00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "object_manipulation_msgs/ReactiveLiftActionGoal.h"
00014 #include "object_manipulation_msgs/ReactiveLiftActionResult.h"
00015 #include "object_manipulation_msgs/ReactiveLiftActionFeedback.h"
00016
00017 namespace object_manipulation_msgs
00018 {
00019 template <class ContainerAllocator>
00020 struct ReactiveLiftAction_ : public ros::Message
00021 {
00022 typedef ReactiveLiftAction_<ContainerAllocator> Type;
00023
00024 ReactiveLiftAction_()
00025 : action_goal()
00026 , action_result()
00027 , action_feedback()
00028 {
00029 }
00030
00031 ReactiveLiftAction_(const ContainerAllocator& _alloc)
00032 : action_goal(_alloc)
00033 , action_result(_alloc)
00034 , action_feedback(_alloc)
00035 {
00036 }
00037
00038 typedef ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> _action_goal_type;
00039 ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> action_goal;
00040
00041 typedef ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator> _action_result_type;
00042 ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator> action_result;
00043
00044 typedef ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator> _action_feedback_type;
00045 ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator> action_feedback;
00046
00047
00048 private:
00049 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveLiftAction"; }
00050 public:
00051 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00052
00053 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00054
00055 private:
00056 static const char* __s_getMD5Sum_() { return "7c440c96e5e93f84d4ad14066aa4160b"; }
00057 public:
00058 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00059
00060 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00061
00062 private:
00063 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00064 \n\
00065 ReactiveLiftActionGoal action_goal\n\
00066 ReactiveLiftActionResult action_result\n\
00067 ReactiveLiftActionFeedback action_feedback\n\
00068 \n\
00069 ================================================================================\n\
00070 MSG: object_manipulation_msgs/ReactiveLiftActionGoal\n\
00071 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00072 \n\
00073 Header header\n\
00074 actionlib_msgs/GoalID goal_id\n\
00075 ReactiveLiftGoal goal\n\
00076 \n\
00077 ================================================================================\n\
00078 MSG: std_msgs/Header\n\
00079 # Standard metadata for higher-level stamped data types.\n\
00080 # This is generally used to communicate timestamped data \n\
00081 # in a particular coordinate frame.\n\
00082 # \n\
00083 # sequence ID: consecutively increasing ID \n\
00084 uint32 seq\n\
00085 #Two-integer timestamp that is expressed as:\n\
00086 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00087 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00088 # time-handling sugar is provided by the client library\n\
00089 time stamp\n\
00090 #Frame this data is associated with\n\
00091 # 0: no frame\n\
00092 # 1: global frame\n\
00093 string frame_id\n\
00094 \n\
00095 ================================================================================\n\
00096 MSG: actionlib_msgs/GoalID\n\
00097 # The stamp should store the time at which this goal was requested.\n\
00098 # It is used by an action server when it tries to preempt all\n\
00099 # goals that were requested before a certain time\n\
00100 time stamp\n\
00101 \n\
00102 # The id provides a way to associate feedback and\n\
00103 # result message with specific goal requests. The id\n\
00104 # specified must be unique.\n\
00105 string id\n\
00106 \n\
00107 \n\
00108 ================================================================================\n\
00109 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\
00110 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00111 \n\
00112 # the name of the arm being used\n\
00113 string arm_name\n\
00114 \n\
00115 # the object to be grasped\n\
00116 GraspableObject target\n\
00117 \n\
00118 # How the object should be lifted \n\
00119 GripperTranslation lift\n\
00120 \n\
00121 # the joint trajectory to use for the approach (if available)\n\
00122 # this trajectory is expected to start at the current pose of the gripper\n\
00123 # and end at the desired grasp pose\n\
00124 trajectory_msgs/JointTrajectory trajectory\n\
00125 \n\
00126 # the name of the support surface in the collision environment, if any\n\
00127 string collision_support_surface_name\n\
00128 \n\
00129 \n\
00130 ================================================================================\n\
00131 MSG: object_manipulation_msgs/GraspableObject\n\
00132 # an object that the object_manipulator can work on\n\
00133 \n\
00134 # a graspable object can be represented in multiple ways. This message\n\
00135 # can contain all of them. Which one is actually used is up to the receiver\n\
00136 # of this message. When adding new representations, one must be careful that\n\
00137 # they have reasonable lightweight defaults indicating that that particular\n\
00138 # representation is not available.\n\
00139 \n\
00140 # the tf frame to be used as a reference frame when combining information from\n\
00141 # the different representations below\n\
00142 string reference_frame_id\n\
00143 \n\
00144 # potential recognition results from a database of models\n\
00145 # all poses are relative to the object reference pose\n\
00146 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00147 \n\
00148 # the point cloud itself\n\
00149 sensor_msgs/PointCloud cluster\n\
00150 \n\
00151 # a region of a PointCloud2 of interest\n\
00152 object_manipulation_msgs/SceneRegion region\n\
00153 \n\
00154 \n\
00155 ================================================================================\n\
00156 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00157 # Informs that a specific model from the Model Database has been \n\
00158 # identified at a certain location\n\
00159 \n\
00160 # the database id of the model\n\
00161 int32 model_id\n\
00162 \n\
00163 # the pose that it can be found in\n\
00164 geometry_msgs/PoseStamped pose\n\
00165 \n\
00166 # a measure of the confidence level in this detection result\n\
00167 float32 confidence\n\
00168 ================================================================================\n\
00169 MSG: geometry_msgs/PoseStamped\n\
00170 # A Pose with reference coordinate frame and timestamp\n\
00171 Header header\n\
00172 Pose pose\n\
00173 \n\
00174 ================================================================================\n\
00175 MSG: geometry_msgs/Pose\n\
00176 # A representation of pose in free space, composed of postion and orientation. \n\
00177 Point position\n\
00178 Quaternion orientation\n\
00179 \n\
00180 ================================================================================\n\
00181 MSG: geometry_msgs/Point\n\
00182 # This contains the position of a point in free space\n\
00183 float64 x\n\
00184 float64 y\n\
00185 float64 z\n\
00186 \n\
00187 ================================================================================\n\
00188 MSG: geometry_msgs/Quaternion\n\
00189 # This represents an orientation in free space in quaternion form.\n\
00190 \n\
00191 float64 x\n\
00192 float64 y\n\
00193 float64 z\n\
00194 float64 w\n\
00195 \n\
00196 ================================================================================\n\
00197 MSG: sensor_msgs/PointCloud\n\
00198 # This message holds a collection of 3d points, plus optional additional\n\
00199 # information about each point.\n\
00200 \n\
00201 # Time of sensor data acquisition, coordinate frame ID.\n\
00202 Header header\n\
00203 \n\
00204 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00205 # in the frame given in the header.\n\
00206 geometry_msgs/Point32[] points\n\
00207 \n\
00208 # Each channel should have the same number of elements as points array,\n\
00209 # and the data in each channel should correspond 1:1 with each point.\n\
00210 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00211 ChannelFloat32[] channels\n\
00212 \n\
00213 ================================================================================\n\
00214 MSG: geometry_msgs/Point32\n\
00215 # This contains the position of a point in free space(with 32 bits of precision).\n\
00216 # It is recommeded to use Point wherever possible instead of Point32. \n\
00217 # \n\
00218 # This recommendation is to promote interoperability. \n\
00219 #\n\
00220 # This message is designed to take up less space when sending\n\
00221 # lots of points at once, as in the case of a PointCloud. \n\
00222 \n\
00223 float32 x\n\
00224 float32 y\n\
00225 float32 z\n\
00226 ================================================================================\n\
00227 MSG: sensor_msgs/ChannelFloat32\n\
00228 # This message is used by the PointCloud message to hold optional data\n\
00229 # associated with each point in the cloud. The length of the values\n\
00230 # array should be the same as the length of the points array in the\n\
00231 # PointCloud, and each value should be associated with the corresponding\n\
00232 # point.\n\
00233 \n\
00234 # Channel names in existing practice include:\n\
00235 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00236 # This is opposite to usual conventions but remains for\n\
00237 # historical reasons. The newer PointCloud2 message has no\n\
00238 # such problem.\n\
00239 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00240 # (R,G,B) values packed into the least significant 24 bits,\n\
00241 # in order.\n\
00242 # \"intensity\" - laser or pixel intensity.\n\
00243 # \"distance\"\n\
00244 \n\
00245 # The channel name should give semantics of the channel (e.g.\n\
00246 # \"intensity\" instead of \"value\").\n\
00247 string name\n\
00248 \n\
00249 # The values array should be 1-1 with the elements of the associated\n\
00250 # PointCloud.\n\
00251 float32[] values\n\
00252 \n\
00253 ================================================================================\n\
00254 MSG: object_manipulation_msgs/SceneRegion\n\
00255 # Point cloud\n\
00256 sensor_msgs/PointCloud2 cloud\n\
00257 \n\
00258 # Indices for the region of interest\n\
00259 int32[] mask\n\
00260 \n\
00261 # One of the corresponding 2D images, if applicable\n\
00262 sensor_msgs/Image image\n\
00263 \n\
00264 # The disparity image, if applicable\n\
00265 sensor_msgs/Image disparity_image\n\
00266 \n\
00267 # Camera info for the camera that took the image\n\
00268 sensor_msgs/CameraInfo cam_info\n\
00269 \n\
00270 ================================================================================\n\
00271 MSG: sensor_msgs/PointCloud2\n\
00272 # This message holds a collection of N-dimensional points, which may\n\
00273 # contain additional information such as normals, intensity, etc. The\n\
00274 # point data is stored as a binary blob, its layout described by the\n\
00275 # contents of the \"fields\" array.\n\
00276 \n\
00277 # The point cloud data may be organized 2d (image-like) or 1d\n\
00278 # (unordered). Point clouds organized as 2d images may be produced by\n\
00279 # camera depth sensors such as stereo or time-of-flight.\n\
00280 \n\
00281 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00282 # points).\n\
00283 Header header\n\
00284 \n\
00285 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00286 # 1 and width is the length of the point cloud.\n\
00287 uint32 height\n\
00288 uint32 width\n\
00289 \n\
00290 # Describes the channels and their layout in the binary data blob.\n\
00291 PointField[] fields\n\
00292 \n\
00293 bool is_bigendian # Is this data bigendian?\n\
00294 uint32 point_step # Length of a point in bytes\n\
00295 uint32 row_step # Length of a row in bytes\n\
00296 uint8[] data # Actual point data, size is (row_step*height)\n\
00297 \n\
00298 bool is_dense # True if there are no invalid points\n\
00299 \n\
00300 ================================================================================\n\
00301 MSG: sensor_msgs/PointField\n\
00302 # This message holds the description of one point entry in the\n\
00303 # PointCloud2 message format.\n\
00304 uint8 INT8 = 1\n\
00305 uint8 UINT8 = 2\n\
00306 uint8 INT16 = 3\n\
00307 uint8 UINT16 = 4\n\
00308 uint8 INT32 = 5\n\
00309 uint8 UINT32 = 6\n\
00310 uint8 FLOAT32 = 7\n\
00311 uint8 FLOAT64 = 8\n\
00312 \n\
00313 string name # Name of field\n\
00314 uint32 offset # Offset from start of point struct\n\
00315 uint8 datatype # Datatype enumeration, see above\n\
00316 uint32 count # How many elements in the field\n\
00317 \n\
00318 ================================================================================\n\
00319 MSG: sensor_msgs/Image\n\
00320 # This message contains an uncompressed image\n\
00321 # (0, 0) is at top-left corner of image\n\
00322 #\n\
00323 \n\
00324 Header header # Header timestamp should be acquisition time of image\n\
00325 # Header frame_id should be optical frame of camera\n\
00326 # origin of frame should be optical center of cameara\n\
00327 # +x should point to the right in the image\n\
00328 # +y should point down in the image\n\
00329 # +z should point into to plane of the image\n\
00330 # If the frame_id here and the frame_id of the CameraInfo\n\
00331 # message associated with the image conflict\n\
00332 # the behavior is undefined\n\
00333 \n\
00334 uint32 height # image height, that is, number of rows\n\
00335 uint32 width # image width, that is, number of columns\n\
00336 \n\
00337 # The legal values for encoding are in file src/image_encodings.cpp\n\
00338 # If you want to standardize a new string format, join\n\
00339 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00340 \n\
00341 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00342 # taken from the list of strings in src/image_encodings.cpp\n\
00343 \n\
00344 uint8 is_bigendian # is this data bigendian?\n\
00345 uint32 step # Full row length in bytes\n\
00346 uint8[] data # actual matrix data, size is (step * rows)\n\
00347 \n\
00348 ================================================================================\n\
00349 MSG: sensor_msgs/CameraInfo\n\
00350 # This message defines meta information for a camera. It should be in a\n\
00351 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00352 # image topics named:\n\
00353 #\n\
00354 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00355 # image - monochrome, distorted\n\
00356 # image_color - color, distorted\n\
00357 # image_rect - monochrome, rectified\n\
00358 # image_rect_color - color, rectified\n\
00359 #\n\
00360 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00361 # for producing the four processed image topics from image_raw and\n\
00362 # camera_info. The meaning of the camera parameters are described in\n\
00363 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00364 #\n\
00365 # The image_geometry package provides a user-friendly interface to\n\
00366 # common operations using this meta information. If you want to, e.g.,\n\
00367 # project a 3d point into image coordinates, we strongly recommend\n\
00368 # using image_geometry.\n\
00369 #\n\
00370 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00371 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00372 # indicates an uncalibrated camera.\n\
00373 \n\
00374 #######################################################################\n\
00375 # Image acquisition info #\n\
00376 #######################################################################\n\
00377 \n\
00378 # Time of image acquisition, camera coordinate frame ID\n\
00379 Header header # Header timestamp should be acquisition time of image\n\
00380 # Header frame_id should be optical frame of camera\n\
00381 # origin of frame should be optical center of camera\n\
00382 # +x should point to the right in the image\n\
00383 # +y should point down in the image\n\
00384 # +z should point into the plane of the image\n\
00385 \n\
00386 \n\
00387 #######################################################################\n\
00388 # Calibration Parameters #\n\
00389 #######################################################################\n\
00390 # These are fixed during camera calibration. Their values will be the #\n\
00391 # same in all messages until the camera is recalibrated. Note that #\n\
00392 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00393 # #\n\
00394 # The internal parameters can be used to warp a raw (distorted) image #\n\
00395 # to: #\n\
00396 # 1. An undistorted image (requires D and K) #\n\
00397 # 2. A rectified image (requires D, K, R) #\n\
00398 # The projection matrix P projects 3D points into the rectified image.#\n\
00399 #######################################################################\n\
00400 \n\
00401 # The image dimensions with which the camera was calibrated. Normally\n\
00402 # this will be the full camera resolution in pixels.\n\
00403 uint32 height\n\
00404 uint32 width\n\
00405 \n\
00406 # The distortion model used. Supported models are listed in\n\
00407 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00408 # simple model of radial and tangential distortion - is sufficent.\n\
00409 string distortion_model\n\
00410 \n\
00411 # The distortion parameters, size depending on the distortion model.\n\
00412 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00413 float64[] D\n\
00414 \n\
00415 # Intrinsic camera matrix for the raw (distorted) images.\n\
00416 # [fx 0 cx]\n\
00417 # K = [ 0 fy cy]\n\
00418 # [ 0 0 1]\n\
00419 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00420 # coordinates using the focal lengths (fx, fy) and principal point\n\
00421 # (cx, cy).\n\
00422 float64[9] K # 3x3 row-major matrix\n\
00423 \n\
00424 # Rectification matrix (stereo cameras only)\n\
00425 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00426 # stereo image plane so that epipolar lines in both stereo images are\n\
00427 # parallel.\n\
00428 float64[9] R # 3x3 row-major matrix\n\
00429 \n\
00430 # Projection/camera matrix\n\
00431 # [fx' 0 cx' Tx]\n\
00432 # P = [ 0 fy' cy' Ty]\n\
00433 # [ 0 0 1 0]\n\
00434 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00435 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00436 # is the normal camera intrinsic matrix for the rectified image.\n\
00437 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00438 # coordinates using the focal lengths (fx', fy') and principal point\n\
00439 # (cx', cy') - these may differ from the values in K.\n\
00440 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00441 # also have R = the identity and P[1:3,1:3] = K.\n\
00442 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00443 # position of the optical center of the second camera in the first\n\
00444 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00445 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00446 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00447 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00448 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00449 # the rectified image is given by:\n\
00450 # [u v w]' = P * [X Y Z 1]'\n\
00451 # x = u / w\n\
00452 # y = v / w\n\
00453 # This holds for both images of a stereo pair.\n\
00454 float64[12] P # 3x4 row-major matrix\n\
00455 \n\
00456 \n\
00457 #######################################################################\n\
00458 # Operational Parameters #\n\
00459 #######################################################################\n\
00460 # These define the image region actually captured by the camera #\n\
00461 # driver. Although they affect the geometry of the output image, they #\n\
00462 # may be changed freely without recalibrating the camera. #\n\
00463 #######################################################################\n\
00464 \n\
00465 # Binning refers here to any camera setting which combines rectangular\n\
00466 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00467 # resolution of the output image to\n\
00468 # (width / binning_x) x (height / binning_y).\n\
00469 # The default values binning_x = binning_y = 0 is considered the same\n\
00470 # as binning_x = binning_y = 1 (no subsampling).\n\
00471 uint32 binning_x\n\
00472 uint32 binning_y\n\
00473 \n\
00474 # Region of interest (subwindow of full camera resolution), given in\n\
00475 # full resolution (unbinned) image coordinates. A particular ROI\n\
00476 # always denotes the same window of pixels on the camera sensor,\n\
00477 # regardless of binning settings.\n\
00478 # The default setting of roi (all values 0) is considered the same as\n\
00479 # full resolution (roi.width = width, roi.height = height).\n\
00480 RegionOfInterest roi\n\
00481 \n\
00482 ================================================================================\n\
00483 MSG: sensor_msgs/RegionOfInterest\n\
00484 # This message is used to specify a region of interest within an image.\n\
00485 #\n\
00486 # When used to specify the ROI setting of the camera when the image was\n\
00487 # taken, the height and width fields should either match the height and\n\
00488 # width fields for the associated image; or height = width = 0\n\
00489 # indicates that the full resolution image was captured.\n\
00490 \n\
00491 uint32 x_offset # Leftmost pixel of the ROI\n\
00492 # (0 if the ROI includes the left edge of the image)\n\
00493 uint32 y_offset # Topmost pixel of the ROI\n\
00494 # (0 if the ROI includes the top edge of the image)\n\
00495 uint32 height # Height of ROI\n\
00496 uint32 width # Width of ROI\n\
00497 \n\
00498 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00499 # ROI in this message. Typically this should be False if the full image\n\
00500 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00501 # used).\n\
00502 bool do_rectify\n\
00503 \n\
00504 ================================================================================\n\
00505 MSG: object_manipulation_msgs/GripperTranslation\n\
00506 # defines a translation for the gripper, used in pickup or place tasks\n\
00507 # for example for lifting an object off a table or approaching the table for placing\n\
00508 \n\
00509 # the direction of the translation\n\
00510 geometry_msgs/Vector3Stamped direction\n\
00511 \n\
00512 # the desired translation distance\n\
00513 float32 desired_distance\n\
00514 \n\
00515 # the min distance that must be considered feasible before the\n\
00516 # grasp is even attempted\n\
00517 float32 min_distance\n\
00518 ================================================================================\n\
00519 MSG: geometry_msgs/Vector3Stamped\n\
00520 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00521 Header header\n\
00522 Vector3 vector\n\
00523 \n\
00524 ================================================================================\n\
00525 MSG: geometry_msgs/Vector3\n\
00526 # This represents a vector in free space. \n\
00527 \n\
00528 float64 x\n\
00529 float64 y\n\
00530 float64 z\n\
00531 ================================================================================\n\
00532 MSG: trajectory_msgs/JointTrajectory\n\
00533 Header header\n\
00534 string[] joint_names\n\
00535 JointTrajectoryPoint[] points\n\
00536 ================================================================================\n\
00537 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00538 float64[] positions\n\
00539 float64[] velocities\n\
00540 float64[] accelerations\n\
00541 duration time_from_start\n\
00542 ================================================================================\n\
00543 MSG: object_manipulation_msgs/ReactiveLiftActionResult\n\
00544 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00545 \n\
00546 Header header\n\
00547 actionlib_msgs/GoalStatus status\n\
00548 ReactiveLiftResult result\n\
00549 \n\
00550 ================================================================================\n\
00551 MSG: actionlib_msgs/GoalStatus\n\
00552 GoalID goal_id\n\
00553 uint8 status\n\
00554 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00555 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00556 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00557 # and has since completed its execution (Terminal State)\n\
00558 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00559 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00560 # to some failure (Terminal State)\n\
00561 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00562 # because the goal was unattainable or invalid (Terminal State)\n\
00563 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00564 # and has not yet completed execution\n\
00565 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00566 # but the action server has not yet confirmed that the goal is canceled\n\
00567 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00568 # and was successfully cancelled (Terminal State)\n\
00569 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00570 # sent over the wire by an action server\n\
00571 \n\
00572 #Allow for the user to associate a string with GoalStatus for debugging\n\
00573 string text\n\
00574 \n\
00575 \n\
00576 ================================================================================\n\
00577 MSG: object_manipulation_msgs/ReactiveLiftResult\n\
00578 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00579 \n\
00580 # The result of the lift attempt\n\
00581 ManipulationResult manipulation_result\n\
00582 \n\
00583 \n\
00584 ================================================================================\n\
00585 MSG: object_manipulation_msgs/ManipulationResult\n\
00586 # Result codes for manipulation tasks\n\
00587 \n\
00588 # task completed as expected\n\
00589 # generally means you can proceed as planned\n\
00590 int32 SUCCESS = 1\n\
00591 \n\
00592 # task not possible (e.g. out of reach or obstacles in the way)\n\
00593 # generally means that the world was not disturbed, so you can try another task\n\
00594 int32 UNFEASIBLE = -1\n\
00595 \n\
00596 # task was thought possible, but failed due to unexpected events during execution\n\
00597 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00598 # your sensed world model before proceeding to another task\n\
00599 int32 FAILED = -2\n\
00600 \n\
00601 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00602 # generally requires human attention\n\
00603 int32 ERROR = -3\n\
00604 \n\
00605 # means that at some point during execution we ended up in a state that the collision-aware\n\
00606 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00607 # probably need a new collision map to move the arm out of the stuck position\n\
00608 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00609 \n\
00610 # specific to grasp actions\n\
00611 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00612 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00613 int32 LIFT_FAILED = -5\n\
00614 \n\
00615 # specific to place actions\n\
00616 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00617 # it is likely that the collision environment will see collisions between the hand and the object\n\
00618 int32 RETREAT_FAILED = -6\n\
00619 \n\
00620 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00621 int32 CANCELLED = -7\n\
00622 \n\
00623 # the actual value of this error code\n\
00624 int32 value\n\
00625 \n\
00626 ================================================================================\n\
00627 MSG: object_manipulation_msgs/ReactiveLiftActionFeedback\n\
00628 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00629 \n\
00630 Header header\n\
00631 actionlib_msgs/GoalStatus status\n\
00632 ReactiveLiftFeedback feedback\n\
00633 \n\
00634 ================================================================================\n\
00635 MSG: object_manipulation_msgs/ReactiveLiftFeedback\n\
00636 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00637 \n\
00638 # Which phase the lift is in\n\
00639 \n\
00640 ManipulationPhase manipulation_phase\n\
00641 \n\
00642 \n\
00643 \n\
00644 ================================================================================\n\
00645 MSG: object_manipulation_msgs/ManipulationPhase\n\
00646 int32 CHECKING_FEASIBILITY = 0\n\
00647 int32 MOVING_TO_PREGRASP = 1\n\
00648 int32 MOVING_TO_GRASP = 2\n\
00649 int32 CLOSING = 3 \n\
00650 int32 ADJUSTING_GRASP = 4\n\
00651 int32 LIFTING = 5\n\
00652 int32 MOVING_WITH_OBJECT = 6\n\
00653 int32 MOVING_TO_PLACE = 7\n\
00654 int32 PLACING = 8\n\
00655 int32 OPENING = 9\n\
00656 int32 RETREATING = 10\n\
00657 int32 MOVING_WITHOUT_OBJECT = 11\n\
00658 int32 SHAKING = 12\n\
00659 int32 SUCCEEDED = 13\n\
00660 int32 FAILED = 14\n\
00661 int32 ABORTED = 15\n\
00662 int32 HOLDING_OBJECT = 16\n\
00663 \n\
00664 int32 phase\n\
00665 "; }
00666 public:
00667 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00668
00669 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00670
00671 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00672 {
00673 ros::serialization::OStream stream(write_ptr, 1000000000);
00674 ros::serialization::serialize(stream, action_goal);
00675 ros::serialization::serialize(stream, action_result);
00676 ros::serialization::serialize(stream, action_feedback);
00677 return stream.getData();
00678 }
00679
00680 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00681 {
00682 ros::serialization::IStream stream(read_ptr, 1000000000);
00683 ros::serialization::deserialize(stream, action_goal);
00684 ros::serialization::deserialize(stream, action_result);
00685 ros::serialization::deserialize(stream, action_feedback);
00686 return stream.getData();
00687 }
00688
00689 ROS_DEPRECATED virtual uint32_t serializationLength() const
00690 {
00691 uint32_t size = 0;
00692 size += ros::serialization::serializationLength(action_goal);
00693 size += ros::serialization::serializationLength(action_result);
00694 size += ros::serialization::serializationLength(action_feedback);
00695 return size;
00696 }
00697
00698 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > Ptr;
00699 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> const> ConstPtr;
00700 };
00701 typedef ::object_manipulation_msgs::ReactiveLiftAction_<std::allocator<void> > ReactiveLiftAction;
00702
00703 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction> ReactiveLiftActionPtr;
00704 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftAction const> ReactiveLiftActionConstPtr;
00705
00706
00707 template<typename ContainerAllocator>
00708 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> & v)
00709 {
00710 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> >::stream(s, "", v);
00711 return s;}
00712
00713 }
00714
00715 namespace ros
00716 {
00717 namespace message_traits
00718 {
00719 template<class ContainerAllocator>
00720 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > {
00721 static const char* value()
00722 {
00723 return "7c440c96e5e93f84d4ad14066aa4160b";
00724 }
00725
00726 static const char* value(const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); }
00727 static const uint64_t static_value1 = 0x7c440c96e5e93f84ULL;
00728 static const uint64_t static_value2 = 0xd4ad14066aa4160bULL;
00729 };
00730
00731 template<class ContainerAllocator>
00732 struct DataType< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > {
00733 static const char* value()
00734 {
00735 return "object_manipulation_msgs/ReactiveLiftAction";
00736 }
00737
00738 static const char* value(const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); }
00739 };
00740
00741 template<class ContainerAllocator>
00742 struct Definition< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> > {
00743 static const char* value()
00744 {
00745 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00746 \n\
00747 ReactiveLiftActionGoal action_goal\n\
00748 ReactiveLiftActionResult action_result\n\
00749 ReactiveLiftActionFeedback action_feedback\n\
00750 \n\
00751 ================================================================================\n\
00752 MSG: object_manipulation_msgs/ReactiveLiftActionGoal\n\
00753 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00754 \n\
00755 Header header\n\
00756 actionlib_msgs/GoalID goal_id\n\
00757 ReactiveLiftGoal goal\n\
00758 \n\
00759 ================================================================================\n\
00760 MSG: std_msgs/Header\n\
00761 # Standard metadata for higher-level stamped data types.\n\
00762 # This is generally used to communicate timestamped data \n\
00763 # in a particular coordinate frame.\n\
00764 # \n\
00765 # sequence ID: consecutively increasing ID \n\
00766 uint32 seq\n\
00767 #Two-integer timestamp that is expressed as:\n\
00768 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00769 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00770 # time-handling sugar is provided by the client library\n\
00771 time stamp\n\
00772 #Frame this data is associated with\n\
00773 # 0: no frame\n\
00774 # 1: global frame\n\
00775 string frame_id\n\
00776 \n\
00777 ================================================================================\n\
00778 MSG: actionlib_msgs/GoalID\n\
00779 # The stamp should store the time at which this goal was requested.\n\
00780 # It is used by an action server when it tries to preempt all\n\
00781 # goals that were requested before a certain time\n\
00782 time stamp\n\
00783 \n\
00784 # The id provides a way to associate feedback and\n\
00785 # result message with specific goal requests. The id\n\
00786 # specified must be unique.\n\
00787 string id\n\
00788 \n\
00789 \n\
00790 ================================================================================\n\
00791 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\
00792 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00793 \n\
00794 # the name of the arm being used\n\
00795 string arm_name\n\
00796 \n\
00797 # the object to be grasped\n\
00798 GraspableObject target\n\
00799 \n\
00800 # How the object should be lifted \n\
00801 GripperTranslation lift\n\
00802 \n\
00803 # the joint trajectory to use for the approach (if available)\n\
00804 # this trajectory is expected to start at the current pose of the gripper\n\
00805 # and end at the desired grasp pose\n\
00806 trajectory_msgs/JointTrajectory trajectory\n\
00807 \n\
00808 # the name of the support surface in the collision environment, if any\n\
00809 string collision_support_surface_name\n\
00810 \n\
00811 \n\
00812 ================================================================================\n\
00813 MSG: object_manipulation_msgs/GraspableObject\n\
00814 # an object that the object_manipulator can work on\n\
00815 \n\
00816 # a graspable object can be represented in multiple ways. This message\n\
00817 # can contain all of them. Which one is actually used is up to the receiver\n\
00818 # of this message. When adding new representations, one must be careful that\n\
00819 # they have reasonable lightweight defaults indicating that that particular\n\
00820 # representation is not available.\n\
00821 \n\
00822 # the tf frame to be used as a reference frame when combining information from\n\
00823 # the different representations below\n\
00824 string reference_frame_id\n\
00825 \n\
00826 # potential recognition results from a database of models\n\
00827 # all poses are relative to the object reference pose\n\
00828 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00829 \n\
00830 # the point cloud itself\n\
00831 sensor_msgs/PointCloud cluster\n\
00832 \n\
00833 # a region of a PointCloud2 of interest\n\
00834 object_manipulation_msgs/SceneRegion region\n\
00835 \n\
00836 \n\
00837 ================================================================================\n\
00838 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00839 # Informs that a specific model from the Model Database has been \n\
00840 # identified at a certain location\n\
00841 \n\
00842 # the database id of the model\n\
00843 int32 model_id\n\
00844 \n\
00845 # the pose that it can be found in\n\
00846 geometry_msgs/PoseStamped pose\n\
00847 \n\
00848 # a measure of the confidence level in this detection result\n\
00849 float32 confidence\n\
00850 ================================================================================\n\
00851 MSG: geometry_msgs/PoseStamped\n\
00852 # A Pose with reference coordinate frame and timestamp\n\
00853 Header header\n\
00854 Pose pose\n\
00855 \n\
00856 ================================================================================\n\
00857 MSG: geometry_msgs/Pose\n\
00858 # A representation of pose in free space, composed of postion and orientation. \n\
00859 Point position\n\
00860 Quaternion orientation\n\
00861 \n\
00862 ================================================================================\n\
00863 MSG: geometry_msgs/Point\n\
00864 # This contains the position of a point in free space\n\
00865 float64 x\n\
00866 float64 y\n\
00867 float64 z\n\
00868 \n\
00869 ================================================================================\n\
00870 MSG: geometry_msgs/Quaternion\n\
00871 # This represents an orientation in free space in quaternion form.\n\
00872 \n\
00873 float64 x\n\
00874 float64 y\n\
00875 float64 z\n\
00876 float64 w\n\
00877 \n\
00878 ================================================================================\n\
00879 MSG: sensor_msgs/PointCloud\n\
00880 # This message holds a collection of 3d points, plus optional additional\n\
00881 # information about each point.\n\
00882 \n\
00883 # Time of sensor data acquisition, coordinate frame ID.\n\
00884 Header header\n\
00885 \n\
00886 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00887 # in the frame given in the header.\n\
00888 geometry_msgs/Point32[] points\n\
00889 \n\
00890 # Each channel should have the same number of elements as points array,\n\
00891 # and the data in each channel should correspond 1:1 with each point.\n\
00892 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00893 ChannelFloat32[] channels\n\
00894 \n\
00895 ================================================================================\n\
00896 MSG: geometry_msgs/Point32\n\
00897 # This contains the position of a point in free space(with 32 bits of precision).\n\
00898 # It is recommeded to use Point wherever possible instead of Point32. \n\
00899 # \n\
00900 # This recommendation is to promote interoperability. \n\
00901 #\n\
00902 # This message is designed to take up less space when sending\n\
00903 # lots of points at once, as in the case of a PointCloud. \n\
00904 \n\
00905 float32 x\n\
00906 float32 y\n\
00907 float32 z\n\
00908 ================================================================================\n\
00909 MSG: sensor_msgs/ChannelFloat32\n\
00910 # This message is used by the PointCloud message to hold optional data\n\
00911 # associated with each point in the cloud. The length of the values\n\
00912 # array should be the same as the length of the points array in the\n\
00913 # PointCloud, and each value should be associated with the corresponding\n\
00914 # point.\n\
00915 \n\
00916 # Channel names in existing practice include:\n\
00917 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00918 # This is opposite to usual conventions but remains for\n\
00919 # historical reasons. The newer PointCloud2 message has no\n\
00920 # such problem.\n\
00921 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00922 # (R,G,B) values packed into the least significant 24 bits,\n\
00923 # in order.\n\
00924 # \"intensity\" - laser or pixel intensity.\n\
00925 # \"distance\"\n\
00926 \n\
00927 # The channel name should give semantics of the channel (e.g.\n\
00928 # \"intensity\" instead of \"value\").\n\
00929 string name\n\
00930 \n\
00931 # The values array should be 1-1 with the elements of the associated\n\
00932 # PointCloud.\n\
00933 float32[] values\n\
00934 \n\
00935 ================================================================================\n\
00936 MSG: object_manipulation_msgs/SceneRegion\n\
00937 # Point cloud\n\
00938 sensor_msgs/PointCloud2 cloud\n\
00939 \n\
00940 # Indices for the region of interest\n\
00941 int32[] mask\n\
00942 \n\
00943 # One of the corresponding 2D images, if applicable\n\
00944 sensor_msgs/Image image\n\
00945 \n\
00946 # The disparity image, if applicable\n\
00947 sensor_msgs/Image disparity_image\n\
00948 \n\
00949 # Camera info for the camera that took the image\n\
00950 sensor_msgs/CameraInfo cam_info\n\
00951 \n\
00952 ================================================================================\n\
00953 MSG: sensor_msgs/PointCloud2\n\
00954 # This message holds a collection of N-dimensional points, which may\n\
00955 # contain additional information such as normals, intensity, etc. The\n\
00956 # point data is stored as a binary blob, its layout described by the\n\
00957 # contents of the \"fields\" array.\n\
00958 \n\
00959 # The point cloud data may be organized 2d (image-like) or 1d\n\
00960 # (unordered). Point clouds organized as 2d images may be produced by\n\
00961 # camera depth sensors such as stereo or time-of-flight.\n\
00962 \n\
00963 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00964 # points).\n\
00965 Header header\n\
00966 \n\
00967 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00968 # 1 and width is the length of the point cloud.\n\
00969 uint32 height\n\
00970 uint32 width\n\
00971 \n\
00972 # Describes the channels and their layout in the binary data blob.\n\
00973 PointField[] fields\n\
00974 \n\
00975 bool is_bigendian # Is this data bigendian?\n\
00976 uint32 point_step # Length of a point in bytes\n\
00977 uint32 row_step # Length of a row in bytes\n\
00978 uint8[] data # Actual point data, size is (row_step*height)\n\
00979 \n\
00980 bool is_dense # True if there are no invalid points\n\
00981 \n\
00982 ================================================================================\n\
00983 MSG: sensor_msgs/PointField\n\
00984 # This message holds the description of one point entry in the\n\
00985 # PointCloud2 message format.\n\
00986 uint8 INT8 = 1\n\
00987 uint8 UINT8 = 2\n\
00988 uint8 INT16 = 3\n\
00989 uint8 UINT16 = 4\n\
00990 uint8 INT32 = 5\n\
00991 uint8 UINT32 = 6\n\
00992 uint8 FLOAT32 = 7\n\
00993 uint8 FLOAT64 = 8\n\
00994 \n\
00995 string name # Name of field\n\
00996 uint32 offset # Offset from start of point struct\n\
00997 uint8 datatype # Datatype enumeration, see above\n\
00998 uint32 count # How many elements in the field\n\
00999 \n\
01000 ================================================================================\n\
01001 MSG: sensor_msgs/Image\n\
01002 # This message contains an uncompressed image\n\
01003 # (0, 0) is at top-left corner of image\n\
01004 #\n\
01005 \n\
01006 Header header # Header timestamp should be acquisition time of image\n\
01007 # Header frame_id should be optical frame of camera\n\
01008 # origin of frame should be optical center of cameara\n\
01009 # +x should point to the right in the image\n\
01010 # +y should point down in the image\n\
01011 # +z should point into to plane of the image\n\
01012 # If the frame_id here and the frame_id of the CameraInfo\n\
01013 # message associated with the image conflict\n\
01014 # the behavior is undefined\n\
01015 \n\
01016 uint32 height # image height, that is, number of rows\n\
01017 uint32 width # image width, that is, number of columns\n\
01018 \n\
01019 # The legal values for encoding are in file src/image_encodings.cpp\n\
01020 # If you want to standardize a new string format, join\n\
01021 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01022 \n\
01023 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01024 # taken from the list of strings in src/image_encodings.cpp\n\
01025 \n\
01026 uint8 is_bigendian # is this data bigendian?\n\
01027 uint32 step # Full row length in bytes\n\
01028 uint8[] data # actual matrix data, size is (step * rows)\n\
01029 \n\
01030 ================================================================================\n\
01031 MSG: sensor_msgs/CameraInfo\n\
01032 # This message defines meta information for a camera. It should be in a\n\
01033 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01034 # image topics named:\n\
01035 #\n\
01036 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01037 # image - monochrome, distorted\n\
01038 # image_color - color, distorted\n\
01039 # image_rect - monochrome, rectified\n\
01040 # image_rect_color - color, rectified\n\
01041 #\n\
01042 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01043 # for producing the four processed image topics from image_raw and\n\
01044 # camera_info. The meaning of the camera parameters are described in\n\
01045 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01046 #\n\
01047 # The image_geometry package provides a user-friendly interface to\n\
01048 # common operations using this meta information. If you want to, e.g.,\n\
01049 # project a 3d point into image coordinates, we strongly recommend\n\
01050 # using image_geometry.\n\
01051 #\n\
01052 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01053 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01054 # indicates an uncalibrated camera.\n\
01055 \n\
01056 #######################################################################\n\
01057 # Image acquisition info #\n\
01058 #######################################################################\n\
01059 \n\
01060 # Time of image acquisition, camera coordinate frame ID\n\
01061 Header header # Header timestamp should be acquisition time of image\n\
01062 # Header frame_id should be optical frame of camera\n\
01063 # origin of frame should be optical center of camera\n\
01064 # +x should point to the right in the image\n\
01065 # +y should point down in the image\n\
01066 # +z should point into the plane of the image\n\
01067 \n\
01068 \n\
01069 #######################################################################\n\
01070 # Calibration Parameters #\n\
01071 #######################################################################\n\
01072 # These are fixed during camera calibration. Their values will be the #\n\
01073 # same in all messages until the camera is recalibrated. Note that #\n\
01074 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01075 # #\n\
01076 # The internal parameters can be used to warp a raw (distorted) image #\n\
01077 # to: #\n\
01078 # 1. An undistorted image (requires D and K) #\n\
01079 # 2. A rectified image (requires D, K, R) #\n\
01080 # The projection matrix P projects 3D points into the rectified image.#\n\
01081 #######################################################################\n\
01082 \n\
01083 # The image dimensions with which the camera was calibrated. Normally\n\
01084 # this will be the full camera resolution in pixels.\n\
01085 uint32 height\n\
01086 uint32 width\n\
01087 \n\
01088 # The distortion model used. Supported models are listed in\n\
01089 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01090 # simple model of radial and tangential distortion - is sufficent.\n\
01091 string distortion_model\n\
01092 \n\
01093 # The distortion parameters, size depending on the distortion model.\n\
01094 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01095 float64[] D\n\
01096 \n\
01097 # Intrinsic camera matrix for the raw (distorted) images.\n\
01098 # [fx 0 cx]\n\
01099 # K = [ 0 fy cy]\n\
01100 # [ 0 0 1]\n\
01101 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01102 # coordinates using the focal lengths (fx, fy) and principal point\n\
01103 # (cx, cy).\n\
01104 float64[9] K # 3x3 row-major matrix\n\
01105 \n\
01106 # Rectification matrix (stereo cameras only)\n\
01107 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01108 # stereo image plane so that epipolar lines in both stereo images are\n\
01109 # parallel.\n\
01110 float64[9] R # 3x3 row-major matrix\n\
01111 \n\
01112 # Projection/camera matrix\n\
01113 # [fx' 0 cx' Tx]\n\
01114 # P = [ 0 fy' cy' Ty]\n\
01115 # [ 0 0 1 0]\n\
01116 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01117 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01118 # is the normal camera intrinsic matrix for the rectified image.\n\
01119 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01120 # coordinates using the focal lengths (fx', fy') and principal point\n\
01121 # (cx', cy') - these may differ from the values in K.\n\
01122 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01123 # also have R = the identity and P[1:3,1:3] = K.\n\
01124 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01125 # position of the optical center of the second camera in the first\n\
01126 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01127 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01128 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01129 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01130 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01131 # the rectified image is given by:\n\
01132 # [u v w]' = P * [X Y Z 1]'\n\
01133 # x = u / w\n\
01134 # y = v / w\n\
01135 # This holds for both images of a stereo pair.\n\
01136 float64[12] P # 3x4 row-major matrix\n\
01137 \n\
01138 \n\
01139 #######################################################################\n\
01140 # Operational Parameters #\n\
01141 #######################################################################\n\
01142 # These define the image region actually captured by the camera #\n\
01143 # driver. Although they affect the geometry of the output image, they #\n\
01144 # may be changed freely without recalibrating the camera. #\n\
01145 #######################################################################\n\
01146 \n\
01147 # Binning refers here to any camera setting which combines rectangular\n\
01148 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01149 # resolution of the output image to\n\
01150 # (width / binning_x) x (height / binning_y).\n\
01151 # The default values binning_x = binning_y = 0 is considered the same\n\
01152 # as binning_x = binning_y = 1 (no subsampling).\n\
01153 uint32 binning_x\n\
01154 uint32 binning_y\n\
01155 \n\
01156 # Region of interest (subwindow of full camera resolution), given in\n\
01157 # full resolution (unbinned) image coordinates. A particular ROI\n\
01158 # always denotes the same window of pixels on the camera sensor,\n\
01159 # regardless of binning settings.\n\
01160 # The default setting of roi (all values 0) is considered the same as\n\
01161 # full resolution (roi.width = width, roi.height = height).\n\
01162 RegionOfInterest roi\n\
01163 \n\
01164 ================================================================================\n\
01165 MSG: sensor_msgs/RegionOfInterest\n\
01166 # This message is used to specify a region of interest within an image.\n\
01167 #\n\
01168 # When used to specify the ROI setting of the camera when the image was\n\
01169 # taken, the height and width fields should either match the height and\n\
01170 # width fields for the associated image; or height = width = 0\n\
01171 # indicates that the full resolution image was captured.\n\
01172 \n\
01173 uint32 x_offset # Leftmost pixel of the ROI\n\
01174 # (0 if the ROI includes the left edge of the image)\n\
01175 uint32 y_offset # Topmost pixel of the ROI\n\
01176 # (0 if the ROI includes the top edge of the image)\n\
01177 uint32 height # Height of ROI\n\
01178 uint32 width # Width of ROI\n\
01179 \n\
01180 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01181 # ROI in this message. Typically this should be False if the full image\n\
01182 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01183 # used).\n\
01184 bool do_rectify\n\
01185 \n\
01186 ================================================================================\n\
01187 MSG: object_manipulation_msgs/GripperTranslation\n\
01188 # defines a translation for the gripper, used in pickup or place tasks\n\
01189 # for example for lifting an object off a table or approaching the table for placing\n\
01190 \n\
01191 # the direction of the translation\n\
01192 geometry_msgs/Vector3Stamped direction\n\
01193 \n\
01194 # the desired translation distance\n\
01195 float32 desired_distance\n\
01196 \n\
01197 # the min distance that must be considered feasible before the\n\
01198 # grasp is even attempted\n\
01199 float32 min_distance\n\
01200 ================================================================================\n\
01201 MSG: geometry_msgs/Vector3Stamped\n\
01202 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01203 Header header\n\
01204 Vector3 vector\n\
01205 \n\
01206 ================================================================================\n\
01207 MSG: geometry_msgs/Vector3\n\
01208 # This represents a vector in free space. \n\
01209 \n\
01210 float64 x\n\
01211 float64 y\n\
01212 float64 z\n\
01213 ================================================================================\n\
01214 MSG: trajectory_msgs/JointTrajectory\n\
01215 Header header\n\
01216 string[] joint_names\n\
01217 JointTrajectoryPoint[] points\n\
01218 ================================================================================\n\
01219 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01220 float64[] positions\n\
01221 float64[] velocities\n\
01222 float64[] accelerations\n\
01223 duration time_from_start\n\
01224 ================================================================================\n\
01225 MSG: object_manipulation_msgs/ReactiveLiftActionResult\n\
01226 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01227 \n\
01228 Header header\n\
01229 actionlib_msgs/GoalStatus status\n\
01230 ReactiveLiftResult result\n\
01231 \n\
01232 ================================================================================\n\
01233 MSG: actionlib_msgs/GoalStatus\n\
01234 GoalID goal_id\n\
01235 uint8 status\n\
01236 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
01237 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
01238 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
01239 # and has since completed its execution (Terminal State)\n\
01240 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
01241 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
01242 # to some failure (Terminal State)\n\
01243 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
01244 # because the goal was unattainable or invalid (Terminal State)\n\
01245 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
01246 # and has not yet completed execution\n\
01247 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
01248 # but the action server has not yet confirmed that the goal is canceled\n\
01249 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
01250 # and was successfully cancelled (Terminal State)\n\
01251 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
01252 # sent over the wire by an action server\n\
01253 \n\
01254 #Allow for the user to associate a string with GoalStatus for debugging\n\
01255 string text\n\
01256 \n\
01257 \n\
01258 ================================================================================\n\
01259 MSG: object_manipulation_msgs/ReactiveLiftResult\n\
01260 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01261 \n\
01262 # The result of the lift attempt\n\
01263 ManipulationResult manipulation_result\n\
01264 \n\
01265 \n\
01266 ================================================================================\n\
01267 MSG: object_manipulation_msgs/ManipulationResult\n\
01268 # Result codes for manipulation tasks\n\
01269 \n\
01270 # task completed as expected\n\
01271 # generally means you can proceed as planned\n\
01272 int32 SUCCESS = 1\n\
01273 \n\
01274 # task not possible (e.g. out of reach or obstacles in the way)\n\
01275 # generally means that the world was not disturbed, so you can try another task\n\
01276 int32 UNFEASIBLE = -1\n\
01277 \n\
01278 # task was thought possible, but failed due to unexpected events during execution\n\
01279 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
01280 # your sensed world model before proceeding to another task\n\
01281 int32 FAILED = -2\n\
01282 \n\
01283 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
01284 # generally requires human attention\n\
01285 int32 ERROR = -3\n\
01286 \n\
01287 # means that at some point during execution we ended up in a state that the collision-aware\n\
01288 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
01289 # probably need a new collision map to move the arm out of the stuck position\n\
01290 int32 ARM_MOVEMENT_PREVENTED = -4\n\
01291 \n\
01292 # specific to grasp actions\n\
01293 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
01294 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
01295 int32 LIFT_FAILED = -5\n\
01296 \n\
01297 # specific to place actions\n\
01298 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
01299 # it is likely that the collision environment will see collisions between the hand and the object\n\
01300 int32 RETREAT_FAILED = -6\n\
01301 \n\
01302 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
01303 int32 CANCELLED = -7\n\
01304 \n\
01305 # the actual value of this error code\n\
01306 int32 value\n\
01307 \n\
01308 ================================================================================\n\
01309 MSG: object_manipulation_msgs/ReactiveLiftActionFeedback\n\
01310 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01311 \n\
01312 Header header\n\
01313 actionlib_msgs/GoalStatus status\n\
01314 ReactiveLiftFeedback feedback\n\
01315 \n\
01316 ================================================================================\n\
01317 MSG: object_manipulation_msgs/ReactiveLiftFeedback\n\
01318 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01319 \n\
01320 # Which phase the lift is in\n\
01321 \n\
01322 ManipulationPhase manipulation_phase\n\
01323 \n\
01324 \n\
01325 \n\
01326 ================================================================================\n\
01327 MSG: object_manipulation_msgs/ManipulationPhase\n\
01328 int32 CHECKING_FEASIBILITY = 0\n\
01329 int32 MOVING_TO_PREGRASP = 1\n\
01330 int32 MOVING_TO_GRASP = 2\n\
01331 int32 CLOSING = 3 \n\
01332 int32 ADJUSTING_GRASP = 4\n\
01333 int32 LIFTING = 5\n\
01334 int32 MOVING_WITH_OBJECT = 6\n\
01335 int32 MOVING_TO_PLACE = 7\n\
01336 int32 PLACING = 8\n\
01337 int32 OPENING = 9\n\
01338 int32 RETREATING = 10\n\
01339 int32 MOVING_WITHOUT_OBJECT = 11\n\
01340 int32 SHAKING = 12\n\
01341 int32 SUCCEEDED = 13\n\
01342 int32 FAILED = 14\n\
01343 int32 ABORTED = 15\n\
01344 int32 HOLDING_OBJECT = 16\n\
01345 \n\
01346 int32 phase\n\
01347 ";
01348 }
01349
01350 static const char* value(const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> &) { return value(); }
01351 };
01352
01353 }
01354 }
01355
01356 namespace ros
01357 {
01358 namespace serialization
01359 {
01360
01361 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> >
01362 {
01363 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01364 {
01365 stream.next(m.action_goal);
01366 stream.next(m.action_result);
01367 stream.next(m.action_feedback);
01368 }
01369
01370 ROS_DECLARE_ALLINONE_SERIALIZER;
01371 };
01372 }
01373 }
01374
01375 namespace ros
01376 {
01377 namespace message_operations
01378 {
01379
01380 template<class ContainerAllocator>
01381 struct Printer< ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> >
01382 {
01383 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveLiftAction_<ContainerAllocator> & v)
01384 {
01385 s << indent << "action_goal: ";
01386 s << std::endl;
01387 Printer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
01388 s << indent << "action_result: ";
01389 s << std::endl;
01390 Printer< ::object_manipulation_msgs::ReactiveLiftActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
01391 s << indent << "action_feedback: ";
01392 s << std::endl;
01393 Printer< ::object_manipulation_msgs::ReactiveLiftActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
01394 }
01395 };
01396
01397
01398 }
01399 }
01400
01401 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTION_H
01402