00001
00002 #ifndef OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTIONGOAL_H
00003 #define OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "std_msgs/Header.h"
00014 #include "actionlib_msgs/GoalID.h"
00015 #include "object_segmentation_gui/ObjectSegmentationGuiGoal.h"
00016
00017 namespace object_segmentation_gui
00018 {
00019 template <class ContainerAllocator>
00020 struct ObjectSegmentationGuiActionGoal_ : public ros::Message
00021 {
00022 typedef ObjectSegmentationGuiActionGoal_<ContainerAllocator> Type;
00023
00024 ObjectSegmentationGuiActionGoal_()
00025 : header()
00026 , goal_id()
00027 , goal()
00028 {
00029 }
00030
00031 ObjectSegmentationGuiActionGoal_(const ContainerAllocator& _alloc)
00032 : header(_alloc)
00033 , goal_id(_alloc)
00034 , goal(_alloc)
00035 {
00036 }
00037
00038 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00039 ::std_msgs::Header_<ContainerAllocator> header;
00040
00041 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00042 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00043
00044 typedef ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> _goal_type;
00045 ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> goal;
00046
00047
00048 private:
00049 static const char* __s_getDataType_() { return "object_segmentation_gui/ObjectSegmentationGuiActionGoal"; }
00050 public:
00051 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00052
00053 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00054
00055 private:
00056 static const char* __s_getMD5Sum_() { return "c90d057a2cbad468bbf26bcf158e312e"; }
00057 public:
00058 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00059
00060 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00061
00062 private:
00063 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00064 \n\
00065 Header header\n\
00066 actionlib_msgs/GoalID goal_id\n\
00067 ObjectSegmentationGuiGoal goal\n\
00068 \n\
00069 ================================================================================\n\
00070 MSG: std_msgs/Header\n\
00071 # Standard metadata for higher-level stamped data types.\n\
00072 # This is generally used to communicate timestamped data \n\
00073 # in a particular coordinate frame.\n\
00074 # \n\
00075 # sequence ID: consecutively increasing ID \n\
00076 uint32 seq\n\
00077 #Two-integer timestamp that is expressed as:\n\
00078 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00079 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00080 # time-handling sugar is provided by the client library\n\
00081 time stamp\n\
00082 #Frame this data is associated with\n\
00083 # 0: no frame\n\
00084 # 1: global frame\n\
00085 string frame_id\n\
00086 \n\
00087 ================================================================================\n\
00088 MSG: actionlib_msgs/GoalID\n\
00089 # The stamp should store the time at which this goal was requested.\n\
00090 # It is used by an action server when it tries to preempt all\n\
00091 # goals that were requested before a certain time\n\
00092 time stamp\n\
00093 \n\
00094 # The id provides a way to associate feedback and\n\
00095 # result message with specific goal requests. The id\n\
00096 # specified must be unique.\n\
00097 string id\n\
00098 \n\
00099 \n\
00100 ================================================================================\n\
00101 MSG: object_segmentation_gui/ObjectSegmentationGuiGoal\n\
00102 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00103 sensor_msgs/Image image\n\
00104 sensor_msgs/CameraInfo camera_info\n\
00105 sensor_msgs/Image wide_field\n\
00106 sensor_msgs/CameraInfo wide_camera_info\n\
00107 \n\
00108 sensor_msgs/PointCloud2 point_cloud\n\
00109 stereo_msgs/DisparityImage disparity_image\n\
00110 \n\
00111 \n\
00112 ================================================================================\n\
00113 MSG: sensor_msgs/Image\n\
00114 # This message contains an uncompressed image\n\
00115 # (0, 0) is at top-left corner of image\n\
00116 #\n\
00117 \n\
00118 Header header # Header timestamp should be acquisition time of image\n\
00119 # Header frame_id should be optical frame of camera\n\
00120 # origin of frame should be optical center of cameara\n\
00121 # +x should point to the right in the image\n\
00122 # +y should point down in the image\n\
00123 # +z should point into to plane of the image\n\
00124 # If the frame_id here and the frame_id of the CameraInfo\n\
00125 # message associated with the image conflict\n\
00126 # the behavior is undefined\n\
00127 \n\
00128 uint32 height # image height, that is, number of rows\n\
00129 uint32 width # image width, that is, number of columns\n\
00130 \n\
00131 # The legal values for encoding are in file src/image_encodings.cpp\n\
00132 # If you want to standardize a new string format, join\n\
00133 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00134 \n\
00135 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00136 # taken from the list of strings in src/image_encodings.cpp\n\
00137 \n\
00138 uint8 is_bigendian # is this data bigendian?\n\
00139 uint32 step # Full row length in bytes\n\
00140 uint8[] data # actual matrix data, size is (step * rows)\n\
00141 \n\
00142 ================================================================================\n\
00143 MSG: sensor_msgs/CameraInfo\n\
00144 # This message defines meta information for a camera. It should be in a\n\
00145 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00146 # image topics named:\n\
00147 #\n\
00148 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00149 # image - monochrome, distorted\n\
00150 # image_color - color, distorted\n\
00151 # image_rect - monochrome, rectified\n\
00152 # image_rect_color - color, rectified\n\
00153 #\n\
00154 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00155 # for producing the four processed image topics from image_raw and\n\
00156 # camera_info. The meaning of the camera parameters are described in\n\
00157 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00158 #\n\
00159 # The image_geometry package provides a user-friendly interface to\n\
00160 # common operations using this meta information. If you want to, e.g.,\n\
00161 # project a 3d point into image coordinates, we strongly recommend\n\
00162 # using image_geometry.\n\
00163 #\n\
00164 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00165 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00166 # indicates an uncalibrated camera.\n\
00167 \n\
00168 #######################################################################\n\
00169 # Image acquisition info #\n\
00170 #######################################################################\n\
00171 \n\
00172 # Time of image acquisition, camera coordinate frame ID\n\
00173 Header header # Header timestamp should be acquisition time of image\n\
00174 # Header frame_id should be optical frame of camera\n\
00175 # origin of frame should be optical center of camera\n\
00176 # +x should point to the right in the image\n\
00177 # +y should point down in the image\n\
00178 # +z should point into the plane of the image\n\
00179 \n\
00180 \n\
00181 #######################################################################\n\
00182 # Calibration Parameters #\n\
00183 #######################################################################\n\
00184 # These are fixed during camera calibration. Their values will be the #\n\
00185 # same in all messages until the camera is recalibrated. Note that #\n\
00186 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00187 # #\n\
00188 # The internal parameters can be used to warp a raw (distorted) image #\n\
00189 # to: #\n\
00190 # 1. An undistorted image (requires D and K) #\n\
00191 # 2. A rectified image (requires D, K, R) #\n\
00192 # The projection matrix P projects 3D points into the rectified image.#\n\
00193 #######################################################################\n\
00194 \n\
00195 # The image dimensions with which the camera was calibrated. Normally\n\
00196 # this will be the full camera resolution in pixels.\n\
00197 uint32 height\n\
00198 uint32 width\n\
00199 \n\
00200 # The distortion model used. Supported models are listed in\n\
00201 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00202 # simple model of radial and tangential distortion - is sufficent.\n\
00203 string distortion_model\n\
00204 \n\
00205 # The distortion parameters, size depending on the distortion model.\n\
00206 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00207 float64[] D\n\
00208 \n\
00209 # Intrinsic camera matrix for the raw (distorted) images.\n\
00210 # [fx 0 cx]\n\
00211 # K = [ 0 fy cy]\n\
00212 # [ 0 0 1]\n\
00213 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00214 # coordinates using the focal lengths (fx, fy) and principal point\n\
00215 # (cx, cy).\n\
00216 float64[9] K # 3x3 row-major matrix\n\
00217 \n\
00218 # Rectification matrix (stereo cameras only)\n\
00219 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00220 # stereo image plane so that epipolar lines in both stereo images are\n\
00221 # parallel.\n\
00222 float64[9] R # 3x3 row-major matrix\n\
00223 \n\
00224 # Projection/camera matrix\n\
00225 # [fx' 0 cx' Tx]\n\
00226 # P = [ 0 fy' cy' Ty]\n\
00227 # [ 0 0 1 0]\n\
00228 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00229 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00230 # is the normal camera intrinsic matrix for the rectified image.\n\
00231 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00232 # coordinates using the focal lengths (fx', fy') and principal point\n\
00233 # (cx', cy') - these may differ from the values in K.\n\
00234 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00235 # also have R = the identity and P[1:3,1:3] = K.\n\
00236 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00237 # position of the optical center of the second camera in the first\n\
00238 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00239 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00240 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00241 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00242 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00243 # the rectified image is given by:\n\
00244 # [u v w]' = P * [X Y Z 1]'\n\
00245 # x = u / w\n\
00246 # y = v / w\n\
00247 # This holds for both images of a stereo pair.\n\
00248 float64[12] P # 3x4 row-major matrix\n\
00249 \n\
00250 \n\
00251 #######################################################################\n\
00252 # Operational Parameters #\n\
00253 #######################################################################\n\
00254 # These define the image region actually captured by the camera #\n\
00255 # driver. Although they affect the geometry of the output image, they #\n\
00256 # may be changed freely without recalibrating the camera. #\n\
00257 #######################################################################\n\
00258 \n\
00259 # Binning refers here to any camera setting which combines rectangular\n\
00260 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00261 # resolution of the output image to\n\
00262 # (width / binning_x) x (height / binning_y).\n\
00263 # The default values binning_x = binning_y = 0 is considered the same\n\
00264 # as binning_x = binning_y = 1 (no subsampling).\n\
00265 uint32 binning_x\n\
00266 uint32 binning_y\n\
00267 \n\
00268 # Region of interest (subwindow of full camera resolution), given in\n\
00269 # full resolution (unbinned) image coordinates. A particular ROI\n\
00270 # always denotes the same window of pixels on the camera sensor,\n\
00271 # regardless of binning settings.\n\
00272 # The default setting of roi (all values 0) is considered the same as\n\
00273 # full resolution (roi.width = width, roi.height = height).\n\
00274 RegionOfInterest roi\n\
00275 \n\
00276 ================================================================================\n\
00277 MSG: sensor_msgs/RegionOfInterest\n\
00278 # This message is used to specify a region of interest within an image.\n\
00279 #\n\
00280 # When used to specify the ROI setting of the camera when the image was\n\
00281 # taken, the height and width fields should either match the height and\n\
00282 # width fields for the associated image; or height = width = 0\n\
00283 # indicates that the full resolution image was captured.\n\
00284 \n\
00285 uint32 x_offset # Leftmost pixel of the ROI\n\
00286 # (0 if the ROI includes the left edge of the image)\n\
00287 uint32 y_offset # Topmost pixel of the ROI\n\
00288 # (0 if the ROI includes the top edge of the image)\n\
00289 uint32 height # Height of ROI\n\
00290 uint32 width # Width of ROI\n\
00291 \n\
00292 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00293 # ROI in this message. Typically this should be False if the full image\n\
00294 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00295 # used).\n\
00296 bool do_rectify\n\
00297 \n\
00298 ================================================================================\n\
00299 MSG: sensor_msgs/PointCloud2\n\
00300 # This message holds a collection of N-dimensional points, which may\n\
00301 # contain additional information such as normals, intensity, etc. The\n\
00302 # point data is stored as a binary blob, its layout described by the\n\
00303 # contents of the \"fields\" array.\n\
00304 \n\
00305 # The point cloud data may be organized 2d (image-like) or 1d\n\
00306 # (unordered). Point clouds organized as 2d images may be produced by\n\
00307 # camera depth sensors such as stereo or time-of-flight.\n\
00308 \n\
00309 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00310 # points).\n\
00311 Header header\n\
00312 \n\
00313 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00314 # 1 and width is the length of the point cloud.\n\
00315 uint32 height\n\
00316 uint32 width\n\
00317 \n\
00318 # Describes the channels and their layout in the binary data blob.\n\
00319 PointField[] fields\n\
00320 \n\
00321 bool is_bigendian # Is this data bigendian?\n\
00322 uint32 point_step # Length of a point in bytes\n\
00323 uint32 row_step # Length of a row in bytes\n\
00324 uint8[] data # Actual point data, size is (row_step*height)\n\
00325 \n\
00326 bool is_dense # True if there are no invalid points\n\
00327 \n\
00328 ================================================================================\n\
00329 MSG: sensor_msgs/PointField\n\
00330 # This message holds the description of one point entry in the\n\
00331 # PointCloud2 message format.\n\
00332 uint8 INT8 = 1\n\
00333 uint8 UINT8 = 2\n\
00334 uint8 INT16 = 3\n\
00335 uint8 UINT16 = 4\n\
00336 uint8 INT32 = 5\n\
00337 uint8 UINT32 = 6\n\
00338 uint8 FLOAT32 = 7\n\
00339 uint8 FLOAT64 = 8\n\
00340 \n\
00341 string name # Name of field\n\
00342 uint32 offset # Offset from start of point struct\n\
00343 uint8 datatype # Datatype enumeration, see above\n\
00344 uint32 count # How many elements in the field\n\
00345 \n\
00346 ================================================================================\n\
00347 MSG: stereo_msgs/DisparityImage\n\
00348 # Separate header for compatibility with current TimeSynchronizer.\n\
00349 # Likely to be removed in a later release, use image.header instead.\n\
00350 Header header\n\
00351 \n\
00352 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00353 # x-offset between the principal points of the two cameras (in the case\n\
00354 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00355 sensor_msgs/Image image\n\
00356 \n\
00357 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00358 float32 f # Focal length, pixels\n\
00359 float32 T # Baseline, world units\n\
00360 \n\
00361 # Subwindow of (potentially) valid disparity values.\n\
00362 sensor_msgs/RegionOfInterest valid_window\n\
00363 \n\
00364 # The range of disparities searched.\n\
00365 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00366 # The disparity search range defines the horopter, or 3D volume that the\n\
00367 # stereo algorithm can \"see\". Points with Z outside of:\n\
00368 # Z_min = fT / max_disparity\n\
00369 # Z_max = fT / min_disparity\n\
00370 # could not be found.\n\
00371 float32 min_disparity\n\
00372 float32 max_disparity\n\
00373 \n\
00374 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00375 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00376 float32 delta_d\n\
00377 \n\
00378 "; }
00379 public:
00380 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00381
00382 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00383
00384 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00385 {
00386 ros::serialization::OStream stream(write_ptr, 1000000000);
00387 ros::serialization::serialize(stream, header);
00388 ros::serialization::serialize(stream, goal_id);
00389 ros::serialization::serialize(stream, goal);
00390 return stream.getData();
00391 }
00392
00393 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00394 {
00395 ros::serialization::IStream stream(read_ptr, 1000000000);
00396 ros::serialization::deserialize(stream, header);
00397 ros::serialization::deserialize(stream, goal_id);
00398 ros::serialization::deserialize(stream, goal);
00399 return stream.getData();
00400 }
00401
00402 ROS_DEPRECATED virtual uint32_t serializationLength() const
00403 {
00404 uint32_t size = 0;
00405 size += ros::serialization::serializationLength(header);
00406 size += ros::serialization::serializationLength(goal_id);
00407 size += ros::serialization::serializationLength(goal);
00408 return size;
00409 }
00410
00411 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > Ptr;
00412 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> const> ConstPtr;
00413 };
00414 typedef ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<std::allocator<void> > ObjectSegmentationGuiActionGoal;
00415
00416 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal> ObjectSegmentationGuiActionGoalPtr;
00417 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal const> ObjectSegmentationGuiActionGoalConstPtr;
00418
00419
00420 template<typename ContainerAllocator>
00421 std::ostream& operator<<(std::ostream& s, const ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> & v)
00422 {
00423 ros::message_operations::Printer< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> >::stream(s, "", v);
00424 return s;}
00425
00426 }
00427
00428 namespace ros
00429 {
00430 namespace message_traits
00431 {
00432 template<class ContainerAllocator>
00433 struct MD5Sum< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > {
00434 static const char* value()
00435 {
00436 return "c90d057a2cbad468bbf26bcf158e312e";
00437 }
00438
00439 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> &) { return value(); }
00440 static const uint64_t static_value1 = 0xc90d057a2cbad468ULL;
00441 static const uint64_t static_value2 = 0xbbf26bcf158e312eULL;
00442 };
00443
00444 template<class ContainerAllocator>
00445 struct DataType< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > {
00446 static const char* value()
00447 {
00448 return "object_segmentation_gui/ObjectSegmentationGuiActionGoal";
00449 }
00450
00451 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> &) { return value(); }
00452 };
00453
00454 template<class ContainerAllocator>
00455 struct Definition< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > {
00456 static const char* value()
00457 {
00458 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00459 \n\
00460 Header header\n\
00461 actionlib_msgs/GoalID goal_id\n\
00462 ObjectSegmentationGuiGoal goal\n\
00463 \n\
00464 ================================================================================\n\
00465 MSG: std_msgs/Header\n\
00466 # Standard metadata for higher-level stamped data types.\n\
00467 # This is generally used to communicate timestamped data \n\
00468 # in a particular coordinate frame.\n\
00469 # \n\
00470 # sequence ID: consecutively increasing ID \n\
00471 uint32 seq\n\
00472 #Two-integer timestamp that is expressed as:\n\
00473 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00474 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00475 # time-handling sugar is provided by the client library\n\
00476 time stamp\n\
00477 #Frame this data is associated with\n\
00478 # 0: no frame\n\
00479 # 1: global frame\n\
00480 string frame_id\n\
00481 \n\
00482 ================================================================================\n\
00483 MSG: actionlib_msgs/GoalID\n\
00484 # The stamp should store the time at which this goal was requested.\n\
00485 # It is used by an action server when it tries to preempt all\n\
00486 # goals that were requested before a certain time\n\
00487 time stamp\n\
00488 \n\
00489 # The id provides a way to associate feedback and\n\
00490 # result message with specific goal requests. The id\n\
00491 # specified must be unique.\n\
00492 string id\n\
00493 \n\
00494 \n\
00495 ================================================================================\n\
00496 MSG: object_segmentation_gui/ObjectSegmentationGuiGoal\n\
00497 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00498 sensor_msgs/Image image\n\
00499 sensor_msgs/CameraInfo camera_info\n\
00500 sensor_msgs/Image wide_field\n\
00501 sensor_msgs/CameraInfo wide_camera_info\n\
00502 \n\
00503 sensor_msgs/PointCloud2 point_cloud\n\
00504 stereo_msgs/DisparityImage disparity_image\n\
00505 \n\
00506 \n\
00507 ================================================================================\n\
00508 MSG: sensor_msgs/Image\n\
00509 # This message contains an uncompressed image\n\
00510 # (0, 0) is at top-left corner of image\n\
00511 #\n\
00512 \n\
00513 Header header # Header timestamp should be acquisition time of image\n\
00514 # Header frame_id should be optical frame of camera\n\
00515 # origin of frame should be optical center of cameara\n\
00516 # +x should point to the right in the image\n\
00517 # +y should point down in the image\n\
00518 # +z should point into to plane of the image\n\
00519 # If the frame_id here and the frame_id of the CameraInfo\n\
00520 # message associated with the image conflict\n\
00521 # the behavior is undefined\n\
00522 \n\
00523 uint32 height # image height, that is, number of rows\n\
00524 uint32 width # image width, that is, number of columns\n\
00525 \n\
00526 # The legal values for encoding are in file src/image_encodings.cpp\n\
00527 # If you want to standardize a new string format, join\n\
00528 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00529 \n\
00530 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00531 # taken from the list of strings in src/image_encodings.cpp\n\
00532 \n\
00533 uint8 is_bigendian # is this data bigendian?\n\
00534 uint32 step # Full row length in bytes\n\
00535 uint8[] data # actual matrix data, size is (step * rows)\n\
00536 \n\
00537 ================================================================================\n\
00538 MSG: sensor_msgs/CameraInfo\n\
00539 # This message defines meta information for a camera. It should be in a\n\
00540 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00541 # image topics named:\n\
00542 #\n\
00543 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00544 # image - monochrome, distorted\n\
00545 # image_color - color, distorted\n\
00546 # image_rect - monochrome, rectified\n\
00547 # image_rect_color - color, rectified\n\
00548 #\n\
00549 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00550 # for producing the four processed image topics from image_raw and\n\
00551 # camera_info. The meaning of the camera parameters are described in\n\
00552 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00553 #\n\
00554 # The image_geometry package provides a user-friendly interface to\n\
00555 # common operations using this meta information. If you want to, e.g.,\n\
00556 # project a 3d point into image coordinates, we strongly recommend\n\
00557 # using image_geometry.\n\
00558 #\n\
00559 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00560 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00561 # indicates an uncalibrated camera.\n\
00562 \n\
00563 #######################################################################\n\
00564 # Image acquisition info #\n\
00565 #######################################################################\n\
00566 \n\
00567 # Time of image acquisition, camera coordinate frame ID\n\
00568 Header header # Header timestamp should be acquisition time of image\n\
00569 # Header frame_id should be optical frame of camera\n\
00570 # origin of frame should be optical center of camera\n\
00571 # +x should point to the right in the image\n\
00572 # +y should point down in the image\n\
00573 # +z should point into the plane of the image\n\
00574 \n\
00575 \n\
00576 #######################################################################\n\
00577 # Calibration Parameters #\n\
00578 #######################################################################\n\
00579 # These are fixed during camera calibration. Their values will be the #\n\
00580 # same in all messages until the camera is recalibrated. Note that #\n\
00581 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00582 # #\n\
00583 # The internal parameters can be used to warp a raw (distorted) image #\n\
00584 # to: #\n\
00585 # 1. An undistorted image (requires D and K) #\n\
00586 # 2. A rectified image (requires D, K, R) #\n\
00587 # The projection matrix P projects 3D points into the rectified image.#\n\
00588 #######################################################################\n\
00589 \n\
00590 # The image dimensions with which the camera was calibrated. Normally\n\
00591 # this will be the full camera resolution in pixels.\n\
00592 uint32 height\n\
00593 uint32 width\n\
00594 \n\
00595 # The distortion model used. Supported models are listed in\n\
00596 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00597 # simple model of radial and tangential distortion - is sufficent.\n\
00598 string distortion_model\n\
00599 \n\
00600 # The distortion parameters, size depending on the distortion model.\n\
00601 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00602 float64[] D\n\
00603 \n\
00604 # Intrinsic camera matrix for the raw (distorted) images.\n\
00605 # [fx 0 cx]\n\
00606 # K = [ 0 fy cy]\n\
00607 # [ 0 0 1]\n\
00608 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00609 # coordinates using the focal lengths (fx, fy) and principal point\n\
00610 # (cx, cy).\n\
00611 float64[9] K # 3x3 row-major matrix\n\
00612 \n\
00613 # Rectification matrix (stereo cameras only)\n\
00614 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00615 # stereo image plane so that epipolar lines in both stereo images are\n\
00616 # parallel.\n\
00617 float64[9] R # 3x3 row-major matrix\n\
00618 \n\
00619 # Projection/camera matrix\n\
00620 # [fx' 0 cx' Tx]\n\
00621 # P = [ 0 fy' cy' Ty]\n\
00622 # [ 0 0 1 0]\n\
00623 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00624 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00625 # is the normal camera intrinsic matrix for the rectified image.\n\
00626 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00627 # coordinates using the focal lengths (fx', fy') and principal point\n\
00628 # (cx', cy') - these may differ from the values in K.\n\
00629 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00630 # also have R = the identity and P[1:3,1:3] = K.\n\
00631 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00632 # position of the optical center of the second camera in the first\n\
00633 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00634 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00635 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00636 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00637 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00638 # the rectified image is given by:\n\
00639 # [u v w]' = P * [X Y Z 1]'\n\
00640 # x = u / w\n\
00641 # y = v / w\n\
00642 # This holds for both images of a stereo pair.\n\
00643 float64[12] P # 3x4 row-major matrix\n\
00644 \n\
00645 \n\
00646 #######################################################################\n\
00647 # Operational Parameters #\n\
00648 #######################################################################\n\
00649 # These define the image region actually captured by the camera #\n\
00650 # driver. Although they affect the geometry of the output image, they #\n\
00651 # may be changed freely without recalibrating the camera. #\n\
00652 #######################################################################\n\
00653 \n\
00654 # Binning refers here to any camera setting which combines rectangular\n\
00655 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00656 # resolution of the output image to\n\
00657 # (width / binning_x) x (height / binning_y).\n\
00658 # The default values binning_x = binning_y = 0 is considered the same\n\
00659 # as binning_x = binning_y = 1 (no subsampling).\n\
00660 uint32 binning_x\n\
00661 uint32 binning_y\n\
00662 \n\
00663 # Region of interest (subwindow of full camera resolution), given in\n\
00664 # full resolution (unbinned) image coordinates. A particular ROI\n\
00665 # always denotes the same window of pixels on the camera sensor,\n\
00666 # regardless of binning settings.\n\
00667 # The default setting of roi (all values 0) is considered the same as\n\
00668 # full resolution (roi.width = width, roi.height = height).\n\
00669 RegionOfInterest roi\n\
00670 \n\
00671 ================================================================================\n\
00672 MSG: sensor_msgs/RegionOfInterest\n\
00673 # This message is used to specify a region of interest within an image.\n\
00674 #\n\
00675 # When used to specify the ROI setting of the camera when the image was\n\
00676 # taken, the height and width fields should either match the height and\n\
00677 # width fields for the associated image; or height = width = 0\n\
00678 # indicates that the full resolution image was captured.\n\
00679 \n\
00680 uint32 x_offset # Leftmost pixel of the ROI\n\
00681 # (0 if the ROI includes the left edge of the image)\n\
00682 uint32 y_offset # Topmost pixel of the ROI\n\
00683 # (0 if the ROI includes the top edge of the image)\n\
00684 uint32 height # Height of ROI\n\
00685 uint32 width # Width of ROI\n\
00686 \n\
00687 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00688 # ROI in this message. Typically this should be False if the full image\n\
00689 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00690 # used).\n\
00691 bool do_rectify\n\
00692 \n\
00693 ================================================================================\n\
00694 MSG: sensor_msgs/PointCloud2\n\
00695 # This message holds a collection of N-dimensional points, which may\n\
00696 # contain additional information such as normals, intensity, etc. The\n\
00697 # point data is stored as a binary blob, its layout described by the\n\
00698 # contents of the \"fields\" array.\n\
00699 \n\
00700 # The point cloud data may be organized 2d (image-like) or 1d\n\
00701 # (unordered). Point clouds organized as 2d images may be produced by\n\
00702 # camera depth sensors such as stereo or time-of-flight.\n\
00703 \n\
00704 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00705 # points).\n\
00706 Header header\n\
00707 \n\
00708 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00709 # 1 and width is the length of the point cloud.\n\
00710 uint32 height\n\
00711 uint32 width\n\
00712 \n\
00713 # Describes the channels and their layout in the binary data blob.\n\
00714 PointField[] fields\n\
00715 \n\
00716 bool is_bigendian # Is this data bigendian?\n\
00717 uint32 point_step # Length of a point in bytes\n\
00718 uint32 row_step # Length of a row in bytes\n\
00719 uint8[] data # Actual point data, size is (row_step*height)\n\
00720 \n\
00721 bool is_dense # True if there are no invalid points\n\
00722 \n\
00723 ================================================================================\n\
00724 MSG: sensor_msgs/PointField\n\
00725 # This message holds the description of one point entry in the\n\
00726 # PointCloud2 message format.\n\
00727 uint8 INT8 = 1\n\
00728 uint8 UINT8 = 2\n\
00729 uint8 INT16 = 3\n\
00730 uint8 UINT16 = 4\n\
00731 uint8 INT32 = 5\n\
00732 uint8 UINT32 = 6\n\
00733 uint8 FLOAT32 = 7\n\
00734 uint8 FLOAT64 = 8\n\
00735 \n\
00736 string name # Name of field\n\
00737 uint32 offset # Offset from start of point struct\n\
00738 uint8 datatype # Datatype enumeration, see above\n\
00739 uint32 count # How many elements in the field\n\
00740 \n\
00741 ================================================================================\n\
00742 MSG: stereo_msgs/DisparityImage\n\
00743 # Separate header for compatibility with current TimeSynchronizer.\n\
00744 # Likely to be removed in a later release, use image.header instead.\n\
00745 Header header\n\
00746 \n\
00747 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00748 # x-offset between the principal points of the two cameras (in the case\n\
00749 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00750 sensor_msgs/Image image\n\
00751 \n\
00752 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00753 float32 f # Focal length, pixels\n\
00754 float32 T # Baseline, world units\n\
00755 \n\
00756 # Subwindow of (potentially) valid disparity values.\n\
00757 sensor_msgs/RegionOfInterest valid_window\n\
00758 \n\
00759 # The range of disparities searched.\n\
00760 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00761 # The disparity search range defines the horopter, or 3D volume that the\n\
00762 # stereo algorithm can \"see\". Points with Z outside of:\n\
00763 # Z_min = fT / max_disparity\n\
00764 # Z_max = fT / min_disparity\n\
00765 # could not be found.\n\
00766 float32 min_disparity\n\
00767 float32 max_disparity\n\
00768 \n\
00769 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00770 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00771 float32 delta_d\n\
00772 \n\
00773 ";
00774 }
00775
00776 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> &) { return value(); }
00777 };
00778
00779 template<class ContainerAllocator> struct HasHeader< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > : public TrueType {};
00780 template<class ContainerAllocator> struct HasHeader< const ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> > : public TrueType {};
00781 }
00782 }
00783
00784 namespace ros
00785 {
00786 namespace serialization
00787 {
00788
00789 template<class ContainerAllocator> struct Serializer< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> >
00790 {
00791 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00792 {
00793 stream.next(m.header);
00794 stream.next(m.goal_id);
00795 stream.next(m.goal);
00796 }
00797
00798 ROS_DECLARE_ALLINONE_SERIALIZER;
00799 };
00800 }
00801 }
00802
00803 namespace ros
00804 {
00805 namespace message_operations
00806 {
00807
00808 template<class ContainerAllocator>
00809 struct Printer< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> >
00810 {
00811 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> & v)
00812 {
00813 s << indent << "header: ";
00814 s << std::endl;
00815 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00816 s << indent << "goal_id: ";
00817 s << std::endl;
00818 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
00819 s << indent << "goal: ";
00820 s << std::endl;
00821 Printer< ::object_segmentation_gui::ObjectSegmentationGuiGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
00822 }
00823 };
00824
00825
00826 }
00827 }
00828
00829 #endif // OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTIONGOAL_H
00830