\
00448 # there is no guarantee that the origin of the table coordinate system is\n\
00449 # inside the boundary defined by these values. \n\
00450 float32 x_min\n\
00451 float32 x_max\n\
00452 float32 y_min\n\
00453 float32 y_max\n\
00454 \n\
00455 # There is no guarantee that the table doe NOT extend further than these \n\
00456 # values; this is just as far as we've observed it.\n\
00457 \n\
00458 ================================================================================\n\
00459 MSG: geometry_msgs/PoseStamped\n\
00460 # A Pose with reference coordinate frame and timestamp\n\
00461 Header header\n\
00462 Pose pose\n\
00463 \n\
00464 ================================================================================\n\
00465 MSG: geometry_msgs/Pose\n\
00466 # A representation of pose in free space, composed of postion and orientation. \n\
00467 Point position\n\
00468 Quaternion orientation\n\
00469 \n\
00470 ================================================================================\n\
00471 MSG: geometry_msgs/Point\n\
00472 # This contains the position of a point in free space\n\
00473 float64 x\n\
00474 float64 y\n\
00475 float64 z\n\
00476 \n\
00477 ================================================================================\n\
00478 MSG: geometry_msgs/Quaternion\n\
00479 # This represents an orientation in free space in quaternion form.\n\
00480 \n\
00481 float64 x\n\
00482 float64 y\n\
00483 float64 z\n\
00484 float64 w\n\
00485 \n\
00486 ================================================================================\n\
00487 MSG: sensor_msgs/PointCloud\n\
00488 # This message holds a collection of 3d points, plus optional additional\n\
00489 # information about each point.\n\
00490 \n\
00491 # Time of sensor data acquisition, coordinate frame ID.\n\
00492 Header header\n\
00493 \n\
00494 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00495 # in the frame given in the header.\n\
00496 geometry_msgs/Point32[] points\n\
00497 \n\
00498 # Each channel should have the same number of elements as points array,\n\
00499 # and the data in each channel should correspond 1:1 with each point.\n\
00500 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00501 ChannelFloat32[] channels\n\
00502 \n\
00503 ================================================================================\n\
00504 MSG: geometry_msgs/Point32\n\
00505 # This contains the position of a point in free space(with 32 bits of precision).\n\
00506 # It is recommeded to use Point wherever possible instead of Point32. \n\
00507 # \n\
00508 # This recommendation is to promote interoperability. \n\
00509 #\n\
00510 # This message is designed to take up less space when sending\n\
00511 # lots of points at once, as in the case of a PointCloud. \n\
00512 \n\
00513 float32 x\n\
00514 float32 y\n\
00515 float32 z\n\
00516 ================================================================================\n\
00517 MSG: sensor_msgs/ChannelFloat32\n\
00518 # This message is used by the PointCloud message to hold optional data\n\
00519 # associated with each point in the cloud. The length of the values\n\
00520 # array should be the same as the length of the points array in the\n\
00521 # PointCloud, and each value should be associated with the corresponding\n\
00522 # point.\n\
00523 \n\
00524 # Channel names in existing practice include:\n\
00525 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00526 # This is opposite to usual conventions but remains for\n\
00527 # historical reasons. The newer PointCloud2 message has no\n\
00528 # such problem.\n\
00529 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00530 # (R,G,B) values packed into the least significant 24 bits,\n\
00531 # in order.\n\
00532 # \"intensity\" - laser or pixel intensity.\n\
00533 # \"distance\"\n\
00534 \n\
00535 # The channel name should give semantics of the channel (e.g.\n\
00536 # \"intensity\" instead of \"value\").\n\
00537 string name\n\
00538 \n\
00539 # The values array should be 1-1 with the elements of the associated\n\
00540 # PointCloud.\n\
00541 float32[] values\n\
00542 \n\
00543 ================================================================================\n\
00544 MSG: object_segmentation_gui/ObjectSegmentationGuiActionFeedback\n\
00545 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00546 \n\
00547 Header header\n\
00548 actionlib_msgs/GoalStatus status\n\
00549 ObjectSegmentationGuiFeedback feedback\n\
00550 \n\
00551 ================================================================================\n\
00552 MSG: object_segmentation_gui/ObjectSegmentationGuiFeedback\n\
00553 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00554 \n\
00555 \n\
00556 "; }
00557 public:
00558 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00559
00560 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00561
00562 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00563 {
00564 ros::serialization::OStream stream(write_ptr, 1000000000);
00565 ros::serialization::serialize(stream, action_goal);
00566 ros::serialization::serialize(stream, action_result);
00567 ros::serialization::serialize(stream, action_feedback);
00568 return stream.getData();
00569 }
00570
00571 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00572 {
00573 ros::serialization::IStream stream(read_ptr, 1000000000);
00574 ros::serialization::deserialize(stream, action_goal);
00575 ros::serialization::deserialize(stream, action_result);
00576 ros::serialization::deserialize(stream, action_feedback);
00577 return stream.getData();
00578 }
00579
00580 ROS_DEPRECATED virtual uint32_t serializationLength() const
00581 {
00582 uint32_t size = 0;
00583 size += ros::serialization::serializationLength(action_goal);
00584 size += ros::serialization::serializationLength(action_result);
00585 size += ros::serialization::serializationLength(action_feedback);
00586 return size;
00587 }
00588
00589 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > Ptr;
00590 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> const> ConstPtr;
00591 };
00592 typedef ::object_segmentation_gui::ObjectSegmentationGuiAction_<std::allocator<void> > ObjectSegmentationGuiAction;
00593
00594 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiAction> ObjectSegmentationGuiActionPtr;
00595 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiAction const> ObjectSegmentationGuiActionConstPtr;
00596
00597
00598 template<typename ContainerAllocator>
00599 std::ostream& operator<<(std::ostream& s, const ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> & v)
00600 {
00601 ros::message_operations::Printer< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> >::stream(s, "", v);
00602 return s;}
00603
00604 }
00605
00606 namespace ros
00607 {
00608 namespace message_traits
00609 {
00610 template<class ContainerAllocator>
00611 struct MD5Sum< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > {
00612 static const char* value()
00613 {
00614 return "9ae0186047e48cafc8bab03144e71d1d";
00615 }
00616
00617 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> &) { return value(); }
00618 static const uint64_t static_value1 = 0x9ae0186047e48cafULL;
00619 static const uint64_t static_value2 = 0xc8bab03144e71d1dULL;
00620 };
00621
00622 template<class ContainerAllocator>
00623 struct DataType< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > {
00624 static const char* value()
00625 {
00626 return "object_segmentation_gui/ObjectSegmentationGuiAction";
00627 }
00628
00629 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> &) { return value(); }
00630 };
00631
00632 template<class ContainerAllocator>
00633 struct Definition< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > {
00634 static const char* value()
00635 {
00636 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00637 \n\
00638 ObjectSegmentationGuiActionGoal action_goal\n\
00639 ObjectSegmentationGuiActionResult action_result\n\
00640 ObjectSegmentationGuiActionFeedback action_feedback\n\
00641 \n\
00642 ================================================================================\n\
00643 MSG: object_segmentation_gui/ObjectSegmentationGuiActionGoal\n\
00644 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00645 \n\
00646 Header header\n\
00647 actionlib_msgs/GoalID goal_id\n\
00648 ObjectSegmentationGuiGoal goal\n\
00649 \n\
00650 ================================================================================\n\
00651 MSG: std_msgs/Header\n\
00652 # Standard metadata for higher-level stamped data types.\n\
00653 # This is generally used to communicate timestamped data \n\
00654 # in a particular coordinate frame.\n\
00655 # \n\
00656 # sequence ID: consecutively increasing ID \n\
00657 uint32 seq\n\
00658 #Two-integer timestamp that is expressed as:\n\
00659 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00660 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00661 # time-handling sugar is provided by the client library\n\
00662 time stamp\n\
00663 #Frame this data is associated with\n\
00664 # 0: no frame\n\
00665 # 1: global frame\n\
00666 string frame_id\n\
00667 \n\
00668 ================================================================================\n\
00669 MSG: actionlib_msgs/GoalID\n\
00670 # The stamp should store the time at which this goal was requested.\n\
00671 # It is used by an action server when it tries to preempt all\n\
00672 # goals that were requested before a certain time\n\
00673 time stamp\n\
00674 \n\
00675 # The id provides a way to associate feedback and\n\
00676 # result message with specific goal requests. The id\n\
00677 # specified must be unique.\n\
00678 string id\n\
00679 \n\
00680 \n\
00681 ================================================================================\n\
00682 MSG: object_segmentation_gui/ObjectSegmentationGuiGoal\n\
00683 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00684 sensor_msgs/Image image\n\
00685 sensor_msgs/CameraInfo camera_info\n\
00686 sensor_msgs/Image wide_field\n\
00687 sensor_msgs/CameraInfo wide_camera_info\n\
00688 \n\
00689 sensor_msgs/PointCloud2 point_cloud\n\
00690 stereo_msgs/DisparityImage disparity_image\n\
00691 \n\
00692 \n\
00693 ================================================================================\n\
00694 MSG: sensor_msgs/Image\n\
00695 # This message contains an uncompressed image\n\
00696 # (0, 0) is at top-left corner of image\n\
00697 #\n\
00698 \n\
00699 Header header # Header timestamp should be acquisition time of image\n\
00700 # Header frame_id should be optical frame of camera\n\
00701 # origin of frame should be optical center of cameara\n\
00702 # +x should point to the right in the image\n\
00703 # +y should point down in the image\n\
00704 # +z should point into to plane of the image\n\
00705 # If the frame_id here and the frame_id of the CameraInfo\n\
00706 # message associated with the image conflict\n\
00707 # the behavior is undefined\n\
00708 \n\
00709 uint32 height # image height, that is, number of rows\n\
00710 uint32 width # image width, that is, number of columns\n\
00711 \n\
00712 # The legal values for encoding are in file src/image_encodings.cpp\n\
00713 # If you want to standardize a new string format, join\n\
00714 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00715 \n\
00716 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00717 # taken from the list of strings in src/image_encodings.cpp\n\
00718 \n\
00719 uint8 is_bigendian # is this data bigendian?\n\
00720 uint32 step # Full row length in bytes\n\
00721 uint8[] data # actual matrix data, size is (step * rows)\n\
00722 \n\
00723 ================================================================================\n\
00724 MSG: sensor_msgs/CameraInfo\n\
00725 # This message defines meta information for a camera. It should be in a\n\
00726 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00727 # image topics named:\n\
00728 #\n\
00729 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00730 # image - monochrome, distorted\n\
00731 # image_color - color, distorted\n\
00732 # image_rect - monochrome, rectified\n\
00733 # image_rect_color - color, rectified\n\
00734 #\n\
00735 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00736 # for producing the four processed image topics from image_raw and\n\
00737 # camera_info. The meaning of the camera parameters are described in\n\
00738 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00739 #\n\
00740 # The image_geometry package provides a user-friendly interface to\n\
00741 # common operations using this meta information. If you want to, e.g.,\n\
00742 # project a 3d point into image coordinates, we strongly recommend\n\
00743 # using image_geometry.\n\
00744 #\n\
00745 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00746 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00747 # indicates an uncalibrated camera.\n\
00748 \n\
00749 #######################################################################\n\
00750 # Image acquisition info #\n\
00751 #######################################################################\n\
00752 \n\
00753 # Time of image acquisition, camera coordinate frame ID\n\
00754 Header header # Header timestamp should be acquisition time of image\n\
00755 # Header frame_id should be optical frame of camera\n\
00756 # origin of frame should be optical center of camera\n\
00757 # +x should point to the right in the image\n\
00758 # +y should point down in the image\n\
00759 # +z should point into the plane of the image\n\
00760 \n\
00761 \n\
00762 #######################################################################\n\
00763 # Calibration Parameters #\n\
00764 #######################################################################\n\
00765 # These are fixed during camera calibration. Their values will be the #\n\
00766 # same in all messages until the camera is recalibrated. Note that #\n\
00767 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00768 # #\n\
00769 # The internal parameters can be used to warp a raw (distorted) image #\n\
00770 # to: #\n\
00771 # 1. An undistorted image (requires D and K) #\n\
00772 # 2. A rectified image (requires D, K, R) #\n\
00773 # The projection matrix P projects 3D points into the rectified image.#\n\
00774 #######################################################################\n\
00775 \n\
00776 # The image dimensions with which the camera was calibrated. Normally\n\
00777 # this will be the full camera resolution in pixels.\n\
00778 uint32 height\n\
00779 uint32 width\n\
00780 \n\
00781 # The distortion model used. Supported models are listed in\n\
00782 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00783 # simple model of radial and tangential distortion - is sufficent.\n\
00784 string distortion_model\n\
00785 \n\
00786 # The distortion parameters, size depending on the distortion model.\n\
00787 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00788 float64[] D\n\
00789 \n\
00790 # Intrinsic camera matrix for the raw (distorted) images.\n\
00791 # [fx 0 cx]\n\
00792 # K = [ 0 fy cy]\n\
00793 # [ 0 0 1]\n\
00794 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00795 # coordinates using the focal lengths (fx, fy) and principal point\n\
00796 # (cx, cy).\n\
00797 float64[9] K # 3x3 row-major matrix\n\
00798 \n\
00799 # Rectification matrix (stereo cameras only)\n\
00800 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00801 # stereo image plane so that epipolar lines in both stereo images are\n\
00802 # parallel.\n\
00803 float64[9] R # 3x3 row-major matrix\n\
00804 \n\
00805 # Projection/camera matrix\n\
00806 # [fx' 0 cx' Tx]\n\
00807 # P = [ 0 fy' cy' Ty]\n\
00808 # [ 0 0 1 0]\n\
00809 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00810 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00811 # is the normal camera intrinsic matrix for the rectified image.\n\
00812 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00813 # coordinates using the focal lengths (fx', fy') and principal point\n\
00814 # (cx', cy') - these may differ from the values in K.\n\
00815 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00816 # also have R = the identity and P[1:3,1:3] = K.\n\
00817 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00818 # position of the optical center of the second camera in the first\n\
00819 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00820 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00821 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00822 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00823 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00824 # the rectified image is given by:\n\
00825 # [u v w]' = P * [X Y Z 1]'\n\
00826 # x = u / w\n\
00827 # y = v / w\n\
00828 # This holds for both images of a stereo pair.\n\
00829 float64[12] P # 3x4 row-major matrix\n\
00830 \n\
00831 \n\
00832 #######################################################################\n\
00833 # Operational Parameters #\n\
00834 #######################################################################\n\
00835 # These define the image region actually captured by the camera #\n\
00836 # driver. Although they affect the geometry of the output image, they #\n\
00837 # may be changed freely without recalibrating the camera. #\n\
00838 #######################################################################\n\
00839 \n\
00840 # Binning refers here to any camera setting which combines rectangular\n\
00841 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00842 # resolution of the output image to\n\
00843 # (width / binning_x) x (height / binning_y).\n\
00844 # The default values binning_x = binning_y = 0 is considered the same\n\
00845 # as binning_x = binning_y = 1 (no subsampling).\n\
00846 uint32 binning_x\n\
00847 uint32 binning_y\n\
00848 \n\
00849 # Region of interest (subwindow of full camera resolution), given in\n\
00850 # full resolution (unbinned) image coordinates. A particular ROI\n\
00851 # always denotes the same window of pixels on the camera sensor,\n\
00852 # regardless of binning settings.\n\
00853 # The default setting of roi (all values 0) is considered the same as\n\
00854 # full resolution (roi.width = width, roi.height = height).\n\
00855 RegionOfInterest roi\n\
00856 \n\
00857 ================================================================================\n\
00858 MSG: sensor_msgs/RegionOfInterest\n\
00859 # This message is used to specify a region of interest within an image.\n\
00860 #\n\
00861 # When used to specify the ROI setting of the camera when the image was\n\
00862 # taken, the height and width fields should either match the height and\n\
00863 # width fields for the associated image; or height = width = 0\n\
00864 # indicates that the full resolution image was captured.\n\
00865 \n\
00866 uint32 x_offset # Leftmost pixel of the ROI\n\
00867 # (0 if the ROI includes the left edge of the image)\n\
00868 uint32 y_offset # Topmost pixel of the ROI\n\
00869 # (0 if the ROI includes the top edge of the image)\n\
00870 uint32 height # Height of ROI\n\
00871 uint32 width # Width of ROI\n\
00872 \n\
00873 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00874 # ROI in this message. Typically this should be False if the full image\n\
00875 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00876 # used).\n\
00877 bool do_rectify\n\
00878 \n\
00879 ================================================================================\n\
00880 MSG: sensor_msgs/PointCloud2\n\
00881 # This message holds a collection of N-dimensional points, which may\n\
00882 # contain additional information such as normals, intensity, etc. The\n\
00883 # point data is stored as a binary blob, its layout described by the\n\
00884 # contents of the \"fields\" array.\n\
00885 \n\
00886 # The point cloud data may be organized 2d (image-like) or 1d\n\
00887 # (unordered). Point clouds organized as 2d images may be produced by\n\
00888 # camera depth sensors such as stereo or time-of-flight.\n\
00889 \n\
00890 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00891 # points).\n\
00892 Header header\n\
00893 \n\
00894 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00895 # 1 and width is the length of the point cloud.\n\
00896 uint32 height\n\
00897 uint32 width\n\
00898 \n\
00899 # Describes the channels and their layout in the binary data blob.\n\
00900 PointField[] fields\n\
00901 \n\
00902 bool is_bigendian # Is this data bigendian?\n\
00903 uint32 point_step # Length of a point in bytes\n\
00904 uint32 row_step # Length of a row in bytes\n\
00905 uint8[] data # Actual point data, size is (row_step*height)\n\
00906 \n\
00907 bool is_dense # True if there are no invalid points\n\
00908 \n\
00909 ================================================================================\n\
00910 MSG: sensor_msgs/PointField\n\
00911 # This message holds the description of one point entry in the\n\
00912 # PointCloud2 message format.\n\
00913 uint8 INT8 = 1\n\
00914 uint8 UINT8 = 2\n\
00915 uint8 INT16 = 3\n\
00916 uint8 UINT16 = 4\n\
00917 uint8 INT32 = 5\n\
00918 uint8 UINT32 = 6\n\
00919 uint8 FLOAT32 = 7\n\
00920 uint8 FLOAT64 = 8\n\
00921 \n\
00922 string name # Name of field\n\
00923 uint32 offset # Offset from start of point struct\n\
00924 uint8 datatype # Datatype enumeration, see above\n\
00925 uint32 count # How many elements in the field\n\
00926 \n\
00927 ================================================================================\n\
00928 MSG: stereo_msgs/DisparityImage\n\
00929 # Separate header for compatibility with current TimeSynchronizer.\n\
00930 # Likely to be removed in a later release, use image.header instead.\n\
00931 Header header\n\
00932 \n\
00933 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00934 # x-offset between the principal points of the two cameras (in the case\n\
00935 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00936 sensor_msgs/Image image\n\
00937 \n\
00938 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00939 float32 f # Focal length, pixels\n\
00940 float32 T # Baseline, world units\n\
00941 \n\
00942 # Subwindow of (potentially) valid disparity values.\n\
00943 sensor_msgs/RegionOfInterest valid_window\n\
00944 \n\
00945 # The range of disparities searched.\n\
00946 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00947 # The disparity search range defines the horopter, or 3D volume that the\n\
00948 # stereo algorithm can \"see\". Points with Z outside of:\n\
00949 # Z_min = fT / max_disparity\n\
00950 # Z_max = fT / min_disparity\n\
00951 # could not be found.\n\
00952 float32 min_disparity\n\
00953 float32 max_disparity\n\
00954 \n\
00955 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00956 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00957 float32 delta_d\n\
00958 \n\
00959 ================================================================================\n\
00960 MSG: object_segmentation_gui/ObjectSegmentationGuiActionResult\n\
00961 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00962 \n\
00963 Header header\n\
00964 actionlib_msgs/GoalStatus status\n\
00965 ObjectSegmentationGuiResult result\n\
00966 \n\
00967 ================================================================================\n\
00968 MSG: actionlib_msgs/GoalStatus\n\
00969 GoalID goal_id\n\
00970 uint8 status\n\
00971 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00972 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00973 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00974 # and has since completed its execution (Terminal State)\n\
00975 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00976 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00977 # to some failure (Terminal State)\n\
00978 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00979 # because the goal was unattainable or invalid (Terminal State)\n\
00980 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00981 # and has not yet completed execution\n\
00982 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00983 # but the action server has not yet confirmed that the goal is canceled\n\
00984 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00985 # and was successfully cancelled (Terminal State)\n\
00986 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00987 # sent over the wire by an action server\n\
00988 \n\
00989 #Allow for the user to associate a string with GoalStatus for debugging\n\
00990 string text\n\
00991 \n\
00992 \n\
00993 ================================================================================\n\
00994 MSG: object_segmentation_gui/ObjectSegmentationGuiResult\n\
00995 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00996 # The information for the plane that has been detected\n\
00997 tabletop_object_detector/Table table\n\
00998 \n\
00999 # The raw clusters detected in the scan \n\
01000 sensor_msgs/PointCloud[] clusters\n\
01001 \n\
01002 # Whether the detection has succeeded or failed\n\
01003 int32 NO_CLOUD_RECEIVED = 1\n\
01004 int32 NO_TABLE = 2\n\
01005 int32 OTHER_ERROR = 3\n\
01006 int32 SUCCESS = 4\n\
01007 int32 result\n\
01008 \n\
01009 \n\
01010 ================================================================================\n\
01011 MSG: tabletop_object_detector/Table\n\
01012 # Informs that a planar table has been detected at a given location\n\
01013 \n\
01014 # The pose gives you the transform that take you to the coordinate system\n\
01015 # of the table, with the origin somewhere in the table plane and the \n\
01016 # z axis normal to the plane\n\
01017 geometry_msgs/PoseStamped pose\n\
01018 \n\
01019 # These values give you the observed extents of the table, along x and y,\n\
01020 # in the table's own coordinate system (above)\n\
01021 # there is no guarantee that the origin of the table coordinate system is\n\
01022 # inside the boundary defined by these values. \n\
01023 float32 x_min\n\
01024 float32 x_max\n\
01025 float32 y_min\n\
01026 float32 y_max\n\
01027 \n\
01028 # There is no guarantee that the table doe NOT extend further than these \n\
01029 # values; this is just as far as we've observed it.\n\
01030 \n\
01031 ================================================================================\n\
01032 MSG: geometry_msgs/PoseStamped\n\
01033 # A Pose with reference coordinate frame and timestamp\n\
01034 Header header\n\
01035 Pose pose\n\
01036 \n\
01037 ================================================================================\n\
01038 MSG: geometry_msgs/Pose\n\
01039 # A representation of pose in free space, composed of postion and orientation. \n\
01040 Point position\n\
01041 Quaternion orientation\n\
01042 \n\
01043 ================================================================================\n\
01044 MSG: geometry_msgs/Point\n\
01045 # This contains the position of a point in free space\n\
01046 float64 x\n\
01047 float64 y\n\
01048 float64 z\n\
01049 \n\
01050 ================================================================================\n\
01051 MSG: geometry_msgs/Quaternion\n\
01052 # This represents an orientation in free space in quaternion form.\n\
01053 \n\
01054 float64 x\n\
01055 float64 y\n\
01056 float64 z\n\
01057 float64 w\n\
01058 \n\
01059 ================================================================================\n\
01060 MSG: sensor_msgs/PointCloud\n\
01061 # This message holds a collection of 3d points, plus optional additional\n\
01062 # information about each point.\n\
01063 \n\
01064 # Time of sensor data acquisition, coordinate frame ID.\n\
01065 Header header\n\
01066 \n\
01067 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
01068 # in the frame given in the header.\n\
01069 geometry_msgs/Point32[] points\n\
01070 \n\
01071 # Each channel should have the same number of elements as points array,\n\
01072 # and the data in each channel should correspond 1:1 with each point.\n\
01073 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
01074 ChannelFloat32[] channels\n\
01075 \n\
01076 ================================================================================\n\
01077 MSG: geometry_msgs/Point32\n\
01078 # This contains the position of a point in free space(with 32 bits of precision).\n\
01079 # It is recommeded to use Point wherever possible instead of Point32. \n\
01080 # \n\
01081 # This recommendation is to promote interoperability. \n\
01082 #\n\
01083 # This message is designed to take up less space when sending\n\
01084 # lots of points at once, as in the case of a PointCloud. \n\
01085 \n\
01086 float32 x\n\
01087 float32 y\n\
01088 float32 z\n\
01089 ================================================================================\n\
01090 MSG: sensor_msgs/ChannelFloat32\n\
01091 # This message is used by the PointCloud message to hold optional data\n\
01092 # associated with each point in the cloud. The length of the values\n\
01093 # array should be the same as the length of the points array in the\n\
01094 # PointCloud, and each value should be associated with the corresponding\n\
01095 # point.\n\
01096 \n\
01097 # Channel names in existing practice include:\n\
01098 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01099 # This is opposite to usual conventions but remains for\n\
01100 # historical reasons. The newer PointCloud2 message has no\n\
01101 # such problem.\n\
01102 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01103 # (R,G,B) values packed into the least significant 24 bits,\n\
01104 # in order.\n\
01105 # \"intensity\" - laser or pixel intensity.\n\
01106 # \"distance\"\n\
01107 \n\
01108 # The channel name should give semantics of the channel (e.g.\n\
01109 # \"intensity\" instead of \"value\").\n\
01110 string name\n\
01111 \n\
01112 # The values array should be 1-1 with the elements of the associated\n\
01113 # PointCloud.\n\
01114 float32[] values\n\
01115 \n\
01116 ================================================================================\n\
01117 MSG: object_segmentation_gui/ObjectSegmentationGuiActionFeedback\n\
01118 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01119 \n\
01120 Header header\n\
01121 actionlib_msgs/GoalStatus status\n\
01122 ObjectSegmentationGuiFeedback feedback\n\
01123 \n\
01124 ================================================================================\n\
01125 MSG: object_segmentation_gui/ObjectSegmentationGuiFeedback\n\
01126 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01127 \n\
01128 \n\
01129 ";
01130 }
01131
01132 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> &) { return value(); }
01133 };
01134
01135 }
01136 }
01137
01138 namespace ros
01139 {
01140 namespace serialization
01141 {
01142
01143 template<class ContainerAllocator> struct Serializer< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> >
01144 {
01145 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01146 {
01147 stream.next(m.action_goal);
01148 stream.next(m.action_result);
01149 stream.next(m.action_feedback);
01150 }
01151
01152 ROS_DECLARE_ALLINONE_SERIALIZER;
01153 };
01154 }
01155 }
01156
01157 namespace ros
01158 {
01159 namespace message_operations
01160 {
01161
01162 template<class ContainerAllocator>
01163 struct Printer< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> >
01164 {
01165 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> & v)
01166 {
01167 s << indent << "action_goal: ";
01168 s << std::endl;
01169 Printer< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
01170 s << indent << "action_result: ";
01171 s << std::endl;
01172 Printer< ::object_segmentation_gui::ObjectSegmentationGuiActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
01173 s << indent << "action_feedback: ";
01174 s << std::endl;
01175 Printer< ::object_segmentation_gui::ObjectSegmentationGuiActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
01176 }
01177 };
01178
01179
01180 }
01181 }
01182
01183 #endif // OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTION_H
01184