00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "std_msgs/Header.h"
00014 #include "actionlib_msgs/GoalID.h"
00015 #include "object_manipulation_msgs/ReactiveLiftGoal.h"
00016
00017 namespace object_manipulation_msgs
00018 {
00019 template <class ContainerAllocator>
00020 struct ReactiveLiftActionGoal_ : public ros::Message
00021 {
00022 typedef ReactiveLiftActionGoal_<ContainerAllocator> Type;
00023
00024 ReactiveLiftActionGoal_()
00025 : header()
00026 , goal_id()
00027 , goal()
00028 {
00029 }
00030
00031 ReactiveLiftActionGoal_(const ContainerAllocator& _alloc)
00032 : header(_alloc)
00033 , goal_id(_alloc)
00034 , goal(_alloc)
00035 {
00036 }
00037
00038 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00039 ::std_msgs::Header_<ContainerAllocator> header;
00040
00041 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00042 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00043
00044 typedef ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> _goal_type;
00045 ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> goal;
00046
00047
00048 private:
00049 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveLiftActionGoal"; }
00050 public:
00051 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00052
00053 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00054
00055 private:
00056 static const char* __s_getMD5Sum_() { return "3611eea603abd3b1208a6386c383ad64"; }
00057 public:
00058 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00059
00060 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00061
00062 private:
00063 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00064 \n\
00065 Header header\n\
00066 actionlib_msgs/GoalID goal_id\n\
00067 ReactiveLiftGoal goal\n\
00068 \n\
00069 ================================================================================\n\
00070 MSG: std_msgs/Header\n\
00071 # Standard metadata for higher-level stamped data types.\n\
00072 # This is generally used to communicate timestamped data \n\
00073 # in a particular coordinate frame.\n\
00074 # \n\
00075 # sequence ID: consecutively increasing ID \n\
00076 uint32 seq\n\
00077 #Two-integer timestamp that is expressed as:\n\
00078 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00079 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00080 # time-handling sugar is provided by the client library\n\
00081 time stamp\n\
00082 #Frame this data is associated with\n\
00083 # 0: no frame\n\
00084 # 1: global frame\n\
00085 string frame_id\n\
00086 \n\
00087 ================================================================================\n\
00088 MSG: actionlib_msgs/GoalID\n\
00089 # The stamp should store the time at which this goal was requested.\n\
00090 # It is used by an action server when it tries to preempt all\n\
00091 # goals that were requested before a certain time\n\
00092 time stamp\n\
00093 \n\
00094 # The id provides a way to associate feedback and\n\
00095 # result message with specific goal requests. The id\n\
00096 # specified must be unique.\n\
00097 string id\n\
00098 \n\
00099 \n\
00100 ================================================================================\n\
00101 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\
00102 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00103 \n\
00104 # the name of the arm being used\n\
00105 string arm_name\n\
00106 \n\
00107 # the object to be grasped\n\
00108 GraspableObject target\n\
00109 \n\
00110 # How the object should be lifted \n\
00111 GripperTranslation lift\n\
00112 \n\
00113 # the joint trajectory to use for the approach (if available)\n\
00114 # this trajectory is expected to start at the current pose of the gripper\n\
00115 # and end at the desired grasp pose\n\
00116 trajectory_msgs/JointTrajectory trajectory\n\
00117 \n\
00118 # the name of the support surface in the collision environment, if any\n\
00119 string collision_support_surface_name\n\
00120 \n\
00121 \n\
00122 ================================================================================\n\
00123 MSG: object_manipulation_msgs/GraspableObject\n\
00124 # an object that the object_manipulator can work on\n\
00125 \n\
00126 # a graspable object can be represented in multiple ways. This message\n\
00127 # can contain all of them. Which one is actually used is up to the receiver\n\
00128 # of this message. When adding new representations, one must be careful that\n\
00129 # they have reasonable lightweight defaults indicating that that particular\n\
00130 # representation is not available.\n\
00131 \n\
00132 # the tf frame to be used as a reference frame when combining information from\n\
00133 # the different representations below\n\
00134 string reference_frame_id\n\
00135 \n\
00136 # potential recognition results from a database of models\n\
00137 # all poses are relative to the object reference pose\n\
00138 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00139 \n\
00140 # the point cloud itself\n\
00141 sensor_msgs/PointCloud cluster\n\
00142 \n\
00143 # a region of a PointCloud2 of interest\n\
00144 object_manipulation_msgs/SceneRegion region\n\
00145 \n\
00146 \n\
00147 ================================================================================\n\
00148 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00149 # Informs that a specific model from the Model Database has been \n\
00150 # identified at a certain location\n\
00151 \n\
00152 # the database id of the model\n\
00153 int32 model_id\n\
00154 \n\
00155 # the pose that it can be found in\n\
00156 geometry_msgs/PoseStamped pose\n\
00157 \n\
00158 # a measure of the confidence level in this detection result\n\
00159 float32 confidence\n\
00160 ================================================================================\n\
00161 MSG: geometry_msgs/PoseStamped\n\
00162 # A Pose with reference coordinate frame and timestamp\n\
00163 Header header\n\
00164 Pose pose\n\
00165 \n\
00166 ================================================================================\n\
00167 MSG: geometry_msgs/Pose\n\
00168 # A representation of pose in free space, composed of postion and orientation. \n\
00169 Point position\n\
00170 Quaternion orientation\n\
00171 \n\
00172 ================================================================================\n\
00173 MSG: geometry_msgs/Point\n\
00174 # This contains the position of a point in free space\n\
00175 float64 x\n\
00176 float64 y\n\
00177 float64 z\n\
00178 \n\
00179 ================================================================================\n\
00180 MSG: geometry_msgs/Quaternion\n\
00181 # This represents an orientation in free space in quaternion form.\n\
00182 \n\
00183 float64 x\n\
00184 float64 y\n\
00185 float64 z\n\
00186 float64 w\n\
00187 \n\
00188 ================================================================================\n\
00189 MSG: sensor_msgs/PointCloud\n\
00190 # This message holds a collection of 3d points, plus optional additional\n\
00191 # information about each point.\n\
00192 \n\
00193 # Time of sensor data acquisition, coordinate frame ID.\n\
00194 Header header\n\
00195 \n\
00196 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00197 # in the frame given in the header.\n\
00198 geometry_msgs/Point32[] points\n\
00199 \n\
00200 # Each channel should have the same number of elements as points array,\n\
00201 # and the data in each channel should correspond 1:1 with each point.\n\
00202 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00203 ChannelFloat32[] channels\n\
00204 \n\
00205 ================================================================================\n\
00206 MSG: geometry_msgs/Point32\n\
00207 # This contains the position of a point in free space(with 32 bits of precision).\n\
00208 # It is recommeded to use Point wherever possible instead of Point32. \n\
00209 # \n\
00210 # This recommendation is to promote interoperability. \n\
00211 #\n\
00212 # This message is designed to take up less space when sending\n\
00213 # lots of points at once, as in the case of a PointCloud. \n\
00214 \n\
00215 float32 x\n\
00216 float32 y\n\
00217 float32 z\n\
00218 ================================================================================\n\
00219 MSG: sensor_msgs/ChannelFloat32\n\
00220 # This message is used by the PointCloud message to hold optional data\n\
00221 # associated with each point in the cloud. The length of the values\n\
00222 # array should be the same as the length of the points array in the\n\
00223 # PointCloud, and each value should be associated with the corresponding\n\
00224 # point.\n\
00225 \n\
00226 # Channel names in existing practice include:\n\
00227 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00228 # This is opposite to usual conventions but remains for\n\
00229 # historical reasons. The newer PointCloud2 message has no\n\
00230 # such problem.\n\
00231 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00232 # (R,G,B) values packed into the least significant 24 bits,\n\
00233 # in order.\n\
00234 # \"intensity\" - laser or pixel intensity.\n\
00235 # \"distance\"\n\
00236 \n\
00237 # The channel name should give semantics of the channel (e.g.\n\
00238 # \"intensity\" instead of \"value\").\n\
00239 string name\n\
00240 \n\
00241 # The values array should be 1-1 with the elements of the associated\n\
00242 # PointCloud.\n\
00243 float32[] values\n\
00244 \n\
00245 ================================================================================\n\
00246 MSG: object_manipulation_msgs/SceneRegion\n\
00247 # Point cloud\n\
00248 sensor_msgs/PointCloud2 cloud\n\
00249 \n\
00250 # Indices for the region of interest\n\
00251 int32[] mask\n\
00252 \n\
00253 # One of the corresponding 2D images, if applicable\n\
00254 sensor_msgs/Image image\n\
00255 \n\
00256 # The disparity image, if applicable\n\
00257 sensor_msgs/Image disparity_image\n\
00258 \n\
00259 # Camera info for the camera that took the image\n\
00260 sensor_msgs/CameraInfo cam_info\n\
00261 \n\
00262 ================================================================================\n\
00263 MSG: sensor_msgs/PointCloud2\n\
00264 # This message holds a collection of N-dimensional points, which may\n\
00265 # contain additional information such as normals, intensity, etc. The\n\
00266 # point data is stored as a binary blob, its layout described by the\n\
00267 # contents of the \"fields\" array.\n\
00268 \n\
00269 # The point cloud data may be organized 2d (image-like) or 1d\n\
00270 # (unordered). Point clouds organized as 2d images may be produced by\n\
00271 # camera depth sensors such as stereo or time-of-flight.\n\
00272 \n\
00273 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00274 # points).\n\
00275 Header header\n\
00276 \n\
00277 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00278 # 1 and width is the length of the point cloud.\n\
00279 uint32 height\n\
00280 uint32 width\n\
00281 \n\
00282 # Describes the channels and their layout in the binary data blob.\n\
00283 PointField[] fields\n\
00284 \n\
00285 bool is_bigendian # Is this data bigendian?\n\
00286 uint32 point_step # Length of a point in bytes\n\
00287 uint32 row_step # Length of a row in bytes\n\
00288 uint8[] data # Actual point data, size is (row_step*height)\n\
00289 \n\
00290 bool is_dense # True if there are no invalid points\n\
00291 \n\
00292 ================================================================================\n\
00293 MSG: sensor_msgs/PointField\n\
00294 # This message holds the description of one point entry in the\n\
00295 # PointCloud2 message format.\n\
00296 uint8 INT8 = 1\n\
00297 uint8 UINT8 = 2\n\
00298 uint8 INT16 = 3\n\
00299 uint8 UINT16 = 4\n\
00300 uint8 INT32 = 5\n\
00301 uint8 UINT32 = 6\n\
00302 uint8 FLOAT32 = 7\n\
00303 uint8 FLOAT64 = 8\n\
00304 \n\
00305 string name # Name of field\n\
00306 uint32 offset # Offset from start of point struct\n\
00307 uint8 datatype # Datatype enumeration, see above\n\
00308 uint32 count # How many elements in the field\n\
00309 \n\
00310 ================================================================================\n\
00311 MSG: sensor_msgs/Image\n\
00312 # This message contains an uncompressed image\n\
00313 # (0, 0) is at top-left corner of image\n\
00314 #\n\
00315 \n\
00316 Header header # Header timestamp should be acquisition time of image\n\
00317 # Header frame_id should be optical frame of camera\n\
00318 # origin of frame should be optical center of cameara\n\
00319 # +x should point to the right in the image\n\
00320 # +y should point down in the image\n\
00321 # +z should point into to plane of the image\n\
00322 # If the frame_id here and the frame_id of the CameraInfo\n\
00323 # message associated with the image conflict\n\
00324 # the behavior is undefined\n\
00325 \n\
00326 uint32 height # image height, that is, number of rows\n\
00327 uint32 width # image width, that is, number of columns\n\
00328 \n\
00329 # The legal values for encoding are in file src/image_encodings.cpp\n\
00330 # If you want to standardize a new string format, join\n\
00331 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00332 \n\
00333 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00334 # taken from the list of strings in src/image_encodings.cpp\n\
00335 \n\
00336 uint8 is_bigendian # is this data bigendian?\n\
00337 uint32 step # Full row length in bytes\n\
00338 uint8[] data # actual matrix data, size is (step * rows)\n\
00339 \n\
00340 ================================================================================\n\
00341 MSG: sensor_msgs/CameraInfo\n\
00342 # This message defines meta information for a camera. It should be in a\n\
00343 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00344 # image topics named:\n\
00345 #\n\
00346 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00347 # image - monochrome, distorted\n\
00348 # image_color - color, distorted\n\
00349 # image_rect - monochrome, rectified\n\
00350 # image_rect_color - color, rectified\n\
00351 #\n\
00352 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00353 # for producing the four processed image topics from image_raw and\n\
00354 # camera_info. The meaning of the camera parameters are described in\n\
00355 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00356 #\n\
00357 # The image_geometry package provides a user-friendly interface to\n\
00358 # common operations using this meta information. If you want to, e.g.,\n\
00359 # project a 3d point into image coordinates, we strongly recommend\n\
00360 # using image_geometry.\n\
00361 #\n\
00362 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00363 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00364 # indicates an uncalibrated camera.\n\
00365 \n\
00366 #######################################################################\n\
00367 # Image acquisition info #\n\
00368 #######################################################################\n\
00369 \n\
00370 # Time of image acquisition, camera coordinate frame ID\n\
00371 Header header # Header timestamp should be acquisition time of image\n\
00372 # Header frame_id should be optical frame of camera\n\
00373 # origin of frame should be optical center of camera\n\
00374 # +x should point to the right in the image\n\
00375 # +y should point down in the image\n\
00376 # +z should point into the plane of the image\n\
00377 \n\
00378 \n\
00379 #######################################################################\n\
00380 # Calibration Parameters #\n\
00381 #######################################################################\n\
00382 # These are fixed during camera calibration. Their values will be the #\n\
00383 # same in all messages until the camera is recalibrated. Note that #\n\
00384 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00385 # #\n\
00386 # The internal parameters can be used to warp a raw (distorted) image #\n\
00387 # to: #\n\
00388 # 1. An undistorted image (requires D and K) #\n\
00389 # 2. A rectified image (requires D, K, R) #\n\
00390 # The projection matrix P projects 3D points into the rectified image.#\n\
00391 #######################################################################\n\
00392 \n\
00393 # The image dimensions with which the camera was calibrated. Normally\n\
00394 # this will be the full camera resolution in pixels.\n\
00395 uint32 height\n\
00396 uint32 width\n\
00397 \n\
00398 # The distortion model used. Supported models are listed in\n\
00399 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00400 # simple model of radial and tangential distortion - is sufficent.\n\
00401 string distortion_model\n\
00402 \n\
00403 # The distortion parameters, size depending on the distortion model.\n\
00404 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00405 float64[] D\n\
00406 \n\
00407 # Intrinsic camera matrix for the raw (distorted) images.\n\
00408 # [fx 0 cx]\n\
00409 # K = [ 0 fy cy]\n\
00410 # [ 0 0 1]\n\
00411 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00412 # coordinates using the focal lengths (fx, fy) and principal point\n\
00413 # (cx, cy).\n\
00414 float64[9] K # 3x3 row-major matrix\n\
00415 \n\
00416 # Rectification matrix (stereo cameras only)\n\
00417 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00418 # stereo image plane so that epipolar lines in both stereo images are\n\
00419 # parallel.\n\
00420 float64[9] R # 3x3 row-major matrix\n\
00421 \n\
00422 # Projection/camera matrix\n\
00423 # [fx' 0 cx' Tx]\n\
00424 # P = [ 0 fy' cy' Ty]\n\
00425 # [ 0 0 1 0]\n\
00426 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00427 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00428 # is the normal camera intrinsic matrix for the rectified image.\n\
00429 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00430 # coordinates using the focal lengths (fx', fy') and principal point\n\
00431 # (cx', cy') - these may differ from the values in K.\n\
00432 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00433 # also have R = the identity and P[1:3,1:3] = K.\n\
00434 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00435 # position of the optical center of the second camera in the first\n\
00436 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00437 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00438 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00439 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00440 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00441 # the rectified image is given by:\n\
00442 # [u v w]' = P * [X Y Z 1]'\n\
00443 # x = u / w\n\
00444 # y = v / w\n\
00445 # This holds for both images of a stereo pair.\n\
00446 float64[12] P # 3x4 row-major matrix\n\
00447 \n\
00448 \n\
00449 #######################################################################\n\
00450 # Operational Parameters #\n\
00451 #######################################################################\n\
00452 # These define the image region actually captured by the camera #\n\
00453 # driver. Although they affect the geometry of the output image, they #\n\
00454 # may be changed freely without recalibrating the camera. #\n\
00455 #######################################################################\n\
00456 \n\
00457 # Binning refers here to any camera setting which combines rectangular\n\
00458 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00459 # resolution of the output image to\n\
00460 # (width / binning_x) x (height / binning_y).\n\
00461 # The default values binning_x = binning_y = 0 is considered the same\n\
00462 # as binning_x = binning_y = 1 (no subsampling).\n\
00463 uint32 binning_x\n\
00464 uint32 binning_y\n\
00465 \n\
00466 # Region of interest (subwindow of full camera resolution), given in\n\
00467 # full resolution (unbinned) image coordinates. A particular ROI\n\
00468 # always denotes the same window of pixels on the camera sensor,\n\
00469 # regardless of binning settings.\n\
00470 # The default setting of roi (all values 0) is considered the same as\n\
00471 # full resolution (roi.width = width, roi.height = height).\n\
00472 RegionOfInterest roi\n\
00473 \n\
00474 ================================================================================\n\
00475 MSG: sensor_msgs/RegionOfInterest\n\
00476 # This message is used to specify a region of interest within an image.\n\
00477 #\n\
00478 # When used to specify the ROI setting of the camera when the image was\n\
00479 # taken, the height and width fields should either match the height and\n\
00480 # width fields for the associated image; or height = width = 0\n\
00481 # indicates that the full resolution image was captured.\n\
00482 \n\
00483 uint32 x_offset # Leftmost pixel of the ROI\n\
00484 # (0 if the ROI includes the left edge of the image)\n\
00485 uint32 y_offset # Topmost pixel of the ROI\n\
00486 # (0 if the ROI includes the top edge of the image)\n\
00487 uint32 height # Height of ROI\n\
00488 uint32 width # Width of ROI\n\
00489 \n\
00490 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00491 # ROI in this message. Typically this should be False if the full image\n\
00492 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00493 # used).\n\
00494 bool do_rectify\n\
00495 \n\
00496 ================================================================================\n\
00497 MSG: object_manipulation_msgs/GripperTranslation\n\
00498 # defines a translation for the gripper, used in pickup or place tasks\n\
00499 # for example for lifting an object off a table or approaching the table for placing\n\
00500 \n\
00501 # the direction of the translation\n\
00502 geometry_msgs/Vector3Stamped direction\n\
00503 \n\
00504 # the desired translation distance\n\
00505 float32 desired_distance\n\
00506 \n\
00507 # the min distance that must be considered feasible before the\n\
00508 # grasp is even attempted\n\
00509 float32 min_distance\n\
00510 ================================================================================\n\
00511 MSG: geometry_msgs/Vector3Stamped\n\
00512 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00513 Header header\n\
00514 Vector3 vector\n\
00515 \n\
00516 ================================================================================\n\
00517 MSG: geometry_msgs/Vector3\n\
00518 # This represents a vector in free space. \n\
00519 \n\
00520 float64 x\n\
00521 float64 y\n\
00522 float64 z\n\
00523 ================================================================================\n\
00524 MSG: trajectory_msgs/JointTrajectory\n\
00525 Header header\n\
00526 string[] joint_names\n\
00527 JointTrajectoryPoint[] points\n\
00528 ================================================================================\n\
00529 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00530 float64[] positions\n\
00531 float64[] velocities\n\
00532 float64[] accelerations\n\
00533 duration time_from_start\n\
00534 "; }
00535 public:
00536 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00537
00538 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00539
00540 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00541 {
00542 ros::serialization::OStream stream(write_ptr, 1000000000);
00543 ros::serialization::serialize(stream, header);
00544 ros::serialization::serialize(stream, goal_id);
00545 ros::serialization::serialize(stream, goal);
00546 return stream.getData();
00547 }
00548
00549 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00550 {
00551 ros::serialization::IStream stream(read_ptr, 1000000000);
00552 ros::serialization::deserialize(stream, header);
00553 ros::serialization::deserialize(stream, goal_id);
00554 ros::serialization::deserialize(stream, goal);
00555 return stream.getData();
00556 }
00557
00558 ROS_DEPRECATED virtual uint32_t serializationLength() const
00559 {
00560 uint32_t size = 0;
00561 size += ros::serialization::serializationLength(header);
00562 size += ros::serialization::serializationLength(goal_id);
00563 size += ros::serialization::serializationLength(goal);
00564 return size;
00565 }
00566
00567 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > Ptr;
00568 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> const> ConstPtr;
00569 };
00570 typedef ::object_manipulation_msgs::ReactiveLiftActionGoal_<std::allocator<void> > ReactiveLiftActionGoal;
00571
00572 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal> ReactiveLiftActionGoalPtr;
00573 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal const> ReactiveLiftActionGoalConstPtr;
00574
00575
00576 template<typename ContainerAllocator>
00577 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> & v)
00578 {
00579 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >::stream(s, "", v);
00580 return s;}
00581
00582 }
00583
00584 namespace ros
00585 {
00586 namespace message_traits
00587 {
00588 template<class ContainerAllocator>
00589 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > {
00590 static const char* value()
00591 {
00592 return "3611eea603abd3b1208a6386c383ad64";
00593 }
00594
00595 static const char* value(const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> &) { return value(); }
00596 static const uint64_t static_value1 = 0x3611eea603abd3b1ULL;
00597 static const uint64_t static_value2 = 0x208a6386c383ad64ULL;
00598 };
00599
00600 template<class ContainerAllocator>
00601 struct DataType< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > {
00602 static const char* value()
00603 {
00604 return "object_manipulation_msgs/ReactiveLiftActionGoal";
00605 }
00606
00607 static const char* value(const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> &) { return value(); }
00608 };
00609
00610 template<class ContainerAllocator>
00611 struct Definition< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > {
00612 static const char* value()
00613 {
00614 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00615 \n\
00616 Header header\n\
00617 actionlib_msgs/GoalID goal_id\n\
00618 ReactiveLiftGoal goal\n\
00619 \n\
00620 ================================================================================\n\
00621 MSG: std_msgs/Header\n\
00622 # Standard metadata for higher-level stamped data types.\n\
00623 # This is generally used to communicate timestamped data \n\
00624 # in a particular coordinate frame.\n\
00625 # \n\
00626 # sequence ID: consecutively increasing ID \n\
00627 uint32 seq\n\
00628 #Two-integer timestamp that is expressed as:\n\
00629 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00630 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00631 # time-handling sugar is provided by the client library\n\
00632 time stamp\n\
00633 #Frame this data is associated with\n\
00634 # 0: no frame\n\
00635 # 1: global frame\n\
00636 string frame_id\n\
00637 \n\
00638 ================================================================================\n\
00639 MSG: actionlib_msgs/GoalID\n\
00640 # The stamp should store the time at which this goal was requested.\n\
00641 # It is used by an action server when it tries to preempt all\n\
00642 # goals that were requested before a certain time\n\
00643 time stamp\n\
00644 \n\
00645 # The id provides a way to associate feedback and\n\
00646 # result message with specific goal requests. The id\n\
00647 # specified must be unique.\n\
00648 string id\n\
00649 \n\
00650 \n\
00651 ================================================================================\n\
00652 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\
00653 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00654 \n\
00655 # the name of the arm being used\n\
00656 string arm_name\n\
00657 \n\
00658 # the object to be grasped\n\
00659 GraspableObject target\n\
00660 \n\
00661 # How the object should be lifted \n\
00662 GripperTranslation lift\n\
00663 \n\
00664 # the joint trajectory to use for the approach (if available)\n\
00665 # this trajectory is expected to start at the current pose of the gripper\n\
00666 # and end at the desired grasp pose\n\
00667 trajectory_msgs/JointTrajectory trajectory\n\
00668 \n\
00669 # the name of the support surface in the collision environment, if any\n\
00670 string collision_support_surface_name\n\
00671 \n\
00672 \n\
00673 ================================================================================\n\
00674 MSG: object_manipulation_msgs/GraspableObject\n\
00675 # an object that the object_manipulator can work on\n\
00676 \n\
00677 # a graspable object can be represented in multiple ways. This message\n\
00678 # can contain all of them. Which one is actually used is up to the receiver\n\
00679 # of this message. When adding new representations, one must be careful that\n\
00680 # they have reasonable lightweight defaults indicating that that particular\n\
00681 # representation is not available.\n\
00682 \n\
00683 # the tf frame to be used as a reference frame when combining information from\n\
00684 # the different representations below\n\
00685 string reference_frame_id\n\
00686 \n\
00687 # potential recognition results from a database of models\n\
00688 # all poses are relative to the object reference pose\n\
00689 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00690 \n\
00691 # the point cloud itself\n\
00692 sensor_msgs/PointCloud cluster\n\
00693 \n\
00694 # a region of a PointCloud2 of interest\n\
00695 object_manipulation_msgs/SceneRegion region\n\
00696 \n\
00697 \n\
00698 ================================================================================\n\
00699 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00700 # Informs that a specific model from the Model Database has been \n\
00701 # identified at a certain location\n\
00702 \n\
00703 # the database id of the model\n\
00704 int32 model_id\n\
00705 \n\
00706 # the pose that it can be found in\n\
00707 geometry_msgs/PoseStamped pose\n\
00708 \n\
00709 # a measure of the confidence level in this detection result\n\
00710 float32 confidence\n\
00711 ================================================================================\n\
00712 MSG: geometry_msgs/PoseStamped\n\
00713 # A Pose with reference coordinate frame and timestamp\n\
00714 Header header\n\
00715 Pose pose\n\
00716 \n\
00717 ================================================================================\n\
00718 MSG: geometry_msgs/Pose\n\
00719 # A representation of pose in free space, composed of postion and orientation. \n\
00720 Point position\n\
00721 Quaternion orientation\n\
00722 \n\
00723 ================================================================================\n\
00724 MSG: geometry_msgs/Point\n\
00725 # This contains the position of a point in free space\n\
00726 float64 x\n\
00727 float64 y\n\
00728 float64 z\n\
00729 \n\
00730 ================================================================================\n\
00731 MSG: geometry_msgs/Quaternion\n\
00732 # This represents an orientation in free space in quaternion form.\n\
00733 \n\
00734 float64 x\n\
00735 float64 y\n\
00736 float64 z\n\
00737 float64 w\n\
00738 \n\
00739 ================================================================================\n\
00740 MSG: sensor_msgs/PointCloud\n\
00741 # This message holds a collection of 3d points, plus optional additional\n\
00742 # information about each point.\n\
00743 \n\
00744 # Time of sensor data acquisition, coordinate frame ID.\n\
00745 Header header\n\
00746 \n\
00747 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00748 # in the frame given in the header.\n\
00749 geometry_msgs/Point32[] points\n\
00750 \n\
00751 # Each channel should have the same number of elements as points array,\n\
00752 # and the data in each channel should correspond 1:1 with each point.\n\
00753 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00754 ChannelFloat32[] channels\n\
00755 \n\
00756 ================================================================================\n\
00757 MSG: geometry_msgs/Point32\n\
00758 # This contains the position of a point in free space(with 32 bits of precision).\n\
00759 # It is recommeded to use Point wherever possible instead of Point32. \n\
00760 # \n\
00761 # This recommendation is to promote interoperability. \n\
00762 #\n\
00763 # This message is designed to take up less space when sending\n\
00764 # lots of points at once, as in the case of a PointCloud. \n\
00765 \n\
00766 float32 x\n\
00767 float32 y\n\
00768 float32 z\n\
00769 ================================================================================\n\
00770 MSG: sensor_msgs/ChannelFloat32\n\
00771 # This message is used by the PointCloud message to hold optional data\n\
00772 # associated with each point in the cloud. The length of the values\n\
00773 # array should be the same as the length of the points array in the\n\
00774 # PointCloud, and each value should be associated with the corresponding\n\
00775 # point.\n\
00776 \n\
00777 # Channel names in existing practice include:\n\
00778 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00779 # This is opposite to usual conventions but remains for\n\
00780 # historical reasons. The newer PointCloud2 message has no\n\
00781 # such problem.\n\
00782 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00783 # (R,G,B) values packed into the least significant 24 bits,\n\
00784 # in order.\n\
00785 # \"intensity\" - laser or pixel intensity.\n\
00786 # \"distance\"\n\
00787 \n\
00788 # The channel name should give semantics of the channel (e.g.\n\
00789 # \"intensity\" instead of \"value\").\n\
00790 string name\n\
00791 \n\
00792 # The values array should be 1-1 with the elements of the associated\n\
00793 # PointCloud.\n\
00794 float32[] values\n\
00795 \n\
00796 ================================================================================\n\
00797 MSG: object_manipulation_msgs/SceneRegion\n\
00798 # Point cloud\n\
00799 sensor_msgs/PointCloud2 cloud\n\
00800 \n\
00801 # Indices for the region of interest\n\
00802 int32[] mask\n\
00803 \n\
00804 # One of the corresponding 2D images, if applicable\n\
00805 sensor_msgs/Image image\n\
00806 \n\
00807 # The disparity image, if applicable\n\
00808 sensor_msgs/Image disparity_image\n\
00809 \n\
00810 # Camera info for the camera that took the image\n\
00811 sensor_msgs/CameraInfo cam_info\n\
00812 \n\
00813 ================================================================================\n\
00814 MSG: sensor_msgs/PointCloud2\n\
00815 # This message holds a collection of N-dimensional points, which may\n\
00816 # contain additional information such as normals, intensity, etc. The\n\
00817 # point data is stored as a binary blob, its layout described by the\n\
00818 # contents of the \"fields\" array.\n\
00819 \n\
00820 # The point cloud data may be organized 2d (image-like) or 1d\n\
00821 # (unordered). Point clouds organized as 2d images may be produced by\n\
00822 # camera depth sensors such as stereo or time-of-flight.\n\
00823 \n\
00824 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00825 # points).\n\
00826 Header header\n\
00827 \n\
00828 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00829 # 1 and width is the length of the point cloud.\n\
00830 uint32 height\n\
00831 uint32 width\n\
00832 \n\
00833 # Describes the channels and their layout in the binary data blob.\n\
00834 PointField[] fields\n\
00835 \n\
00836 bool is_bigendian # Is this data bigendian?\n\
00837 uint32 point_step # Length of a point in bytes\n\
00838 uint32 row_step # Length of a row in bytes\n\
00839 uint8[] data # Actual point data, size is (row_step*height)\n\
00840 \n\
00841 bool is_dense # True if there are no invalid points\n\
00842 \n\
00843 ================================================================================\n\
00844 MSG: sensor_msgs/PointField\n\
00845 # This message holds the description of one point entry in the\n\
00846 # PointCloud2 message format.\n\
00847 uint8 INT8 = 1\n\
00848 uint8 UINT8 = 2\n\
00849 uint8 INT16 = 3\n\
00850 uint8 UINT16 = 4\n\
00851 uint8 INT32 = 5\n\
00852 uint8 UINT32 = 6\n\
00853 uint8 FLOAT32 = 7\n\
00854 uint8 FLOAT64 = 8\n\
00855 \n\
00856 string name # Name of field\n\
00857 uint32 offset # Offset from start of point struct\n\
00858 uint8 datatype # Datatype enumeration, see above\n\
00859 uint32 count # How many elements in the field\n\
00860 \n\
00861 ================================================================================\n\
00862 MSG: sensor_msgs/Image\n\
00863 # This message contains an uncompressed image\n\
00864 # (0, 0) is at top-left corner of image\n\
00865 #\n\
00866 \n\
00867 Header header # Header timestamp should be acquisition time of image\n\
00868 # Header frame_id should be optical frame of camera\n\
00869 # origin of frame should be optical center of cameara\n\
00870 # +x should point to the right in the image\n\
00871 # +y should point down in the image\n\
00872 # +z should point into to plane of the image\n\
00873 # If the frame_id here and the frame_id of the CameraInfo\n\
00874 # message associated with the image conflict\n\
00875 # the behavior is undefined\n\
00876 \n\
00877 uint32 height # image height, that is, number of rows\n\
00878 uint32 width # image width, that is, number of columns\n\
00879 \n\
00880 # The legal values for encoding are in file src/image_encodings.cpp\n\
00881 # If you want to standardize a new string format, join\n\
00882 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00883 \n\
00884 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00885 # taken from the list of strings in src/image_encodings.cpp\n\
00886 \n\
00887 uint8 is_bigendian # is this data bigendian?\n\
00888 uint32 step # Full row length in bytes\n\
00889 uint8[] data # actual matrix data, size is (step * rows)\n\
00890 \n\
00891 ================================================================================\n\
00892 MSG: sensor_msgs/CameraInfo\n\
00893 # This message defines meta information for a camera. It should be in a\n\
00894 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00895 # image topics named:\n\
00896 #\n\
00897 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00898 # image - monochrome, distorted\n\
00899 # image_color - color, distorted\n\
00900 # image_rect - monochrome, rectified\n\
00901 # image_rect_color - color, rectified\n\
00902 #\n\
00903 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00904 # for producing the four processed image topics from image_raw and\n\
00905 # camera_info. The meaning of the camera parameters are described in\n\
00906 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00907 #\n\
00908 # The image_geometry package provides a user-friendly interface to\n\
00909 # common operations using this meta information. If you want to, e.g.,\n\
00910 # project a 3d point into image coordinates, we strongly recommend\n\
00911 # using image_geometry.\n\
00912 #\n\
00913 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00914 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00915 # indicates an uncalibrated camera.\n\
00916 \n\
00917 #######################################################################\n\
00918 # Image acquisition info #\n\
00919 #######################################################################\n\
00920 \n\
00921 # Time of image acquisition, camera coordinate frame ID\n\
00922 Header header # Header timestamp should be acquisition time of image\n\
00923 # Header frame_id should be optical frame of camera\n\
00924 # origin of frame should be optical center of camera\n\
00925 # +x should point to the right in the image\n\
00926 # +y should point down in the image\n\
00927 # +z should point into the plane of the image\n\
00928 \n\
00929 \n\
00930 #######################################################################\n\
00931 # Calibration Parameters #\n\
00932 #######################################################################\n\
00933 # These are fixed during camera calibration. Their values will be the #\n\
00934 # same in all messages until the camera is recalibrated. Note that #\n\
00935 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00936 # #\n\
00937 # The internal parameters can be used to warp a raw (distorted) image #\n\
00938 # to: #\n\
00939 # 1. An undistorted image (requires D and K) #\n\
00940 # 2. A rectified image (requires D, K, R) #\n\
00941 # The projection matrix P projects 3D points into the rectified image.#\n\
00942 #######################################################################\n\
00943 \n\
00944 # The image dimensions with which the camera was calibrated. Normally\n\
00945 # this will be the full camera resolution in pixels.\n\
00946 uint32 height\n\
00947 uint32 width\n\
00948 \n\
00949 # The distortion model used. Supported models are listed in\n\
00950 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00951 # simple model of radial and tangential distortion - is sufficent.\n\
00952 string distortion_model\n\
00953 \n\
00954 # The distortion parameters, size depending on the distortion model.\n\
00955 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00956 float64[] D\n\
00957 \n\
00958 # Intrinsic camera matrix for the raw (distorted) images.\n\
00959 # [fx 0 cx]\n\
00960 # K = [ 0 fy cy]\n\
00961 # [ 0 0 1]\n\
00962 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00963 # coordinates using the focal lengths (fx, fy) and principal point\n\
00964 # (cx, cy).\n\
00965 float64[9] K # 3x3 row-major matrix\n\
00966 \n\
00967 # Rectification matrix (stereo cameras only)\n\
00968 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00969 # stereo image plane so that epipolar lines in both stereo images are\n\
00970 # parallel.\n\
00971 float64[9] R # 3x3 row-major matrix\n\
00972 \n\
00973 # Projection/camera matrix\n\
00974 # [fx' 0 cx' Tx]\n\
00975 # P = [ 0 fy' cy' Ty]\n\
00976 # [ 0 0 1 0]\n\
00977 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00978 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00979 # is the normal camera intrinsic matrix for the rectified image.\n\
00980 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00981 # coordinates using the focal lengths (fx', fy') and principal point\n\
00982 # (cx', cy') - these may differ from the values in K.\n\
00983 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00984 # also have R = the identity and P[1:3,1:3] = K.\n\
00985 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00986 # position of the optical center of the second camera in the first\n\
00987 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00988 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00989 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00990 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00991 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00992 # the rectified image is given by:\n\
00993 # [u v w]' = P * [X Y Z 1]'\n\
00994 # x = u / w\n\
00995 # y = v / w\n\
00996 # This holds for both images of a stereo pair.\n\
00997 float64[12] P # 3x4 row-major matrix\n\
00998 \n\
00999 \n\
01000 #######################################################################\n\
01001 # Operational Parameters #\n\
01002 #######################################################################\n\
01003 # These define the image region actually captured by the camera #\n\
01004 # driver. Although they affect the geometry of the output image, they #\n\
01005 # may be changed freely without recalibrating the camera. #\n\
01006 #######################################################################\n\
01007 \n\
01008 # Binning refers here to any camera setting which combines rectangular\n\
01009 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01010 # resolution of the output image to\n\
01011 # (width / binning_x) x (height / binning_y).\n\
01012 # The default values binning_x = binning_y = 0 is considered the same\n\
01013 # as binning_x = binning_y = 1 (no subsampling).\n\
01014 uint32 binning_x\n\
01015 uint32 binning_y\n\
01016 \n\
01017 # Region of interest (subwindow of full camera resolution), given in\n\
01018 # full resolution (unbinned) image coordinates. A particular ROI\n\
01019 # always denotes the same window of pixels on the camera sensor,\n\
01020 # regardless of binning settings.\n\
01021 # The default setting of roi (all values 0) is considered the same as\n\
01022 # full resolution (roi.width = width, roi.height = height).\n\
01023 RegionOfInterest roi\n\
01024 \n\
01025 ================================================================================\n\
01026 MSG: sensor_msgs/RegionOfInterest\n\
01027 # This message is used to specify a region of interest within an image.\n\
01028 #\n\
01029 # When used to specify the ROI setting of the camera when the image was\n\
01030 # taken, the height and width fields should either match the height and\n\
01031 # width fields for the associated image; or height = width = 0\n\
01032 # indicates that the full resolution image was captured.\n\
01033 \n\
01034 uint32 x_offset # Leftmost pixel of the ROI\n\
01035 # (0 if the ROI includes the left edge of the image)\n\
01036 uint32 y_offset # Topmost pixel of the ROI\n\
01037 # (0 if the ROI includes the top edge of the image)\n\
01038 uint32 height # Height of ROI\n\
01039 uint32 width # Width of ROI\n\
01040 \n\
01041 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01042 # ROI in this message. Typically this should be False if the full image\n\
01043 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01044 # used).\n\
01045 bool do_rectify\n\
01046 \n\
01047 ================================================================================\n\
01048 MSG: object_manipulation_msgs/GripperTranslation\n\
01049 # defines a translation for the gripper, used in pickup or place tasks\n\
01050 # for example for lifting an object off a table or approaching the table for placing\n\
01051 \n\
01052 # the direction of the translation\n\
01053 geometry_msgs/Vector3Stamped direction\n\
01054 \n\
01055 # the desired translation distance\n\
01056 float32 desired_distance\n\
01057 \n\
01058 # the min distance that must be considered feasible before the\n\
01059 # grasp is even attempted\n\
01060 float32 min_distance\n\
01061 ================================================================================\n\
01062 MSG: geometry_msgs/Vector3Stamped\n\
01063 # This represents a Vector3 with reference coordinate frame and timestamp\n\
01064 Header header\n\
01065 Vector3 vector\n\
01066 \n\
01067 ================================================================================\n\
01068 MSG: geometry_msgs/Vector3\n\
01069 # This represents a vector in free space. \n\
01070 \n\
01071 float64 x\n\
01072 float64 y\n\
01073 float64 z\n\
01074 ================================================================================\n\
01075 MSG: trajectory_msgs/JointTrajectory\n\
01076 Header header\n\
01077 string[] joint_names\n\
01078 JointTrajectoryPoint[] points\n\
01079 ================================================================================\n\
01080 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01081 float64[] positions\n\
01082 float64[] velocities\n\
01083 float64[] accelerations\n\
01084 duration time_from_start\n\
01085 ";
01086 }
01087
01088 static const char* value(const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> &) { return value(); }
01089 };
01090
01091 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > : public TrueType {};
01092 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > : public TrueType {};
01093 }
01094 }
01095
01096 namespace ros
01097 {
01098 namespace serialization
01099 {
01100
01101 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >
01102 {
01103 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01104 {
01105 stream.next(m.header);
01106 stream.next(m.goal_id);
01107 stream.next(m.goal);
01108 }
01109
01110 ROS_DECLARE_ALLINONE_SERIALIZER;
01111 };
01112 }
01113 }
01114
01115 namespace ros
01116 {
01117 namespace message_operations
01118 {
01119
01120 template<class ContainerAllocator>
01121 struct Printer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >
01122 {
01123 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> & v)
01124 {
01125 s << indent << "header: ";
01126 s << std::endl;
01127 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
01128 s << indent << "goal_id: ";
01129 s << std::endl;
01130 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
01131 s << indent << "goal: ";
01132 s << std::endl;
01133 Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
01134 }
01135 };
01136
01137
01138 }
01139 }
01140
01141 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTIONGOAL_H
01142