00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <ostream>
00007 #include "ros/serialization.h"
00008 #include "ros/builtin_message_traits.h"
00009 #include "ros/message_operations.h"
00010 #include "ros/message.h"
00011 #include "ros/time.h"
00012
00013 #include "std_msgs/Header.h"
00014 #include "actionlib_msgs/GoalID.h"
00015 #include "object_manipulation_msgs/ReactiveGraspGoal.h"
00016
00017 namespace object_manipulation_msgs
00018 {
00019 template <class ContainerAllocator>
00020 struct ReactiveGraspActionGoal_ : public ros::Message
00021 {
00022 typedef ReactiveGraspActionGoal_<ContainerAllocator> Type;
00023
00024 ReactiveGraspActionGoal_()
00025 : header()
00026 , goal_id()
00027 , goal()
00028 {
00029 }
00030
00031 ReactiveGraspActionGoal_(const ContainerAllocator& _alloc)
00032 : header(_alloc)
00033 , goal_id(_alloc)
00034 , goal(_alloc)
00035 {
00036 }
00037
00038 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00039 ::std_msgs::Header_<ContainerAllocator> header;
00040
00041 typedef ::actionlib_msgs::GoalID_<ContainerAllocator> _goal_id_type;
00042 ::actionlib_msgs::GoalID_<ContainerAllocator> goal_id;
00043
00044 typedef ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> _goal_type;
00045 ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> goal;
00046
00047
00048 private:
00049 static const char* __s_getDataType_() { return "object_manipulation_msgs/ReactiveGraspActionGoal"; }
00050 public:
00051 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00052
00053 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00054
00055 private:
00056 static const char* __s_getMD5Sum_() { return "aa320d11322919c57c31cc4e7c61a872"; }
00057 public:
00058 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00059
00060 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00061
00062 private:
00063 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00064 \n\
00065 Header header\n\
00066 actionlib_msgs/GoalID goal_id\n\
00067 ReactiveGraspGoal goal\n\
00068 \n\
00069 ================================================================================\n\
00070 MSG: std_msgs/Header\n\
00071 # Standard metadata for higher-level stamped data types.\n\
00072 # This is generally used to communicate timestamped data \n\
00073 # in a particular coordinate frame.\n\
00074 # \n\
00075 # sequence ID: consecutively increasing ID \n\
00076 uint32 seq\n\
00077 #Two-integer timestamp that is expressed as:\n\
00078 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00079 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00080 # time-handling sugar is provided by the client library\n\
00081 time stamp\n\
00082 #Frame this data is associated with\n\
00083 # 0: no frame\n\
00084 # 1: global frame\n\
00085 string frame_id\n\
00086 \n\
00087 ================================================================================\n\
00088 MSG: actionlib_msgs/GoalID\n\
00089 # The stamp should store the time at which this goal was requested.\n\
00090 # It is used by an action server when it tries to preempt all\n\
00091 # goals that were requested before a certain time\n\
00092 time stamp\n\
00093 \n\
00094 # The id provides a way to associate feedback and\n\
00095 # result message with specific goal requests. The id\n\
00096 # specified must be unique.\n\
00097 string id\n\
00098 \n\
00099 \n\
00100 ================================================================================\n\
00101 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00102 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00103 # an action for reactive grasping\n\
00104 # a reactive grasp starts from the current pose of the gripper and ends\n\
00105 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00106 \n\
00107 # the name of the arm being used\n\
00108 string arm_name\n\
00109 \n\
00110 # the object to be grasped\n\
00111 GraspableObject target\n\
00112 \n\
00113 # the desired grasp pose for the hand\n\
00114 geometry_msgs/PoseStamped final_grasp_pose\n\
00115 \n\
00116 # the joint trajectory to use for the approach (if available)\n\
00117 # this trajectory is expected to start at the current pose of the gripper\n\
00118 # and end at the desired grasp pose\n\
00119 trajectory_msgs/JointTrajectory trajectory\n\
00120 \n\
00121 # the name of the support surface in the collision environment, if any\n\
00122 string collision_support_surface_name\n\
00123 \n\
00124 # The internal posture of the hand for the pre-grasp\n\
00125 # only positions are used\n\
00126 sensor_msgs/JointState pre_grasp_posture\n\
00127 \n\
00128 # The internal posture of the hand for the grasp\n\
00129 # positions and efforts are used\n\
00130 sensor_msgs/JointState grasp_posture\n\
00131 \n\
00132 \n\
00133 ================================================================================\n\
00134 MSG: object_manipulation_msgs/GraspableObject\n\
00135 # an object that the object_manipulator can work on\n\
00136 \n\
00137 # a graspable object can be represented in multiple ways. This message\n\
00138 # can contain all of them. Which one is actually used is up to the receiver\n\
00139 # of this message. When adding new representations, one must be careful that\n\
00140 # they have reasonable lightweight defaults indicating that that particular\n\
00141 # representation is not available.\n\
00142 \n\
00143 # the tf frame to be used as a reference frame when combining information from\n\
00144 # the different representations below\n\
00145 string reference_frame_id\n\
00146 \n\
00147 # potential recognition results from a database of models\n\
00148 # all poses are relative to the object reference pose\n\
00149 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00150 \n\
00151 # the point cloud itself\n\
00152 sensor_msgs/PointCloud cluster\n\
00153 \n\
00154 # a region of a PointCloud2 of interest\n\
00155 object_manipulation_msgs/SceneRegion region\n\
00156 \n\
00157 \n\
00158 ================================================================================\n\
00159 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00160 # Informs that a specific model from the Model Database has been \n\
00161 # identified at a certain location\n\
00162 \n\
00163 # the database id of the model\n\
00164 int32 model_id\n\
00165 \n\
00166 # the pose that it can be found in\n\
00167 geometry_msgs/PoseStamped pose\n\
00168 \n\
00169 # a measure of the confidence level in this detection result\n\
00170 float32 confidence\n\
00171 ================================================================================\n\
00172 MSG: geometry_msgs/PoseStamped\n\
00173 # A Pose with reference coordinate frame and timestamp\n\
00174 Header header\n\
00175 Pose pose\n\
00176 \n\
00177 ================================================================================\n\
00178 MSG: geometry_msgs/Pose\n\
00179 # A representation of pose in free space, composed of postion and orientation. \n\
00180 Point position\n\
00181 Quaternion orientation\n\
00182 \n\
00183 ================================================================================\n\
00184 MSG: geometry_msgs/Point\n\
00185 # This contains the position of a point in free space\n\
00186 float64 x\n\
00187 float64 y\n\
00188 float64 z\n\
00189 \n\
00190 ================================================================================\n\
00191 MSG: geometry_msgs/Quaternion\n\
00192 # This represents an orientation in free space in quaternion form.\n\
00193 \n\
00194 float64 x\n\
00195 float64 y\n\
00196 float64 z\n\
00197 float64 w\n\
00198 \n\
00199 ================================================================================\n\
00200 MSG: sensor_msgs/PointCloud\n\
00201 # This message holds a collection of 3d points, plus optional additional\n\
00202 # information about each point.\n\
00203 \n\
00204 # Time of sensor data acquisition, coordinate frame ID.\n\
00205 Header header\n\
00206 \n\
00207 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00208 # in the frame given in the header.\n\
00209 geometry_msgs/Point32[] points\n\
00210 \n\
00211 # Each channel should have the same number of elements as points array,\n\
00212 # and the data in each channel should correspond 1:1 with each point.\n\
00213 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00214 ChannelFloat32[] channels\n\
00215 \n\
00216 ================================================================================\n\
00217 MSG: geometry_msgs/Point32\n\
00218 # This contains the position of a point in free space(with 32 bits of precision).\n\
00219 # It is recommeded to use Point wherever possible instead of Point32. \n\
00220 # \n\
00221 # This recommendation is to promote interoperability. \n\
00222 #\n\
00223 # This message is designed to take up less space when sending\n\
00224 # lots of points at once, as in the case of a PointCloud. \n\
00225 \n\
00226 float32 x\n\
00227 float32 y\n\
00228 float32 z\n\
00229 ================================================================================\n\
00230 MSG: sensor_msgs/ChannelFloat32\n\
00231 # This message is used by the PointCloud message to hold optional data\n\
00232 # associated with each point in the cloud. The length of the values\n\
00233 # array should be the same as the length of the points array in the\n\
00234 # PointCloud, and each value should be associated with the corresponding\n\
00235 # point.\n\
00236 \n\
00237 # Channel names in existing practice include:\n\
00238 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00239 # This is opposite to usual conventions but remains for\n\
00240 # historical reasons. The newer PointCloud2 message has no\n\
00241 # such problem.\n\
00242 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00243 # (R,G,B) values packed into the least significant 24 bits,\n\
00244 # in order.\n\
00245 # \"intensity\" - laser or pixel intensity.\n\
00246 # \"distance\"\n\
00247 \n\
00248 # The channel name should give semantics of the channel (e.g.\n\
00249 # \"intensity\" instead of \"value\").\n\
00250 string name\n\
00251 \n\
00252 # The values array should be 1-1 with the elements of the associated\n\
00253 # PointCloud.\n\
00254 float32[] values\n\
00255 \n\
00256 ================================================================================\n\
00257 MSG: object_manipulation_msgs/SceneRegion\n\
00258 # Point cloud\n\
00259 sensor_msgs/PointCloud2 cloud\n\
00260 \n\
00261 # Indices for the region of interest\n\
00262 int32[] mask\n\
00263 \n\
00264 # One of the corresponding 2D images, if applicable\n\
00265 sensor_msgs/Image image\n\
00266 \n\
00267 # The disparity image, if applicable\n\
00268 sensor_msgs/Image disparity_image\n\
00269 \n\
00270 # Camera info for the camera that took the image\n\
00271 sensor_msgs/CameraInfo cam_info\n\
00272 \n\
00273 ================================================================================\n\
00274 MSG: sensor_msgs/PointCloud2\n\
00275 # This message holds a collection of N-dimensional points, which may\n\
00276 # contain additional information such as normals, intensity, etc. The\n\
00277 # point data is stored as a binary blob, its layout described by the\n\
00278 # contents of the \"fields\" array.\n\
00279 \n\
00280 # The point cloud data may be organized 2d (image-like) or 1d\n\
00281 # (unordered). Point clouds organized as 2d images may be produced by\n\
00282 # camera depth sensors such as stereo or time-of-flight.\n\
00283 \n\
00284 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00285 # points).\n\
00286 Header header\n\
00287 \n\
00288 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00289 # 1 and width is the length of the point cloud.\n\
00290 uint32 height\n\
00291 uint32 width\n\
00292 \n\
00293 # Describes the channels and their layout in the binary data blob.\n\
00294 PointField[] fields\n\
00295 \n\
00296 bool is_bigendian # Is this data bigendian?\n\
00297 uint32 point_step # Length of a point in bytes\n\
00298 uint32 row_step # Length of a row in bytes\n\
00299 uint8[] data # Actual point data, size is (row_step*height)\n\
00300 \n\
00301 bool is_dense # True if there are no invalid points\n\
00302 \n\
00303 ================================================================================\n\
00304 MSG: sensor_msgs/PointField\n\
00305 # This message holds the description of one point entry in the\n\
00306 # PointCloud2 message format.\n\
00307 uint8 INT8 = 1\n\
00308 uint8 UINT8 = 2\n\
00309 uint8 INT16 = 3\n\
00310 uint8 UINT16 = 4\n\
00311 uint8 INT32 = 5\n\
00312 uint8 UINT32 = 6\n\
00313 uint8 FLOAT32 = 7\n\
00314 uint8 FLOAT64 = 8\n\
00315 \n\
00316 string name # Name of field\n\
00317 uint32 offset # Offset from start of point struct\n\
00318 uint8 datatype # Datatype enumeration, see above\n\
00319 uint32 count # How many elements in the field\n\
00320 \n\
00321 ================================================================================\n\
00322 MSG: sensor_msgs/Image\n\
00323 # This message contains an uncompressed image\n\
00324 # (0, 0) is at top-left corner of image\n\
00325 #\n\
00326 \n\
00327 Header header # Header timestamp should be acquisition time of image\n\
00328 # Header frame_id should be optical frame of camera\n\
00329 # origin of frame should be optical center of cameara\n\
00330 # +x should point to the right in the image\n\
00331 # +y should point down in the image\n\
00332 # +z should point into to plane of the image\n\
00333 # If the frame_id here and the frame_id of the CameraInfo\n\
00334 # message associated with the image conflict\n\
00335 # the behavior is undefined\n\
00336 \n\
00337 uint32 height # image height, that is, number of rows\n\
00338 uint32 width # image width, that is, number of columns\n\
00339 \n\
00340 # The legal values for encoding are in file src/image_encodings.cpp\n\
00341 # If you want to standardize a new string format, join\n\
00342 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00343 \n\
00344 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00345 # taken from the list of strings in src/image_encodings.cpp\n\
00346 \n\
00347 uint8 is_bigendian # is this data bigendian?\n\
00348 uint32 step # Full row length in bytes\n\
00349 uint8[] data # actual matrix data, size is (step * rows)\n\
00350 \n\
00351 ================================================================================\n\
00352 MSG: sensor_msgs/CameraInfo\n\
00353 # This message defines meta information for a camera. It should be in a\n\
00354 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00355 # image topics named:\n\
00356 #\n\
00357 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00358 # image - monochrome, distorted\n\
00359 # image_color - color, distorted\n\
00360 # image_rect - monochrome, rectified\n\
00361 # image_rect_color - color, rectified\n\
00362 #\n\
00363 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00364 # for producing the four processed image topics from image_raw and\n\
00365 # camera_info. The meaning of the camera parameters are described in\n\
00366 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00367 #\n\
00368 # The image_geometry package provides a user-friendly interface to\n\
00369 # common operations using this meta information. If you want to, e.g.,\n\
00370 # project a 3d point into image coordinates, we strongly recommend\n\
00371 # using image_geometry.\n\
00372 #\n\
00373 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00374 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00375 # indicates an uncalibrated camera.\n\
00376 \n\
00377 #######################################################################\n\
00378 # Image acquisition info #\n\
00379 #######################################################################\n\
00380 \n\
00381 # Time of image acquisition, camera coordinate frame ID\n\
00382 Header header # Header timestamp should be acquisition time of image\n\
00383 # Header frame_id should be optical frame of camera\n\
00384 # origin of frame should be optical center of camera\n\
00385 # +x should point to the right in the image\n\
00386 # +y should point down in the image\n\
00387 # +z should point into the plane of the image\n\
00388 \n\
00389 \n\
00390 #######################################################################\n\
00391 # Calibration Parameters #\n\
00392 #######################################################################\n\
00393 # These are fixed during camera calibration. Their values will be the #\n\
00394 # same in all messages until the camera is recalibrated. Note that #\n\
00395 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00396 # #\n\
00397 # The internal parameters can be used to warp a raw (distorted) image #\n\
00398 # to: #\n\
00399 # 1. An undistorted image (requires D and K) #\n\
00400 # 2. A rectified image (requires D, K, R) #\n\
00401 # The projection matrix P projects 3D points into the rectified image.#\n\
00402 #######################################################################\n\
00403 \n\
00404 # The image dimensions with which the camera was calibrated. Normally\n\
00405 # this will be the full camera resolution in pixels.\n\
00406 uint32 height\n\
00407 uint32 width\n\
00408 \n\
00409 # The distortion model used. Supported models are listed in\n\
00410 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00411 # simple model of radial and tangential distortion - is sufficent.\n\
00412 string distortion_model\n\
00413 \n\
00414 # The distortion parameters, size depending on the distortion model.\n\
00415 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00416 float64[] D\n\
00417 \n\
00418 # Intrinsic camera matrix for the raw (distorted) images.\n\
00419 # [fx 0 cx]\n\
00420 # K = [ 0 fy cy]\n\
00421 # [ 0 0 1]\n\
00422 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00423 # coordinates using the focal lengths (fx, fy) and principal point\n\
00424 # (cx, cy).\n\
00425 float64[9] K # 3x3 row-major matrix\n\
00426 \n\
00427 # Rectification matrix (stereo cameras only)\n\
00428 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00429 # stereo image plane so that epipolar lines in both stereo images are\n\
00430 # parallel.\n\
00431 float64[9] R # 3x3 row-major matrix\n\
00432 \n\
00433 # Projection/camera matrix\n\
00434 # [fx' 0 cx' Tx]\n\
00435 # P = [ 0 fy' cy' Ty]\n\
00436 # [ 0 0 1 0]\n\
00437 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00438 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00439 # is the normal camera intrinsic matrix for the rectified image.\n\
00440 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00441 # coordinates using the focal lengths (fx', fy') and principal point\n\
00442 # (cx', cy') - these may differ from the values in K.\n\
00443 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00444 # also have R = the identity and P[1:3,1:3] = K.\n\
00445 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00446 # position of the optical center of the second camera in the first\n\
00447 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00448 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00449 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00450 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00451 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00452 # the rectified image is given by:\n\
00453 # [u v w]' = P * [X Y Z 1]'\n\
00454 # x = u / w\n\
00455 # y = v / w\n\
00456 # This holds for both images of a stereo pair.\n\
00457 float64[12] P # 3x4 row-major matrix\n\
00458 \n\
00459 \n\
00460 #######################################################################\n\
00461 # Operational Parameters #\n\
00462 #######################################################################\n\
00463 # These define the image region actually captured by the camera #\n\
00464 # driver. Although they affect the geometry of the output image, they #\n\
00465 # may be changed freely without recalibrating the camera. #\n\
00466 #######################################################################\n\
00467 \n\
00468 # Binning refers here to any camera setting which combines rectangular\n\
00469 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00470 # resolution of the output image to\n\
00471 # (width / binning_x) x (height / binning_y).\n\
00472 # The default values binning_x = binning_y = 0 is considered the same\n\
00473 # as binning_x = binning_y = 1 (no subsampling).\n\
00474 uint32 binning_x\n\
00475 uint32 binning_y\n\
00476 \n\
00477 # Region of interest (subwindow of full camera resolution), given in\n\
00478 # full resolution (unbinned) image coordinates. A particular ROI\n\
00479 # always denotes the same window of pixels on the camera sensor,\n\
00480 # regardless of binning settings.\n\
00481 # The default setting of roi (all values 0) is considered the same as\n\
00482 # full resolution (roi.width = width, roi.height = height).\n\
00483 RegionOfInterest roi\n\
00484 \n\
00485 ================================================================================\n\
00486 MSG: sensor_msgs/RegionOfInterest\n\
00487 # This message is used to specify a region of interest within an image.\n\
00488 #\n\
00489 # When used to specify the ROI setting of the camera when the image was\n\
00490 # taken, the height and width fields should either match the height and\n\
00491 # width fields for the associated image; or height = width = 0\n\
00492 # indicates that the full resolution image was captured.\n\
00493 \n\
00494 uint32 x_offset # Leftmost pixel of the ROI\n\
00495 # (0 if the ROI includes the left edge of the image)\n\
00496 uint32 y_offset # Topmost pixel of the ROI\n\
00497 # (0 if the ROI includes the top edge of the image)\n\
00498 uint32 height # Height of ROI\n\
00499 uint32 width # Width of ROI\n\
00500 \n\
00501 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00502 # ROI in this message. Typically this should be False if the full image\n\
00503 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00504 # used).\n\
00505 bool do_rectify\n\
00506 \n\
00507 ================================================================================\n\
00508 MSG: trajectory_msgs/JointTrajectory\n\
00509 Header header\n\
00510 string[] joint_names\n\
00511 JointTrajectoryPoint[] points\n\
00512 ================================================================================\n\
00513 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00514 float64[] positions\n\
00515 float64[] velocities\n\
00516 float64[] accelerations\n\
00517 duration time_from_start\n\
00518 ================================================================================\n\
00519 MSG: sensor_msgs/JointState\n\
00520 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00521 #\n\
00522 # The state of each joint (revolute or prismatic) is defined by:\n\
00523 # * the position of the joint (rad or m),\n\
00524 # * the velocity of the joint (rad/s or m/s) and \n\
00525 # * the effort that is applied in the joint (Nm or N).\n\
00526 #\n\
00527 # Each joint is uniquely identified by its name\n\
00528 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00529 # in one message have to be recorded at the same time.\n\
00530 #\n\
00531 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00532 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00533 # effort associated with them, you can leave the effort array empty. \n\
00534 #\n\
00535 # All arrays in this message should have the same size, or be empty.\n\
00536 # This is the only way to uniquely associate the joint name with the correct\n\
00537 # states.\n\
00538 \n\
00539 \n\
00540 Header header\n\
00541 \n\
00542 string[] name\n\
00543 float64[] position\n\
00544 float64[] velocity\n\
00545 float64[] effort\n\
00546 \n\
00547 "; }
00548 public:
00549 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00550
00551 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00552
00553 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00554 {
00555 ros::serialization::OStream stream(write_ptr, 1000000000);
00556 ros::serialization::serialize(stream, header);
00557 ros::serialization::serialize(stream, goal_id);
00558 ros::serialization::serialize(stream, goal);
00559 return stream.getData();
00560 }
00561
00562 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00563 {
00564 ros::serialization::IStream stream(read_ptr, 1000000000);
00565 ros::serialization::deserialize(stream, header);
00566 ros::serialization::deserialize(stream, goal_id);
00567 ros::serialization::deserialize(stream, goal);
00568 return stream.getData();
00569 }
00570
00571 ROS_DEPRECATED virtual uint32_t serializationLength() const
00572 {
00573 uint32_t size = 0;
00574 size += ros::serialization::serializationLength(header);
00575 size += ros::serialization::serializationLength(goal_id);
00576 size += ros::serialization::serializationLength(goal);
00577 return size;
00578 }
00579
00580 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > Ptr;
00581 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> const> ConstPtr;
00582 };
00583 typedef ::object_manipulation_msgs::ReactiveGraspActionGoal_<std::allocator<void> > ReactiveGraspActionGoal;
00584
00585 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal> ReactiveGraspActionGoalPtr;
00586 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspActionGoal const> ReactiveGraspActionGoalConstPtr;
00587
00588
00589 template<typename ContainerAllocator>
00590 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> & v)
00591 {
00592 ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >::stream(s, "", v);
00593 return s;}
00594
00595 }
00596
00597 namespace ros
00598 {
00599 namespace message_traits
00600 {
00601 template<class ContainerAllocator>
00602 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > {
00603 static const char* value()
00604 {
00605 return "aa320d11322919c57c31cc4e7c61a872";
00606 }
00607
00608 static const char* value(const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> &) { return value(); }
00609 static const uint64_t static_value1 = 0xaa320d11322919c5ULL;
00610 static const uint64_t static_value2 = 0x7c31cc4e7c61a872ULL;
00611 };
00612
00613 template<class ContainerAllocator>
00614 struct DataType< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > {
00615 static const char* value()
00616 {
00617 return "object_manipulation_msgs/ReactiveGraspActionGoal";
00618 }
00619
00620 static const char* value(const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> &) { return value(); }
00621 };
00622
00623 template<class ContainerAllocator>
00624 struct Definition< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > {
00625 static const char* value()
00626 {
00627 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00628 \n\
00629 Header header\n\
00630 actionlib_msgs/GoalID goal_id\n\
00631 ReactiveGraspGoal goal\n\
00632 \n\
00633 ================================================================================\n\
00634 MSG: std_msgs/Header\n\
00635 # Standard metadata for higher-level stamped data types.\n\
00636 # This is generally used to communicate timestamped data \n\
00637 # in a particular coordinate frame.\n\
00638 # \n\
00639 # sequence ID: consecutively increasing ID \n\
00640 uint32 seq\n\
00641 #Two-integer timestamp that is expressed as:\n\
00642 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00643 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00644 # time-handling sugar is provided by the client library\n\
00645 time stamp\n\
00646 #Frame this data is associated with\n\
00647 # 0: no frame\n\
00648 # 1: global frame\n\
00649 string frame_id\n\
00650 \n\
00651 ================================================================================\n\
00652 MSG: actionlib_msgs/GoalID\n\
00653 # The stamp should store the time at which this goal was requested.\n\
00654 # It is used by an action server when it tries to preempt all\n\
00655 # goals that were requested before a certain time\n\
00656 time stamp\n\
00657 \n\
00658 # The id provides a way to associate feedback and\n\
00659 # result message with specific goal requests. The id\n\
00660 # specified must be unique.\n\
00661 string id\n\
00662 \n\
00663 \n\
00664 ================================================================================\n\
00665 MSG: object_manipulation_msgs/ReactiveGraspGoal\n\
00666 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00667 # an action for reactive grasping\n\
00668 # a reactive grasp starts from the current pose of the gripper and ends\n\
00669 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00670 \n\
00671 # the name of the arm being used\n\
00672 string arm_name\n\
00673 \n\
00674 # the object to be grasped\n\
00675 GraspableObject target\n\
00676 \n\
00677 # the desired grasp pose for the hand\n\
00678 geometry_msgs/PoseStamped final_grasp_pose\n\
00679 \n\
00680 # the joint trajectory to use for the approach (if available)\n\
00681 # this trajectory is expected to start at the current pose of the gripper\n\
00682 # and end at the desired grasp pose\n\
00683 trajectory_msgs/JointTrajectory trajectory\n\
00684 \n\
00685 # the name of the support surface in the collision environment, if any\n\
00686 string collision_support_surface_name\n\
00687 \n\
00688 # The internal posture of the hand for the pre-grasp\n\
00689 # only positions are used\n\
00690 sensor_msgs/JointState pre_grasp_posture\n\
00691 \n\
00692 # The internal posture of the hand for the grasp\n\
00693 # positions and efforts are used\n\
00694 sensor_msgs/JointState grasp_posture\n\
00695 \n\
00696 \n\
00697 ================================================================================\n\
00698 MSG: object_manipulation_msgs/GraspableObject\n\
00699 # an object that the object_manipulator can work on\n\
00700 \n\
00701 # a graspable object can be represented in multiple ways. This message\n\
00702 # can contain all of them. Which one is actually used is up to the receiver\n\
00703 # of this message. When adding new representations, one must be careful that\n\
00704 # they have reasonable lightweight defaults indicating that that particular\n\
00705 # representation is not available.\n\
00706 \n\
00707 # the tf frame to be used as a reference frame when combining information from\n\
00708 # the different representations below\n\
00709 string reference_frame_id\n\
00710 \n\
00711 # potential recognition results from a database of models\n\
00712 # all poses are relative to the object reference pose\n\
00713 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00714 \n\
00715 # the point cloud itself\n\
00716 sensor_msgs/PointCloud cluster\n\
00717 \n\
00718 # a region of a PointCloud2 of interest\n\
00719 object_manipulation_msgs/SceneRegion region\n\
00720 \n\
00721 \n\
00722 ================================================================================\n\
00723 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00724 # Informs that a specific model from the Model Database has been \n\
00725 # identified at a certain location\n\
00726 \n\
00727 # the database id of the model\n\
00728 int32 model_id\n\
00729 \n\
00730 # the pose that it can be found in\n\
00731 geometry_msgs/PoseStamped pose\n\
00732 \n\
00733 # a measure of the confidence level in this detection result\n\
00734 float32 confidence\n\
00735 ================================================================================\n\
00736 MSG: geometry_msgs/PoseStamped\n\
00737 # A Pose with reference coordinate frame and timestamp\n\
00738 Header header\n\
00739 Pose pose\n\
00740 \n\
00741 ================================================================================\n\
00742 MSG: geometry_msgs/Pose\n\
00743 # A representation of pose in free space, composed of postion and orientation. \n\
00744 Point position\n\
00745 Quaternion orientation\n\
00746 \n\
00747 ================================================================================\n\
00748 MSG: geometry_msgs/Point\n\
00749 # This contains the position of a point in free space\n\
00750 float64 x\n\
00751 float64 y\n\
00752 float64 z\n\
00753 \n\
00754 ================================================================================\n\
00755 MSG: geometry_msgs/Quaternion\n\
00756 # This represents an orientation in free space in quaternion form.\n\
00757 \n\
00758 float64 x\n\
00759 float64 y\n\
00760 float64 z\n\
00761 float64 w\n\
00762 \n\
00763 ================================================================================\n\
00764 MSG: sensor_msgs/PointCloud\n\
00765 # This message holds a collection of 3d points, plus optional additional\n\
00766 # information about each point.\n\
00767 \n\
00768 # Time of sensor data acquisition, coordinate frame ID.\n\
00769 Header header\n\
00770 \n\
00771 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00772 # in the frame given in the header.\n\
00773 geometry_msgs/Point32[] points\n\
00774 \n\
00775 # Each channel should have the same number of elements as points array,\n\
00776 # and the data in each channel should correspond 1:1 with each point.\n\
00777 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00778 ChannelFloat32[] channels\n\
00779 \n\
00780 ================================================================================\n\
00781 MSG: geometry_msgs/Point32\n\
00782 # This contains the position of a point in free space(with 32 bits of precision).\n\
00783 # It is recommeded to use Point wherever possible instead of Point32. \n\
00784 # \n\
00785 # This recommendation is to promote interoperability. \n\
00786 #\n\
00787 # This message is designed to take up less space when sending\n\
00788 # lots of points at once, as in the case of a PointCloud. \n\
00789 \n\
00790 float32 x\n\
00791 float32 y\n\
00792 float32 z\n\
00793 ================================================================================\n\
00794 MSG: sensor_msgs/ChannelFloat32\n\
00795 # This message is used by the PointCloud message to hold optional data\n\
00796 # associated with each point in the cloud. The length of the values\n\
00797 # array should be the same as the length of the points array in the\n\
00798 # PointCloud, and each value should be associated with the corresponding\n\
00799 # point.\n\
00800 \n\
00801 # Channel names in existing practice include:\n\
00802 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00803 # This is opposite to usual conventions but remains for\n\
00804 # historical reasons. The newer PointCloud2 message has no\n\
00805 # such problem.\n\
00806 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00807 # (R,G,B) values packed into the least significant 24 bits,\n\
00808 # in order.\n\
00809 # \"intensity\" - laser or pixel intensity.\n\
00810 # \"distance\"\n\
00811 \n\
00812 # The channel name should give semantics of the channel (e.g.\n\
00813 # \"intensity\" instead of \"value\").\n\
00814 string name\n\
00815 \n\
00816 # The values array should be 1-1 with the elements of the associated\n\
00817 # PointCloud.\n\
00818 float32[] values\n\
00819 \n\
00820 ================================================================================\n\
00821 MSG: object_manipulation_msgs/SceneRegion\n\
00822 # Point cloud\n\
00823 sensor_msgs/PointCloud2 cloud\n\
00824 \n\
00825 # Indices for the region of interest\n\
00826 int32[] mask\n\
00827 \n\
00828 # One of the corresponding 2D images, if applicable\n\
00829 sensor_msgs/Image image\n\
00830 \n\
00831 # The disparity image, if applicable\n\
00832 sensor_msgs/Image disparity_image\n\
00833 \n\
00834 # Camera info for the camera that took the image\n\
00835 sensor_msgs/CameraInfo cam_info\n\
00836 \n\
00837 ================================================================================\n\
00838 MSG: sensor_msgs/PointCloud2\n\
00839 # This message holds a collection of N-dimensional points, which may\n\
00840 # contain additional information such as normals, intensity, etc. The\n\
00841 # point data is stored as a binary blob, its layout described by the\n\
00842 # contents of the \"fields\" array.\n\
00843 \n\
00844 # The point cloud data may be organized 2d (image-like) or 1d\n\
00845 # (unordered). Point clouds organized as 2d images may be produced by\n\
00846 # camera depth sensors such as stereo or time-of-flight.\n\
00847 \n\
00848 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00849 # points).\n\
00850 Header header\n\
00851 \n\
00852 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00853 # 1 and width is the length of the point cloud.\n\
00854 uint32 height\n\
00855 uint32 width\n\
00856 \n\
00857 # Describes the channels and their layout in the binary data blob.\n\
00858 PointField[] fields\n\
00859 \n\
00860 bool is_bigendian # Is this data bigendian?\n\
00861 uint32 point_step # Length of a point in bytes\n\
00862 uint32 row_step # Length of a row in bytes\n\
00863 uint8[] data # Actual point data, size is (row_step*height)\n\
00864 \n\
00865 bool is_dense # True if there are no invalid points\n\
00866 \n\
00867 ================================================================================\n\
00868 MSG: sensor_msgs/PointField\n\
00869 # This message holds the description of one point entry in the\n\
00870 # PointCloud2 message format.\n\
00871 uint8 INT8 = 1\n\
00872 uint8 UINT8 = 2\n\
00873 uint8 INT16 = 3\n\
00874 uint8 UINT16 = 4\n\
00875 uint8 INT32 = 5\n\
00876 uint8 UINT32 = 6\n\
00877 uint8 FLOAT32 = 7\n\
00878 uint8 FLOAT64 = 8\n\
00879 \n\
00880 string name # Name of field\n\
00881 uint32 offset # Offset from start of point struct\n\
00882 uint8 datatype # Datatype enumeration, see above\n\
00883 uint32 count # How many elements in the field\n\
00884 \n\
00885 ================================================================================\n\
00886 MSG: sensor_msgs/Image\n\
00887 # This message contains an uncompressed image\n\
00888 # (0, 0) is at top-left corner of image\n\
00889 #\n\
00890 \n\
00891 Header header # Header timestamp should be acquisition time of image\n\
00892 # Header frame_id should be optical frame of camera\n\
00893 # origin of frame should be optical center of cameara\n\
00894 # +x should point to the right in the image\n\
00895 # +y should point down in the image\n\
00896 # +z should point into to plane of the image\n\
00897 # If the frame_id here and the frame_id of the CameraInfo\n\
00898 # message associated with the image conflict\n\
00899 # the behavior is undefined\n\
00900 \n\
00901 uint32 height # image height, that is, number of rows\n\
00902 uint32 width # image width, that is, number of columns\n\
00903 \n\
00904 # The legal values for encoding are in file src/image_encodings.cpp\n\
00905 # If you want to standardize a new string format, join\n\
00906 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00907 \n\
00908 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00909 # taken from the list of strings in src/image_encodings.cpp\n\
00910 \n\
00911 uint8 is_bigendian # is this data bigendian?\n\
00912 uint32 step # Full row length in bytes\n\
00913 uint8[] data # actual matrix data, size is (step * rows)\n\
00914 \n\
00915 ================================================================================\n\
00916 MSG: sensor_msgs/CameraInfo\n\
00917 # This message defines meta information for a camera. It should be in a\n\
00918 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00919 # image topics named:\n\
00920 #\n\
00921 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00922 # image - monochrome, distorted\n\
00923 # image_color - color, distorted\n\
00924 # image_rect - monochrome, rectified\n\
00925 # image_rect_color - color, rectified\n\
00926 #\n\
00927 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00928 # for producing the four processed image topics from image_raw and\n\
00929 # camera_info. The meaning of the camera parameters are described in\n\
00930 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00931 #\n\
00932 # The image_geometry package provides a user-friendly interface to\n\
00933 # common operations using this meta information. If you want to, e.g.,\n\
00934 # project a 3d point into image coordinates, we strongly recommend\n\
00935 # using image_geometry.\n\
00936 #\n\
00937 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00938 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00939 # indicates an uncalibrated camera.\n\
00940 \n\
00941 #######################################################################\n\
00942 # Image acquisition info #\n\
00943 #######################################################################\n\
00944 \n\
00945 # Time of image acquisition, camera coordinate frame ID\n\
00946 Header header # Header timestamp should be acquisition time of image\n\
00947 # Header frame_id should be optical frame of camera\n\
00948 # origin of frame should be optical center of camera\n\
00949 # +x should point to the right in the image\n\
00950 # +y should point down in the image\n\
00951 # +z should point into the plane of the image\n\
00952 \n\
00953 \n\
00954 #######################################################################\n\
00955 # Calibration Parameters #\n\
00956 #######################################################################\n\
00957 # These are fixed during camera calibration. Their values will be the #\n\
00958 # same in all messages until the camera is recalibrated. Note that #\n\
00959 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00960 # #\n\
00961 # The internal parameters can be used to warp a raw (distorted) image #\n\
00962 # to: #\n\
00963 # 1. An undistorted image (requires D and K) #\n\
00964 # 2. A rectified image (requires D, K, R) #\n\
00965 # The projection matrix P projects 3D points into the rectified image.#\n\
00966 #######################################################################\n\
00967 \n\
00968 # The image dimensions with which the camera was calibrated. Normally\n\
00969 # this will be the full camera resolution in pixels.\n\
00970 uint32 height\n\
00971 uint32 width\n\
00972 \n\
00973 # The distortion model used. Supported models are listed in\n\
00974 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00975 # simple model of radial and tangential distortion - is sufficent.\n\
00976 string distortion_model\n\
00977 \n\
00978 # The distortion parameters, size depending on the distortion model.\n\
00979 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00980 float64[] D\n\
00981 \n\
00982 # Intrinsic camera matrix for the raw (distorted) images.\n\
00983 # [fx 0 cx]\n\
00984 # K = [ 0 fy cy]\n\
00985 # [ 0 0 1]\n\
00986 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00987 # coordinates using the focal lengths (fx, fy) and principal point\n\
00988 # (cx, cy).\n\
00989 float64[9] K # 3x3 row-major matrix\n\
00990 \n\
00991 # Rectification matrix (stereo cameras only)\n\
00992 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00993 # stereo image plane so that epipolar lines in both stereo images are\n\
00994 # parallel.\n\
00995 float64[9] R # 3x3 row-major matrix\n\
00996 \n\
00997 # Projection/camera matrix\n\
00998 # [fx' 0 cx' Tx]\n\
00999 # P = [ 0 fy' cy' Ty]\n\
01000 # [ 0 0 1 0]\n\
01001 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01002 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01003 # is the normal camera intrinsic matrix for the rectified image.\n\
01004 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01005 # coordinates using the focal lengths (fx', fy') and principal point\n\
01006 # (cx', cy') - these may differ from the values in K.\n\
01007 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01008 # also have R = the identity and P[1:3,1:3] = K.\n\
01009 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01010 # position of the optical center of the second camera in the first\n\
01011 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01012 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01013 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01014 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01015 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01016 # the rectified image is given by:\n\
01017 # [u v w]' = P * [X Y Z 1]'\n\
01018 # x = u / w\n\
01019 # y = v / w\n\
01020 # This holds for both images of a stereo pair.\n\
01021 float64[12] P # 3x4 row-major matrix\n\
01022 \n\
01023 \n\
01024 #######################################################################\n\
01025 # Operational Parameters #\n\
01026 #######################################################################\n\
01027 # These define the image region actually captured by the camera #\n\
01028 # driver. Although they affect the geometry of the output image, they #\n\
01029 # may be changed freely without recalibrating the camera. #\n\
01030 #######################################################################\n\
01031 \n\
01032 # Binning refers here to any camera setting which combines rectangular\n\
01033 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01034 # resolution of the output image to\n\
01035 # (width / binning_x) x (height / binning_y).\n\
01036 # The default values binning_x = binning_y = 0 is considered the same\n\
01037 # as binning_x = binning_y = 1 (no subsampling).\n\
01038 uint32 binning_x\n\
01039 uint32 binning_y\n\
01040 \n\
01041 # Region of interest (subwindow of full camera resolution), given in\n\
01042 # full resolution (unbinned) image coordinates. A particular ROI\n\
01043 # always denotes the same window of pixels on the camera sensor,\n\
01044 # regardless of binning settings.\n\
01045 # The default setting of roi (all values 0) is considered the same as\n\
01046 # full resolution (roi.width = width, roi.height = height).\n\
01047 RegionOfInterest roi\n\
01048 \n\
01049 ================================================================================\n\
01050 MSG: sensor_msgs/RegionOfInterest\n\
01051 # This message is used to specify a region of interest within an image.\n\
01052 #\n\
01053 # When used to specify the ROI setting of the camera when the image was\n\
01054 # taken, the height and width fields should either match the height and\n\
01055 # width fields for the associated image; or height = width = 0\n\
01056 # indicates that the full resolution image was captured.\n\
01057 \n\
01058 uint32 x_offset # Leftmost pixel of the ROI\n\
01059 # (0 if the ROI includes the left edge of the image)\n\
01060 uint32 y_offset # Topmost pixel of the ROI\n\
01061 # (0 if the ROI includes the top edge of the image)\n\
01062 uint32 height # Height of ROI\n\
01063 uint32 width # Width of ROI\n\
01064 \n\
01065 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01066 # ROI in this message. Typically this should be False if the full image\n\
01067 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01068 # used).\n\
01069 bool do_rectify\n\
01070 \n\
01071 ================================================================================\n\
01072 MSG: trajectory_msgs/JointTrajectory\n\
01073 Header header\n\
01074 string[] joint_names\n\
01075 JointTrajectoryPoint[] points\n\
01076 ================================================================================\n\
01077 MSG: trajectory_msgs/JointTrajectoryPoint\n\
01078 float64[] positions\n\
01079 float64[] velocities\n\
01080 float64[] accelerations\n\
01081 duration time_from_start\n\
01082 ================================================================================\n\
01083 MSG: sensor_msgs/JointState\n\
01084 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01085 #\n\
01086 # The state of each joint (revolute or prismatic) is defined by:\n\
01087 # * the position of the joint (rad or m),\n\
01088 # * the velocity of the joint (rad/s or m/s) and \n\
01089 # * the effort that is applied in the joint (Nm or N).\n\
01090 #\n\
01091 # Each joint is uniquely identified by its name\n\
01092 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01093 # in one message have to be recorded at the same time.\n\
01094 #\n\
01095 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01096 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01097 # effort associated with them, you can leave the effort array empty. \n\
01098 #\n\
01099 # All arrays in this message should have the same size, or be empty.\n\
01100 # This is the only way to uniquely associate the joint name with the correct\n\
01101 # states.\n\
01102 \n\
01103 \n\
01104 Header header\n\
01105 \n\
01106 string[] name\n\
01107 float64[] position\n\
01108 float64[] velocity\n\
01109 float64[] effort\n\
01110 \n\
01111 ";
01112 }
01113
01114 static const char* value(const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> &) { return value(); }
01115 };
01116
01117 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > : public TrueType {};
01118 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> > : public TrueType {};
01119 }
01120 }
01121
01122 namespace ros
01123 {
01124 namespace serialization
01125 {
01126
01127 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >
01128 {
01129 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01130 {
01131 stream.next(m.header);
01132 stream.next(m.goal_id);
01133 stream.next(m.goal);
01134 }
01135
01136 ROS_DECLARE_ALLINONE_SERIALIZER;
01137 };
01138 }
01139 }
01140
01141 namespace ros
01142 {
01143 namespace message_operations
01144 {
01145
01146 template<class ContainerAllocator>
01147 struct Printer< ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> >
01148 {
01149 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::ReactiveGraspActionGoal_<ContainerAllocator> & v)
01150 {
01151 s << indent << "header: ";
01152 s << std::endl;
01153 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
01154 s << indent << "goal_id: ";
01155 s << std::endl;
01156 Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + " ", v.goal_id);
01157 s << indent << "goal: ";
01158 s << std::endl;
01159 Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >::stream(s, indent + " ", v.goal);
01160 }
01161 };
01162
01163
01164 }
01165 }
01166
01167 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPACTIONGOAL_H
01168