Go to the documentation of this file.
38 #ifndef FCL_TRAVERSAL_OCTREE_OCTREEDISTANCETRAVERSALNODE_INL_H
39 #define FCL_TRAVERSAL_OCTREE_OCTREEDISTANCETRAVERSALNODE_INL_H
50 template <
typename NarrowPhaseSolver>
61 template <
typename NarrowPhaseSolver>
62 typename NarrowPhaseSolver::S
70 template <
typename NarrowPhaseSolver>
74 otsolver->OcTreeDistance(
75 model1, model2, this->tf1, this->tf2, this->request, *this->result);
79 template <
typename NarrowPhaseSolver>
82 const OcTree<typename NarrowPhaseSolver::S>& model1,
84 const OcTree<typename NarrowPhaseSolver::S>& model2,
request to the distance computation
Algorithms for collision related with octree.
Eigen::Transform< S, 3, Eigen::Isometry > Transform3
const OcTreeSolver< NarrowPhaseSolver > * otsolver
DistanceRequest< NarrowPhaseSolver::S > request
request setting for distance
Transform3< NarrowPhaseSolver::S > tf1
configuation of first object
DistanceResult< NarrowPhaseSolver::S > * result
distance result kept during the traversal iteration
const OcTree< S > * model1
void leafTesting(int, int) const
Leaf test between node b1 and b2, if they are both leafs.
template bool initialize(MeshCollisionTraversalNodeOBB< double > &node, const BVHModel< OBB< double >> &model1, const Transform3< double > &tf1, const BVHModel< OBB< double >> &model2, const Transform3< double > &tf2, const CollisionRequest< double > &request, CollisionResult< double > &result)
Traversal node for octree distance.
const OcTree< S > * model2
Transform3< NarrowPhaseSolver::S > tf2
configuration of second object
OcTreeDistanceTraversalNode()
S BVTesting(int, int) const
BV test between b1 and b2.
fcl
Author(s):
autogenerated on Tue Dec 5 2023 03:40:48