00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H
00003 #define OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/service_traits.h"
00014
00015 #include "object_manipulation_msgs/ReactiveGraspGoal.h"
00016
00017
00018 #include "object_manipulation_msgs/ReactiveGraspResult.h"
00019
00020 namespace object_manipulation_msgs
00021 {
00022 template <class ContainerAllocator>
00023 struct ReactiveGraspRequest_ : public ros::Message
00024 {
00025 typedef ReactiveGraspRequest_<ContainerAllocator> Type;
00026
00027 ReactiveGraspRequest_()
00028 : goal()
00029 {
00030 }
00031
00032 ReactiveGraspRequest_(const ContainerAllocator& _alloc)
00033 : goal(_alloc)
00034 {
00035 }
00036
00037 typedef ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> _goal_type;
00038 ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> goal;
00039
00040
00041 private:
00042 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspRequest"; }
00043 public:
00044 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00045
00046 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00047
00048 private:
00049 static const char* __s_getMD5Sum_() { return "b300e38211331e06fde71a206d5864de"; }
00050 public:
00051 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00052
00053 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00054
00055 private:
00056 static const char* __s_getServerMD5Sum_() { return "d10a3c6af6389bc2c91b4e214e904ec4"; }
00057 public:
00058 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00059
00060 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00061
00062 private:
00063 static const char* __s_getMessageDefinition_() { return "\n\
00064 ReactiveGraspGoal goal\n\
00065 \n\
00066 \n\
00067 ================================================================================\n\
00068 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00069 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00070 # an action for reactive grasping\n\
00071 # a reactive grasp starts from the current pose of the gripper and ends\n\
00072 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00073 \n\
00074 # the name of the arm being used\n\
00075 string arm_name\n\
00076 \n\
00077 # the object to be grasped\n\
00078 GraspableObject target\n\
00079 \n\
00080 # the desired grasp pose for the hand\n\
00081 geometry_msgs/PoseStamped final_grasp_pose\n\
00082 \n\
00083 # the joint trajectory to use for the approach (if available)\n\
00084 # this trajectory is expected to start at the current pose of the gripper\n\
00085 # and end at the desired grasp pose\n\
00086 trajectory_msgs/JointTrajectory trajectory\n\
00087 \n\
00088 # the name of the support surface in the collision environment, if any\n\
00089 string collision_support_surface_name\n\
00090 \n\
00091 # The internal posture of the hand for the pre-grasp\n\
00092 # only positions are used\n\
00093 sensor_msgs/JointState pre_grasp_posture\n\
00094 \n\
00095 # The internal posture of the hand for the grasp\n\
00096 # positions and efforts are used\n\
00097 sensor_msgs/JointState grasp_posture\n\
00098 \n\
00099 \n\
00100 ================================================================================\n\
00101 MSG: object_manipulation_msgs/GraspableObject\n\
00102 # an object that the object_manipulator can work on\n\
00103 \n\
00104 # a graspable object can be represented in multiple ways. This message\n\
00105 # can contain all of them. Which one is actually used is up to the receiver\n\
00106 # of this message. When adding new representations, one must be careful that\n\
00107 # they have reasonable lightweight defaults indicating that that particular\n\
00108 # representation is not available.\n\
00109 \n\
00110 # the tf frame to be used as a reference frame when combining information from\n\
00111 # the different representations below\n\
00112 string reference_frame_id\n\
00113 \n\
00114 # potential recognition results from a database of models\n\
00115 # all poses are relative to the object reference pose\n\
00116 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00117 \n\
00118 # the point cloud itself\n\
00119 sensor_msgs/PointCloud cluster\n\
00120 \n\
00121 # a region of a PointCloud2 of interest\n\
00122 object_manipulation_msgs/SceneRegion region\n\
00123 \n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00127 # Informs that a specific model from the Model Database has been \n\
00128 # identified at a certain location\n\
00129 \n\
00130 # the database id of the model\n\
00131 int32 model_id\n\
00132 \n\
00133 # the pose that it can be found in\n\
00134 geometry_msgs/PoseStamped pose\n\
00135 \n\
00136 # a measure of the confidence level in this detection result\n\
00137 float32 confidence\n\
00138 ================================================================================\n\
00139 MSG: geometry_msgs/PoseStamped\n\
00140 # A Pose with reference coordinate frame and timestamp\n\
00141 Header header\n\
00142 Pose pose\n\
00143 \n\
00144 ================================================================================\n\
00145 MSG: std_msgs/Header\n\
00146 # Standard metadata for higher-level stamped data types.\n\
00147 # This is generally used to communicate timestamped data \n\
00148 # in a particular coordinate frame.\n\
00149 # \n\
00150 # sequence ID: consecutively increasing ID \n\
00151 uint32 seq\n\
00152 #Two-integer timestamp that is expressed as:\n\
00153 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00154 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00155 # time-handling sugar is provided by the client library\n\
00156 time stamp\n\
00157 #Frame this data is associated with\n\
00158 # 0: no frame\n\
00159 # 1: global frame\n\
00160 string frame_id\n\
00161 \n\
00162 ================================================================================\n\
00163 MSG: geometry_msgs/Pose\n\
00164 # A representation of pose in free space, composed of postion and orientation. \n\
00165 Point position\n\
00166 Quaternion orientation\n\
00167 \n\
00168 ================================================================================\n\
00169 MSG: geometry_msgs/Point\n\
00170 # This contains the position of a point in free space\n\
00171 float64 x\n\
00172 float64 y\n\
00173 float64 z\n\
00174 \n\
00175 ================================================================================\n\
00176 MSG: geometry_msgs/Quaternion\n\
00177 # This represents an orientation in free space in quaternion form.\n\
00178 \n\
00179 float64 x\n\
00180 float64 y\n\
00181 float64 z\n\
00182 float64 w\n\
00183 \n\
00184 ================================================================================\n\
00185 MSG: sensor_msgs/PointCloud\n\
00186 # This message holds a collection of 3d points, plus optional additional\n\
00187 # information about each point.\n\
00188 \n\
00189 # Time of sensor data acquisition, coordinate frame ID.\n\
00190 Header header\n\
00191 \n\
00192 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00193 # in the frame given in the header.\n\
00194 geometry_msgs/Point32[] points\n\
00195 \n\
00196 # Each channel should have the same number of elements as points array,\n\
00197 # and the data in each channel should correspond 1:1 with each point.\n\
00198 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00199 ChannelFloat32[] channels\n\
00200 \n\
00201 ================================================================================\n\
00202 MSG: geometry_msgs/Point32\n\
00203 # This contains the position of a point in free space(with 32 bits of precision).\n\
00204 # It is recommeded to use Point wherever possible instead of Point32. \n\
00205 # \n\
00206 # This recommendation is to promote interoperability. \n\
00207 #\n\
00208 # This message is designed to take up less space when sending\n\
00209 # lots of points at once, as in the case of a PointCloud. \n\
00210 \n\
00211 float32 x\n\
00212 float32 y\n\
00213 float32 z\n\
00214 ================================================================================\n\
00215 MSG: sensor_msgs/ChannelFloat32\n\
00216 # This message is used by the PointCloud message to hold optional data\n\
00217 # associated with each point in the cloud. The length of the values\n\
00218 # array should be the same as the length of the points array in the\n\
00219 # PointCloud, and each value should be associated with the corresponding\n\
00220 # point.\n\
00221 \n\
00222 # Channel names in existing practice include:\n\
00223 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00224 # This is opposite to usual conventions but remains for\n\
00225 # historical reasons. The newer PointCloud2 message has no\n\
00226 # such problem.\n\
00227 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00228 # (R,G,B) values packed into the least significant 24 bits,\n\
00229 # in order.\n\
00230 # \"intensity\" - laser or pixel intensity.\n\
00231 # \"distance\"\n\
00232 \n\
00233 # The channel name should give semantics of the channel (e.g.\n\
00234 # \"intensity\" instead of \"value\").\n\
00235 string name\n\
00236 \n\
00237 # The values array should be 1-1 with the elements of the associated\n\
00238 # PointCloud.\n\
00239 float32[] values\n\
00240 \n\
00241 ================================================================================\n\
00242 MSG: object_manipulation_msgs/SceneRegion\n\
00243 # Point cloud\n\
00244 sensor_msgs/PointCloud2 cloud\n\
00245 \n\
00246 # Indices for the region of interest\n\
00247 int32[] mask\n\
00248 \n\
00249 # One of the corresponding 2D images, if applicable\n\
00250 sensor_msgs/Image image\n\
00251 \n\
00252 # The disparity image, if applicable\n\
00253 sensor_msgs/Image disparity_image\n\
00254 \n\
00255 # Camera info for the camera that took the image\n\
00256 sensor_msgs/CameraInfo cam_info\n\
00257 \n\
00258 ================================================================================\n\
00259 MSG: sensor_msgs/PointCloud2\n\
00260 # This message holds a collection of N-dimensional points, which may\n\
00261 # contain additional information such as normals, intensity, etc. The\n\
00262 # point data is stored as a binary blob, its layout described by the\n\
00263 # contents of the \"fields\" array.\n\
00264 \n\
00265 # The point cloud data may be organized 2d (image-like) or 1d\n\
00266 # (unordered). Point clouds organized as 2d images may be produced by\n\
00267 # camera depth sensors such as stereo or time-of-flight.\n\
00268 \n\
00269 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00270 # points).\n\
00271 Header header\n\
00272 \n\
00273 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00274 # 1 and width is the length of the point cloud.\n\
00275 uint32 height\n\
00276 uint32 width\n\
00277 \n\
00278 # Describes the channels and their layout in the binary data blob.\n\
00279 PointField[] fields\n\
00280 \n\
00281 bool is_bigendian # Is this data bigendian?\n\
00282 uint32 point_step # Length of a point in bytes\n\
00283 uint32 row_step # Length of a row in bytes\n\
00284 uint8[] data # Actual point data, size is (row_step*height)\n\
00285 \n\
00286 bool is_dense # True if there are no invalid points\n\
00287 \n\
00288 ================================================================================\n\
00289 MSG: sensor_msgs/PointField\n\
00290 # This message holds the description of one point entry in the\n\
00291 # PointCloud2 message format.\n\
00292 uint8 INT8 = 1\n\
00293 uint8 UINT8 = 2\n\
00294 uint8 INT16 = 3\n\
00295 uint8 UINT16 = 4\n\
00296 uint8 INT32 = 5\n\
00297 uint8 UINT32 = 6\n\
00298 uint8 FLOAT32 = 7\n\
00299 uint8 FLOAT64 = 8\n\
00300 \n\
00301 string name # Name of field\n\
00302 uint32 offset # Offset from start of point struct\n\
00303 uint8 datatype # Datatype enumeration, see above\n\
00304 uint32 count # How many elements in the field\n\
00305 \n\
00306 ================================================================================\n\
00307 MSG: sensor_msgs/Image\n\
00308 # This message contains an uncompressed image\n\
00309 # (0, 0) is at top-left corner of image\n\
00310 #\n\
00311 \n\
00312 Header header # Header timestamp should be acquisition time of image\n\
00313 # Header frame_id should be optical frame of camera\n\
00314 # origin of frame should be optical center of cameara\n\
00315 # +x should point to the right in the image\n\
00316 # +y should point down in the image\n\
00317 # +z should point into to plane of the image\n\
00318 # If the frame_id here and the frame_id of the CameraInfo\n\
00319 # message associated with the image conflict\n\
00320 # the behavior is undefined\n\
00321 \n\
00322 uint32 height # image height, that is, number of rows\n\
00323 uint32 width # image width, that is, number of columns\n\
00324 \n\
00325 # The legal values for encoding are in file src/image_encodings.cpp\n\
00326 # If you want to standardize a new string format, join\n\
00327 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00328 \n\
00329 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00330 # taken from the list of strings in src/image_encodings.cpp\n\
00331 \n\
00332 uint8 is_bigendian # is this data bigendian?\n\
00333 uint32 step # Full row length in bytes\n\
00334 uint8[] data # actual matrix data, size is (step * rows)\n\
00335 \n\
00336 ================================================================================\n\
00337 MSG: sensor_msgs/CameraInfo\n\
00338 # This message defines meta information for a camera. It should be in a\n\
00339 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00340 # image topics named:\n\
00341 #\n\
00342 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00343 # image - monochrome, distorted\n\
00344 # image_color - color, distorted\n\
00345 # image_rect - monochrome, rectified\n\
00346 # image_rect_color - color, rectified\n\
00347 #\n\
00348 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00349 # for producing the four processed image topics from image_raw and\n\
00350 # camera_info. The meaning of the camera parameters are described in\n\
00351 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00352 #\n\
00353 # The image_geometry package provides a user-friendly interface to\n\
00354 # common operations using this meta information. If you want to, e.g.,\n\
00355 # project a 3d point into image coordinates, we strongly recommend\n\
00356 # using image_geometry.\n\
00357 #\n\
00358 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00359 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00360 # indicates an uncalibrated camera.\n\
00361 \n\
00362 #######################################################################\n\
00363 # Image acquisition info #\n\
00364 #######################################################################\n\
00365 \n\
00366 # Time of image acquisition, camera coordinate frame ID\n\
00367 Header header # Header timestamp should be acquisition time of image\n\
00368 # Header frame_id should be optical frame of camera\n\
00369 # origin of frame should be optical center of camera\n\
00370 # +x should point to the right in the image\n\
00371 # +y should point down in the image\n\
00372 # +z should point into the plane of the image\n\
00373 \n\
00374 \n\
00375 #######################################################################\n\
00376 # Calibration Parameters #\n\
00377 #######################################################################\n\
00378 # These are fixed during camera calibration. Their values will be the #\n\
00379 # same in all messages until the camera is recalibrated. Note that #\n\
00380 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00381 # #\n\
00382 # The internal parameters can be used to warp a raw (distorted) image #\n\
00383 # to: #\n\
00384 # 1. An undistorted image (requires D and K) #\n\
00385 # 2. A rectified image (requires D, K, R) #\n\
00386 # The projection matrix P projects 3D points into the rectified image.#\n\
00387 #######################################################################\n\
00388 \n\
00389 # The image dimensions with which the camera was calibrated. Normally\n\
00390 # this will be the full camera resolution in pixels.\n\
00391 uint32 height\n\
00392 uint32 width\n\
00393 \n\
00394 # The distortion model used. Supported models are listed in\n\
00395 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00396 # simple model of radial and tangential distortion - is sufficent.\n\
00397 string distortion_model\n\
00398 \n\
00399 # The distortion parameters, size depending on the distortion model.\n\
00400 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00401 float64[] D\n\
00402 \n\
00403 # Intrinsic camera matrix for the raw (distorted) images.\n\
00404 # [fx 0 cx]\n\
00405 # K = [ 0 fy cy]\n\
00406 # [ 0 0 1]\n\
00407 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00408 # coordinates using the focal lengths (fx, fy) and principal point\n\
00409 # (cx, cy).\n\
00410 float64[9] K # 3x3 row-major matrix\n\
00411 \n\
00412 # Rectification matrix (stereo cameras only)\n\
00413 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00414 # stereo image plane so that epipolar lines in both stereo images are\n\
00415 # parallel.\n\
00416 float64[9] R # 3x3 row-major matrix\n\
00417 \n\
00418 # Projection/camera matrix\n\
00419 # [fx' 0 cx' Tx]\n\
00420 # P = [ 0 fy' cy' Ty]\n\
00421 # [ 0 0 1 0]\n\
00422 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00423 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00424 # is the normal camera intrinsic matrix for the rectified image.\n\
00425 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00426 # coordinates using the focal lengths (fx', fy') and principal point\n\
00427 # (cx', cy') - these may differ from the values in K.\n\
00428 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00429 # also have R = the identity and P[1:3,1:3] = K.\n\
00430 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00431 # position of the optical center of the second camera in the first\n\
00432 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00433 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00434 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00435 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00436 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00437 # the rectified image is given by:\n\
00438 # [u v w]' = P * [X Y Z 1]'\n\
00439 # x = u / w\n\
00440 # y = v / w\n\
00441 # This holds for both images of a stereo pair.\n\
00442 float64[12] P # 3x4 row-major matrix\n\
00443 \n\
00444 \n\
00445 #######################################################################\n\
00446 # Operational Parameters #\n\
00447 #######################################################################\n\
00448 # These define the image region actually captured by the camera #\n\
00449 # driver. Although they affect the geometry of the output image, they #\n\
00450 # may be changed freely without recalibrating the camera. #\n\
00451 #######################################################################\n\
00452 \n\
00453 # Binning refers here to any camera setting which combines rectangular\n\
00454 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00455 # resolution of the output image to\n\
00456 # (width / binning_x) x (height / binning_y).\n\
00457 # The default values binning_x = binning_y = 0 is considered the same\n\
00458 # as binning_x = binning_y = 1 (no subsampling).\n\
00459 uint32 binning_x\n\
00460 uint32 binning_y\n\
00461 \n\
00462 # Region of interest (subwindow of full camera resolution), given in\n\
00463 # full resolution (unbinned) image coordinates. A particular ROI\n\
00464 # always denotes the same window of pixels on the camera sensor,\n\
00465 # regardless of binning settings.\n\
00466 # The default setting of roi (all values 0) is considered the same as\n\
00467 # full resolution (roi.width = width, roi.height = height).\n\
00468 RegionOfInterest roi\n\
00469 \n\
00470 ================================================================================\n\
00471 MSG: sensor_msgs/RegionOfInterest\n\
00472 # This message is used to specify a region of interest within an image.\n\
00473 #\n\
00474 # When used to specify the ROI setting of the camera when the image was\n\
00475 # taken, the height and width fields should either match the height and\n\
00476 # width fields for the associated image; or height = width = 0\n\
00477 # indicates that the full resolution image was captured.\n\
00478 \n\
00479 uint32 x_offset # Leftmost pixel of the ROI\n\
00480 # (0 if the ROI includes the left edge of the image)\n\
00481 uint32 y_offset # Topmost pixel of the ROI\n\
00482 # (0 if the ROI includes the top edge of the image)\n\
00483 uint32 height # Height of ROI\n\
00484 uint32 width # Width of ROI\n\
00485 \n\
00486 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00487 # ROI in this message. Typically this should be False if the full image\n\
00488 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00489 # used).\n\
00490 bool do_rectify\n\
00491 \n\
00492 ================================================================================\n\
00493 MSG: trajectory_msgs/JointTrajectory\n\
00494 Header header\n\
00495 string[] joint_names\n\
00496 JointTrajectoryPoint[] points\n\
00497 ================================================================================\n\
00498 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00499 float64[] positions\n\
00500 float64[] velocities\n\
00501 float64[] accelerations\n\
00502 duration time_from_start\n\
00503 ================================================================================\n\
00504 MSG: sensor_msgs/JointState\n\
00505 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00506 #\n\
00507 # The state of each joint (revolute or prismatic) is defined by:\n\
00508 # * the position of the joint (rad or m),\n\
00509 # * the velocity of the joint (rad/s or m/s) and \n\
00510 # * the effort that is applied in the joint (Nm or N).\n\
00511 #\n\
00512 # Each joint is uniquely identified by its name\n\
00513 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00514 # in one message have to be recorded at the same time.\n\
00515 #\n\
00516 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00517 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00518 # effort associated with them, you can leave the effort array empty. \n\
00519 #\n\
00520 # All arrays in this message should have the same size, or be empty.\n\
00521 # This is the only way to uniquely associate the joint name with the correct\n\
00522 # states.\n\
00523 \n\
00524 \n\
00525 Header header\n\
00526 \n\
00527 string[] name\n\
00528 float64[] position\n\
00529 float64[] velocity\n\
00530 float64[] effort\n\
00531 \n\
00532 "; }
00533 public:
00534 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00535
00536 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00537
00538 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00539 {
00540 ros::serialization::OStream stream(write_ptr, 1000000000);
00541 ros::serialization::serialize(stream, goal);
00542 return stream.getData();
00543 }
00544
00545 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00546 {
00547 ros::serialization::IStream stream(read_ptr, 1000000000);
00548 ros::serialization::deserialize(stream, goal);
00549 return stream.getData();
00550 }
00551
00552 ROS_DEPRECATED virtual uint32_t serializationLength() const
00553 {
00554 uint32_t size = 0;
00555 size += ros::serialization::serializationLength(goal);
00556 return size;
00557 }
00558
00559 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > Ptr;
00560 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> const> ConstPtr;
00561 };
00562 typedef ::object_manipulation_msgs::ReactiveGraspRequest_<std::allocator<void> > ReactiveGraspRequest;
00563
00564 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest> ReactiveGraspRequestPtr;
00565 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspRequest const> ReactiveGraspRequestConstPtr;
00566
00567
00568 template <class ContainerAllocator>
00569 struct ReactiveGraspResponse_ : public ros::Message
00570 {
00571 typedef ReactiveGraspResponse_<ContainerAllocator> Type;
00572
00573 ReactiveGraspResponse_()
00574 : result()
00575 {
00576 }
00577
00578 ReactiveGraspResponse_(const ContainerAllocator& _alloc)
00579 : result(_alloc)
00580 {
00581 }
00582
00583 typedef ::object_manipulation_msgs::ReactiveGraspResult_<ContainerAllocator> _result_type;
00584 ::object_manipulation_msgs::ReactiveGraspResult_<ContainerAllocator> result;
00585
00586
00587 private:
00588 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspResponse"; }
00589 public:
00590 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00591
00592 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00593
00594 private:
00595 static const char* __s_getMD5Sum_() { return "eb66ddf1bad009330070ddb3ebea8f76"; }
00596 public:
00597 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00598
00599 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00600
00601 private:
00602 static const char* __s_getServerMD5Sum_() { return "d10a3c6af6389bc2c91b4e214e904ec4"; }
00603 public:
00604 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00605
00606 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00607
00608 private:
00609 static const char* __s_getMessageDefinition_() { return "\n\
00610 \n\
00611 ReactiveGraspResult result\n\
00612 \n\
00613 ================================================================================\n\
00614 MSG: object_manipulation_msgs/ReactiveGraspResult\n\
00615 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00616 \n\
00617 # the result of the reactive grasp attempt\n\
00618 \n\
00619 ManipulationResult manipulation_result\n\
00620 \n\
00621 \n\
00622 ================================================================================\n\
00623 MSG: object_manipulation_msgs/ManipulationResult\n\
00624 # Result codes for manipulation tasks\n\
00625 \n\
00626 # task completed as expected\n\
00627 # generally means you can proceed as planned\n\
00628 int32 SUCCESS = 1\n\
00629 \n\
00630 # task not possible (e.g. out of reach or obstacles in the way)\n\
00631 # generally means that the world was not disturbed, so you can try another task\n\
00632 int32 UNFEASIBLE = -1\n\
00633 \n\
00634 # task was thought possible, but failed due to unexpected events during execution\n\
00635 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
00636 # your sensed world model before proceeding to another task\n\
00637 int32 FAILED = -2\n\
00638 \n\
00639 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
00640 # generally requires human attention\n\
00641 int32 ERROR = -3\n\
00642 \n\
00643 # means that at some point during execution we ended up in a state that the collision-aware\n\
00644 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
00645 # probably need a new collision map to move the arm out of the stuck position\n\
00646 int32 ARM_MOVEMENT_PREVENTED = -4\n\
00647 \n\
00648 # specific to grasp actions\n\
00649 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
00650 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
00651 int32 LIFT_FAILED = -5\n\
00652 \n\
00653 # specific to place actions\n\
00654 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
00655 # it is likely that the collision environment will see collisions between the hand and the object\n\
00656 int32 RETREAT_FAILED = -6\n\
00657 \n\
00658 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
00659 int32 CANCELLED = -7\n\
00660 \n\
00661 # the actual value of this error code\n\
00662 int32 value\n\
00663 \n\
00664 "; }
00665 public:
00666 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00667
00668 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00669
00670 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00671 {
00672 ros::serialization::OStream stream(write_ptr, 1000000000);
00673 ros::serialization::serialize(stream, result);
00674 return stream.getData();
00675 }
00676
00677 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00678 {
00679 ros::serialization::IStream stream(read_ptr, 1000000000);
00680 ros::serialization::deserialize(stream, result);
00681 return stream.getData();
00682 }
00683
00684 ROS_DEPRECATED virtual uint32_t serializationLength() const
00685 {
00686 uint32_t size = 0;
00687 size += ros::serialization::serializationLength(result);
00688 return size;
00689 }
00690
00691 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > Ptr;
00692 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> const> ConstPtr;
00693 };
00694 typedef ::object_manipulation_msgs::ReactiveGraspResponse_<std::allocator<void> > ReactiveGraspResponse;
00695
00696 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse> ReactiveGraspResponsePtr;
00697 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspResponse const> ReactiveGraspResponseConstPtr;
00698
00699 struct ReactiveGrasp
00700 {
00701
00702 typedef ReactiveGraspRequest Request;
00703 typedef ReactiveGraspResponse Response;
00704 Request request;
00705 Response response;
00706
00707 typedef Request RequestType;
00708 typedef Response ResponseType;
00709 };
00710 }
00711
00712 namespace ros
00713 {
00714 namespace message_traits
00715 {
00716 template<class ContainerAllocator>
00717 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00718 static const char* value()
00719 {
00720 return "b300e38211331e06fde71a206d5864de";
00721 }
00722
00723 static const char* value(const ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); }
00724 static const uint64_t static_value1 = 0xb300e38211331e06ULL;
00725 static const uint64_t static_value2 = 0xfde71a206d5864deULL;
00726 };
00727
00728 template<class ContainerAllocator>
00729 struct DataType< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00730 static const char* value()
00731 {
00732 return "object_manipulation_msgs/ReactiveGraspRequest";
00733 }
00734
00735 static const char* value(const ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); }
00736 };
00737
00738 template<class ContainerAllocator>
00739 struct Definition< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
00740 static const char* value()
00741 {
00742 return "\n\
00743 ReactiveGraspGoal goal\n\
00744 \n\
00745 \n\
00746 ================================================================================\n\
00747 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00748 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00749 # an action for reactive grasping\n\
00750 # a reactive grasp starts from the current pose of the gripper and ends\n\
00751 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00752 \n\
00753 # the name of the arm being used\n\
00754 string arm_name\n\
00755 \n\
00756 # the object to be grasped\n\
00757 GraspableObject target\n\
00758 \n\
00759 # the desired grasp pose for the hand\n\
00760 geometry_msgs/PoseStamped final_grasp_pose\n\
00761 \n\
00762 # the joint trajectory to use for the approach (if available)\n\
00763 # this trajectory is expected to start at the current pose of the gripper\n\
00764 # and end at the desired grasp pose\n\
00765 trajectory_msgs/JointTrajectory trajectory\n\
00766 \n\
00767 # the name of the support surface in the collision environment, if any\n\
00768 string collision_support_surface_name\n\
00769 \n\
00770 # The internal posture of the hand for the pre-grasp\n\
00771 # only positions are used\n\
00772 sensor_msgs/JointState pre_grasp_posture\n\
00773 \n\
00774 # The internal posture of the hand for the grasp\n\
00775 # positions and efforts are used\n\
00776 sensor_msgs/JointState grasp_posture\n\
00777 \n\
00778 \n\
00779 ================================================================================\n\
00780 MSG: object_manipulation_msgs/GraspableObject\n\
00781 # an object that the object_manipulator can work on\n\
00782 \n\
00783 # a graspable object can be represented in multiple ways. This message\n\
00784 # can contain all of them. Which one is actually used is up to the receiver\n\
00785 # of this message. When adding new representations, one must be careful that\n\
00786 # they have reasonable lightweight defaults indicating that that particular\n\
00787 # representation is not available.\n\
00788 \n\
00789 # the tf frame to be used as a reference frame when combining information from\n\
00790 # the different representations below\n\
00791 string reference_frame_id\n\
00792 \n\
00793 # potential recognition results from a database of models\n\
00794 # all poses are relative to the object reference pose\n\
00795 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00796 \n\
00797 # the point cloud itself\n\
00798 sensor_msgs/PointCloud cluster\n\
00799 \n\
00800 # a region of a PointCloud2 of interest\n\
00801 object_manipulation_msgs/SceneRegion region\n\
00802 \n\
00803 \n\
00804 ================================================================================\n\
00805 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00806 # Informs that a specific model from the Model Database has been \n\
00807 # identified at a certain location\n\
00808 \n\
00809 # the database id of the model\n\
00810 int32 model_id\n\
00811 \n\
00812 # the pose that it can be found in\n\
00813 geometry_msgs/PoseStamped pose\n\
00814 \n\
00815 # a measure of the confidence level in this detection result\n\
00816 float32 confidence\n\
00817 ================================================================================\n\
00818 MSG: geometry_msgs/PoseStamped\n\
00819 # A Pose with reference coordinate frame and timestamp\n\
00820 Header header\n\
00821 Pose pose\n\
00822 \n\
00823 ================================================================================\n\
00824 MSG: std_msgs/Header\n\
00825 # Standard metadata for higher-level stamped data types.\n\
00826 # This is generally used to communicate timestamped data \n\
00827 # in a particular coordinate frame.\n\
00828 # \n\
00829 # sequence ID: consecutively increasing ID \n\
00830 uint32 seq\n\
00831 #Two-integer timestamp that is expressed as:\n\
00832 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00833 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00834 # time-handling sugar is provided by the client library\n\
00835 time stamp\n\
00836 #Frame this data is associated with\n\
00837 # 0: no frame\n\
00838 # 1: global frame\n\
00839 string frame_id\n\
00840 \n\
00841 ================================================================================\n\
00842 MSG: geometry_msgs/Pose\n\
00843 # A representation of pose in free space, composed of postion and orientation. \n\
00844 Point position\n\
00845 Quaternion orientation\n\
00846 \n\
00847 ================================================================================\n\
00848 MSG: geometry_msgs/Point\n\
00849 # This contains the position of a point in free space\n\
00850 float64 x\n\
00851 float64 y\n\
00852 float64 z\n\
00853 \n\
00854 ================================================================================\n\
00855 MSG: geometry_msgs/Quaternion\n\
00856 # This represents an orientation in free space in quaternion form.\n\
00857 \n\
00858 float64 x\n\
00859 float64 y\n\
00860 float64 z\n\
00861 float64 w\n\
00862 \n\
00863 ================================================================================\n\
00864 MSG: sensor_msgs/PointCloud\n\
00865 # This message holds a collection of 3d points, plus optional additional\n\
00866 # information about each point.\n\
00867 \n\
00868 # Time of sensor data acquisition, coordinate frame ID.\n\
00869 Header header\n\
00870 \n\
00871 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00872 # in the frame given in the header.\n\
00873 geometry_msgs/Point32[] points\n\
00874 \n\
00875 # Each channel should have the same number of elements as points array,\n\
00876 # and the data in each channel should correspond 1:1 with each point.\n\
00877 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00878 ChannelFloat32[] channels\n\
00879 \n\
00880 ================================================================================\n\
00881 MSG: geometry_msgs/Point32\n\
00882 # This contains the position of a point in free space(with 32 bits of precision).\n\
00883 # It is recommeded to use Point wherever possible instead of Point32. \n\
00884 # \n\
00885 # This recommendation is to promote interoperability. \n\
00886 #\n\
00887 # This message is designed to take up less space when sending\n\
00888 # lots of points at once, as in the case of a PointCloud. \n\
00889 \n\
00890 float32 x\n\
00891 float32 y\n\
00892 float32 z\n\
00893 ================================================================================\n\
00894 MSG: sensor_msgs/ChannelFloat32\n\
00895 # This message is used by the PointCloud message to hold optional data\n\
00896 # associated with each point in the cloud. The length of the values\n\
00897 # array should be the same as the length of the points array in the\n\
00898 # PointCloud, and each value should be associated with the corresponding\n\
00899 # point.\n\
00900 \n\
00901 # Channel names in existing practice include:\n\
00902 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00903 # This is opposite to usual conventions but remains for\n\
00904 # historical reasons. The newer PointCloud2 message has no\n\
00905 # such problem.\n\
00906 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00907 # (R,G,B) values packed into the least significant 24 bits,\n\
00908 # in order.\n\
00909 # \"intensity\" - laser or pixel intensity.\n\
00910 # \"distance\"\n\
00911 \n\
00912 # The channel name should give semantics of the channel (e.g.\n\
00913 # \"intensity\" instead of \"value\").\n\
00914 string name\n\
00915 \n\
00916 # The values array should be 1-1 with the elements of the associated\n\
00917 # PointCloud.\n\
00918 float32[] values\n\
00919 \n\
00920 ================================================================================\n\
00921 MSG: object_manipulation_msgs/SceneRegion\n\
00922 # Point cloud\n\
00923 sensor_msgs/PointCloud2 cloud\n\
00924 \n\
00925 # Indices for the region of interest\n\
00926 int32[] mask\n\
00927 \n\
00928 # One of the corresponding 2D images, if applicable\n\
00929 sensor_msgs/Image image\n\
00930 \n\
00931 # The disparity image, if applicable\n\
00932 sensor_msgs/Image disparity_image\n\
00933 \n\
00934 # Camera info for the camera that took the image\n\
00935 sensor_msgs/CameraInfo cam_info\n\
00936 \n\
00937 ================================================================================\n\
00938 MSG: sensor_msgs/PointCloud2\n\
00939 # This message holds a collection of N-dimensional points, which may\n\
00940 # contain additional information such as normals, intensity, etc. The\n\
00941 # point data is stored as a binary blob, its layout described by the\n\
00942 # contents of the \"fields\" array.\n\
00943 \n\
00944 # The point cloud data may be organized 2d (image-like) or 1d\n\
00945 # (unordered). Point clouds organized as 2d images may be produced by\n\
00946 # camera depth sensors such as stereo or time-of-flight.\n\
00947 \n\
00948 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00949 # points).\n\
00950 Header header\n\
00951 \n\
00952 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00953 # 1 and width is the length of the point cloud.\n\
00954 uint32 height\n\
00955 uint32 width\n\
00956 \n\
00957 # Describes the channels and their layout in the binary data blob.\n\
00958 PointField[] fields\n\
00959 \n\
00960 bool is_bigendian # Is this data bigendian?\n\
00961 uint32 point_step # Length of a point in bytes\n\
00962 uint32 row_step # Length of a row in bytes\n\
00963 uint8[] data # Actual point data, size is (row_step*height)\n\
00964 \n\
00965 bool is_dense # True if there are no invalid points\n\
00966 \n\
00967 ================================================================================\n\
00968 MSG: sensor_msgs/PointField\n\
00969 # This message holds the description of one point entry in the\n\
00970 # PointCloud2 message format.\n\
00971 uint8 INT8 = 1\n\
00972 uint8 UINT8 = 2\n\
00973 uint8 INT16 = 3\n\
00974 uint8 UINT16 = 4\n\
00975 uint8 INT32 = 5\n\
00976 uint8 UINT32 = 6\n\
00977 uint8 FLOAT32 = 7\n\
00978 uint8 FLOAT64 = 8\n\
00979 \n\
00980 string name # Name of field\n\
00981 uint32 offset # Offset from start of point struct\n\
00982 uint8 datatype # Datatype enumeration, see above\n\
00983 uint32 count # How many elements in the field\n\
00984 \n\
00985 ================================================================================\n\
00986 MSG: sensor_msgs/Image\n\
00987 # This message contains an uncompressed image\n\
00988 # (0, 0) is at top-left corner of image\n\
00989 #\n\
00990 \n\
00991 Header header # Header timestamp should be acquisition time of image\n\
00992 # Header frame_id should be optical frame of camera\n\
00993 # origin of frame should be optical center of cameara\n\
00994 # +x should point to the right in the image\n\
00995 # +y should point down in the image\n\
00996 # +z should point into to plane of the image\n\
00997 # If the frame_id here and the frame_id of the CameraInfo\n\
00998 # message associated with the image conflict\n\
00999 # the behavior is undefined\n\
01000 \n\
01001 uint32 height # image height, that is, number of rows\n\
01002 uint32 width # image width, that is, number of columns\n\
01003 \n\
01004 # The legal values for encoding are in file src/image_encodings.cpp\n\
01005 # If you want to standardize a new string format, join\n\
01006 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01007 \n\
01008 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01009 # taken from the list of strings in src/image_encodings.cpp\n\
01010 \n\
01011 uint8 is_bigendian # is this data bigendian?\n\
01012 uint32 step # Full row length in bytes\n\
01013 uint8[] data # actual matrix data, size is (step * rows)\n\
01014 \n\
01015 ================================================================================\n\
01016 MSG: sensor_msgs/CameraInfo\n\
01017 # This message defines meta information for a camera. It should be in a\n\
01018 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01019 # image topics named:\n\
01020 #\n\
01021 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01022 # image - monochrome, distorted\n\
01023 # image_color - color, distorted\n\
01024 # image_rect - monochrome, rectified\n\
01025 # image_rect_color - color, rectified\n\
01026 #\n\
01027 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01028 # for producing the four processed image topics from image_raw and\n\
01029 # camera_info. The meaning of the camera parameters are described in\n\
01030 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01031 #\n\
01032 # The image_geometry package provides a user-friendly interface to\n\
01033 # common operations using this meta information. If you want to, e.g.,\n\
01034 # project a 3d point into image coordinates, we strongly recommend\n\
01035 # using image_geometry.\n\
01036 #\n\
01037 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01038 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01039 # indicates an uncalibrated camera.\n\
01040 \n\
01041 #######################################################################\n\
01042 # Image acquisition info #\n\
01043 #######################################################################\n\
01044 \n\
01045 # Time of image acquisition, camera coordinate frame ID\n\
01046 Header header # Header timestamp should be acquisition time of image\n\
01047 # Header frame_id should be optical frame of camera\n\
01048 # origin of frame should be optical center of camera\n\
01049 # +x should point to the right in the image\n\
01050 # +y should point down in the image\n\
01051 # +z should point into the plane of the image\n\
01052 \n\
01053 \n\
01054 #######################################################################\n\
01055 # Calibration Parameters #\n\
01056 #######################################################################\n\
01057 # These are fixed during camera calibration. Their values will be the #\n\
01058 # same in all messages until the camera is recalibrated. Note that #\n\
01059 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01060 # #\n\
01061 # The internal parameters can be used to warp a raw (distorted) image #\n\
01062 # to: #\n\
01063 # 1. An undistorted image (requires D and K) #\n\
01064 # 2. A rectified image (requires D, K, R) #\n\
01065 # The projection matrix P projects 3D points into the rectified image.#\n\
01066 #######################################################################\n\
01067 \n\
01068 # The image dimensions with which the camera was calibrated. Normally\n\
01069 # this will be the full camera resolution in pixels.\n\
01070 uint32 height\n\
01071 uint32 width\n\
01072 \n\
01073 # The distortion model used. Supported models are listed in\n\
01074 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01075 # simple model of radial and tangential distortion - is sufficent.\n\
01076 string distortion_model\n\
01077 \n\
01078 # The distortion parameters, size depending on the distortion model.\n\
01079 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01080 float64[] D\n\
01081 \n\
01082 # Intrinsic camera matrix for the raw (distorted) images.\n\
01083 # [fx 0 cx]\n\
01084 # K = [ 0 fy cy]\n\
01085 # [ 0 0 1]\n\
01086 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01087 # coordinates using the focal lengths (fx, fy) and principal point\n\
01088 # (cx, cy).\n\
01089 float64[9] K # 3x3 row-major matrix\n\
01090 \n\
01091 # Rectification matrix (stereo cameras only)\n\
01092 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01093 # stereo image plane so that epipolar lines in both stereo images are\n\
01094 # parallel.\n\
01095 float64[9] R # 3x3 row-major matrix\n\
01096 \n\
01097 # Projection/camera matrix\n\
01098 # [fx' 0 cx' Tx]\n\
01099 # P = [ 0 fy' cy' Ty]\n\
01100 # [ 0 0 1 0]\n\
01101 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01102 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01103 # is the normal camera intrinsic matrix for the rectified image.\n\
01104 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01105 # coordinates using the focal lengths (fx', fy') and principal point\n\
01106 # (cx', cy') - these may differ from the values in K.\n\
01107 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01108 # also have R = the identity and P[1:3,1:3] = K.\n\
01109 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01110 # position of the optical center of the second camera in the first\n\
01111 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01112 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01113 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01114 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01115 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01116 # the rectified image is given by:\n\
01117 # [u v w]' = P * [X Y Z 1]'\n\
01118 # x = u / w\n\
01119 # y = v / w\n\
01120 # This holds for both images of a stereo pair.\n\
01121 float64[12] P # 3x4 row-major matrix\n\
01122 \n\
01123 \n\
01124 #######################################################################\n\
01125 # Operational Parameters #\n\
01126 #######################################################################\n\
01127 # These define the image region actually captured by the camera #\n\
01128 # driver. Although they affect the geometry of the output image, they #\n\
01129 # may be changed freely without recalibrating the camera. #\n\
01130 #######################################################################\n\
01131 \n\
01132 # Binning refers here to any camera setting which combines rectangular\n\
01133 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01134 # resolution of the output image to\n\
01135 # (width / binning_x) x (height / binning_y).\n\
01136 # The default values binning_x = binning_y = 0 is considered the same\n\
01137 # as binning_x = binning_y = 1 (no subsampling).\n\
01138 uint32 binning_x\n\
01139 uint32 binning_y\n\
01140 \n\
01141 # Region of interest (subwindow of full camera resolution), given in\n\
01142 # full resolution (unbinned) image coordinates. A particular ROI\n\
01143 # always denotes the same window of pixels on the camera sensor,\n\
01144 # regardless of binning settings.\n\
01145 # The default setting of roi (all values 0) is considered the same as\n\
01146 # full resolution (roi.width = width, roi.height = height).\n\
01147 RegionOfInterest roi\n\
01148 \n\
01149 ================================================================================\n\
01150 MSG: sensor_msgs/RegionOfInterest\n\
01151 # This message is used to specify a region of interest within an image.\n\
01152 #\n\
01153 # When used to specify the ROI setting of the camera when the image was\n\
01154 # taken, the height and width fields should either match the height and\n\
01155 # width fields for the associated image; or height = width = 0\n\
01156 # indicates that the full resolution image was captured.\n\
01157 \n\
01158 uint32 x_offset # Leftmost pixel of the ROI\n\
01159 # (0 if the ROI includes the left edge of the image)\n\
01160 uint32 y_offset # Topmost pixel of the ROI\n\
01161 # (0 if the ROI includes the top edge of the image)\n\
01162 uint32 height # Height of ROI\n\
01163 uint32 width # Width of ROI\n\
01164 \n\
01165 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01166 # ROI in this message. Typically this should be False if the full image\n\
01167 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01168 # used).\n\
01169 bool do_rectify\n\
01170 \n\
01171 ================================================================================\n\
01172 MSG: trajectory_msgs/JointTrajectory\n\
01173 Header header\n\
01174 string[] joint_names\n\
01175 JointTrajectoryPoint[] points\n\
01176 ================================================================================\n\
01177 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01178 float64[] positions\n\
01179 float64[] velocities\n\
01180 float64[] accelerations\n\
01181 duration time_from_start\n\
01182 ================================================================================\n\
01183 MSG: sensor_msgs/JointState\n\
01184 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01185 #\n\
01186 # The state of each joint (revolute or prismatic) is defined by:\n\
01187 # * the position of the joint (rad or m),\n\
01188 # * the velocity of the joint (rad/s or m/s) and \n\
01189 # * the effort that is applied in the joint (Nm or N).\n\
01190 #\n\
01191 # Each joint is uniquely identified by its name\n\
01192 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01193 # in one message have to be recorded at the same time.\n\
01194 #\n\
01195 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01196 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01197 # effort associated with them, you can leave the effort array empty. \n\
01198 #\n\
01199 # All arrays in this message should have the same size, or be empty.\n\
01200 # This is the only way to uniquely associate the joint name with the correct\n\
01201 # states.\n\
01202 \n\
01203 \n\
01204 Header header\n\
01205 \n\
01206 string[] name\n\
01207 float64[] position\n\
01208 float64[] velocity\n\
01209 float64[] effort\n\
01210 \n\
01211 ";
01212 }
01213
01214 static const char* value(const ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); }
01215 };
01216
01217 }
01218 }
01219
01220
01221 namespace ros
01222 {
01223 namespace message_traits
01224 {
01225 template<class ContainerAllocator>
01226 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
01227 static const char* value()
01228 {
01229 return "eb66ddf1bad009330070ddb3ebea8f76";
01230 }
01231
01232 static const char* value(const ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); }
01233 static const uint64_t static_value1 = 0xeb66ddf1bad00933ULL;
01234 static const uint64_t static_value2 = 0x0070ddb3ebea8f76ULL;
01235 };
01236
01237 template<class ContainerAllocator>
01238 struct DataType< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
01239 static const char* value()
01240 {
01241 return "object_manipulation_msgs/ReactiveGraspResponse";
01242 }
01243
01244 static const char* value(const ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); }
01245 };
01246
01247 template<class ContainerAllocator>
01248 struct Definition< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
01249 static const char* value()
01250 {
01251 return "\n\
01252 \n\
01253 ReactiveGraspResult result\n\
01254 \n\
01255 ================================================================================\n\
01256 MSG: object_manipulation_msgs/ReactiveGraspResult\n\
01257 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
01258 \n\
01259 # the result of the reactive grasp attempt\n\
01260 \n\
01261 ManipulationResult manipulation_result\n\
01262 \n\
01263 \n\
01264 ================================================================================\n\
01265 MSG: object_manipulation_msgs/ManipulationResult\n\
01266 # Result codes for manipulation tasks\n\
01267 \n\
01268 # task completed as expected\n\
01269 # generally means you can proceed as planned\n\
01270 int32 SUCCESS = 1\n\
01271 \n\
01272 # task not possible (e.g. out of reach or obstacles in the way)\n\
01273 # generally means that the world was not disturbed, so you can try another task\n\
01274 int32 UNFEASIBLE = -1\n\
01275 \n\
01276 # task was thought possible, but failed due to unexpected events during execution\n\
01277 # it is likely that the world was disturbed, so you are encouraged to refresh\n\
01278 # your sensed world model before proceeding to another task\n\
01279 int32 FAILED = -2\n\
01280 \n\
01281 # a lower level error prevented task completion (e.g. joint controller not responding)\n\
01282 # generally requires human attention\n\
01283 int32 ERROR = -3\n\
01284 \n\
01285 # means that at some point during execution we ended up in a state that the collision-aware\n\
01286 # arm navigation module will not move out of. The world was likely not disturbed, but you \n\
01287 # probably need a new collision map to move the arm out of the stuck position\n\
01288 int32 ARM_MOVEMENT_PREVENTED = -4\n\
01289 \n\
01290 # specific to grasp actions\n\
01291 # the object was grasped successfully, but the lift attempt could not achieve the minimum lift distance requested\n\
01292 # it is likely that the collision environment will see collisions between the hand/object and the support surface\n\
01293 int32 LIFT_FAILED = -5\n\
01294 \n\
01295 # specific to place actions\n\
01296 # the object was placed successfully, but the retreat attempt could not achieve the minimum retreat distance requested\n\
01297 # it is likely that the collision environment will see collisions between the hand and the object\n\
01298 int32 RETREAT_FAILED = -6\n\
01299 \n\
01300 # indicates that somewhere along the line a human said \"wait, stop, this is bad, go back and do something else\"\n\
01301 int32 CANCELLED = -7\n\
01302 \n\
01303 # the actual value of this error code\n\
01304 int32 value\n\
01305 \n\
01306 ";
01307 }
01308
01309 static const char* value(const ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); }
01310 };
01311
01312 template<class ContainerAllocator> struct IsFixedSize< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > : public TrueType {};
01313 }
01314 }
01315
01316 namespace ros
01317 {
01318 namespace serialization
01319 {
01320
01321 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> >
01322 {
01323 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01324 {
01325 stream.next(m.goal);
01326 }
01327
01328 ROS_DECLARE_ALLINONE_SERIALIZER;
01329 };
01330 }
01331 }
01332
01333
01334 namespace ros
01335 {
01336 namespace serialization
01337 {
01338
01339 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> >
01340 {
01341 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01342 {
01343 stream.next(m.result);
01344 }
01345
01346 ROS_DECLARE_ALLINONE_SERIALIZER;
01347 };
01348 }
01349 }
01350
01351 namespace ros
01352 {
01353 namespace service_traits
01354 {
01355 template<>
01356 struct MD5Sum<object_manipulation_msgs::ReactiveGrasp> {
01357 static const char* value()
01358 {
01359 return "d10a3c6af6389bc2c91b4e214e904ec4";
01360 }
01361
01362 static const char* value(const object_manipulation_msgs::ReactiveGrasp&) { return value(); }
01363 };
01364
01365 template<>
01366 struct DataType<object_manipulation_msgs::ReactiveGrasp> {
01367 static const char* value()
01368 {
01369 return "object_manipulation_msgs/ReactiveGrasp";
01370 }
01371
01372 static const char* value(const object_manipulation_msgs::ReactiveGrasp&) { return value(); }
01373 };
01374
01375 template<class ContainerAllocator>
01376 struct MD5Sum<object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
01377 static const char* value()
01378 {
01379 return "d10a3c6af6389bc2c91b4e214e904ec4";
01380 }
01381
01382 static const char* value(const object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); }
01383 };
01384
01385 template<class ContainerAllocator>
01386 struct DataType<object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> > {
01387 static const char* value()
01388 {
01389 return "object_manipulation_msgs/ReactiveGrasp";
01390 }
01391
01392 static const char* value(const object_manipulation_msgs::ReactiveGraspRequest_<ContainerAllocator> &) { return value(); }
01393 };
01394
01395 template<class ContainerAllocator>
01396 struct MD5Sum<object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
01397 static const char* value()
01398 {
01399 return "d10a3c6af6389bc2c91b4e214e904ec4";
01400 }
01401
01402 static const char* value(const object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); }
01403 };
01404
01405 template<class ContainerAllocator>
01406 struct DataType<object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> > {
01407 static const char* value()
01408 {
01409 return "object_manipulation_msgs/ReactiveGrasp";
01410 }
01411
01412 static const char* value(const object_manipulation_msgs::ReactiveGraspResponse_<ContainerAllocator> &) { return value(); }
01413 };
01414
01415 }
01416 }
01417
01418 #endif // OBJECT_MANIPULATION_MSGS_SERVICE_REACTIVEGRASP_H
01419