00001
00002 #ifndef WORLDMODEL_MSGS_MESSAGE_IMAGEPERCEPT_H
00003 #define WORLDMODEL_MSGS_MESSAGE_IMAGEPERCEPT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "std_msgs/Header.h"
00018 #include "sensor_msgs/CameraInfo.h"
00019 #include "worldmodel_msgs/PerceptInfo.h"
00020
00021 namespace worldmodel_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ImagePercept_ {
00025 typedef ImagePercept_<ContainerAllocator> Type;
00026
00027 ImagePercept_()
00028 : header()
00029 , camera_info()
00030 , x(0.0)
00031 , y(0.0)
00032 , width(0.0)
00033 , height(0.0)
00034 , distance(0.0)
00035 , info()
00036 {
00037 }
00038
00039 ImagePercept_(const ContainerAllocator& _alloc)
00040 : header(_alloc)
00041 , camera_info(_alloc)
00042 , x(0.0)
00043 , y(0.0)
00044 , width(0.0)
00045 , height(0.0)
00046 , distance(0.0)
00047 , info(_alloc)
00048 {
00049 }
00050
00051 typedef ::std_msgs::Header_<ContainerAllocator> _header_type;
00052 ::std_msgs::Header_<ContainerAllocator> header;
00053
00054 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type;
00055 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info;
00056
00057 typedef float _x_type;
00058 float x;
00059
00060 typedef float _y_type;
00061 float y;
00062
00063 typedef float _width_type;
00064 float width;
00065
00066 typedef float _height_type;
00067 float height;
00068
00069 typedef float _distance_type;
00070 float distance;
00071
00072 typedef ::worldmodel_msgs::PerceptInfo_<ContainerAllocator> _info_type;
00073 ::worldmodel_msgs::PerceptInfo_<ContainerAllocator> info;
00074
00075
00076 private:
00077 static const char* __s_getDataType_() { return "worldmodel_msgs/ImagePercept"; }
00078 public:
00079 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00080
00081 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00082
00083 private:
00084 static const char* __s_getMD5Sum_() { return "cfe1ba9ccbb3e43950b420f7336a3c6c"; }
00085 public:
00086 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00087
00088 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00089
00090 private:
00091 static const char* __s_getMessageDefinition_() { return "# worldmodel_msgs/ImagePercept\n\
00092 # This message represents an observation of an object in a single image.\n\
00093 \n\
00094 # The header should equal the header of the corresponding image.\n\
00095 Header header\n\
00096 \n\
00097 # The camera info which is needed to project from image coordinates to world coordinates\n\
00098 sensor_msgs/CameraInfo camera_info\n\
00099 \n\
00100 # Center coordinates of the percept in image coordinates\n\
00101 # x: axis points to the right in the image\n\
00102 # y: axis points downward in the image\n\
00103 float32 x\n\
00104 float32 y\n\
00105 \n\
00106 # Normalized size of the percept in image coordinates (or 0.0)\n\
00107 float32 width\n\
00108 float32 height\n\
00109 \n\
00110 # Distance estimate (slope distance) (or 0.0)\n\
00111 float32 distance\n\
00112 \n\
00113 # Additional information about the percept\n\
00114 worldmodel_msgs/PerceptInfo info\n\
00115 \n\
00116 ================================================================================\n\
00117 MSG: std_msgs/Header\n\
00118 # Standard metadata for higher-level stamped data types.\n\
00119 # This is generally used to communicate timestamped data \n\
00120 # in a particular coordinate frame.\n\
00121 # \n\
00122 # sequence ID: consecutively increasing ID \n\
00123 uint32 seq\n\
00124 #Two-integer timestamp that is expressed as:\n\
00125 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00126 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00127 # time-handling sugar is provided by the client library\n\
00128 time stamp\n\
00129 #Frame this data is associated with\n\
00130 # 0: no frame\n\
00131 # 1: global frame\n\
00132 string frame_id\n\
00133 \n\
00134 ================================================================================\n\
00135 MSG: sensor_msgs/CameraInfo\n\
00136 # This message defines meta information for a camera. It should be in a\n\
00137 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00138 # image topics named:\n\
00139 #\n\
00140 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00141 # image - monochrome, distorted\n\
00142 # image_color - color, distorted\n\
00143 # image_rect - monochrome, rectified\n\
00144 # image_rect_color - color, rectified\n\
00145 #\n\
00146 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00147 # for producing the four processed image topics from image_raw and\n\
00148 # camera_info. The meaning of the camera parameters are described in\n\
00149 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00150 #\n\
00151 # The image_geometry package provides a user-friendly interface to\n\
00152 # common operations using this meta information. If you want to, e.g.,\n\
00153 # project a 3d point into image coordinates, we strongly recommend\n\
00154 # using image_geometry.\n\
00155 #\n\
00156 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00157 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00158 # indicates an uncalibrated camera.\n\
00159 \n\
00160 #######################################################################\n\
00161 # Image acquisition info #\n\
00162 #######################################################################\n\
00163 \n\
00164 # Time of image acquisition, camera coordinate frame ID\n\
00165 Header header # Header timestamp should be acquisition time of image\n\
00166 # Header frame_id should be optical frame of camera\n\
00167 # origin of frame should be optical center of camera\n\
00168 # +x should point to the right in the image\n\
00169 # +y should point down in the image\n\
00170 # +z should point into the plane of the image\n\
00171 \n\
00172 \n\
00173 #######################################################################\n\
00174 # Calibration Parameters #\n\
00175 #######################################################################\n\
00176 # These are fixed during camera calibration. Their values will be the #\n\
00177 # same in all messages until the camera is recalibrated. Note that #\n\
00178 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00179 # #\n\
00180 # The internal parameters can be used to warp a raw (distorted) image #\n\
00181 # to: #\n\
00182 # 1. An undistorted image (requires D and K) #\n\
00183 # 2. A rectified image (requires D, K, R) #\n\
00184 # The projection matrix P projects 3D points into the rectified image.#\n\
00185 #######################################################################\n\
00186 \n\
00187 # The image dimensions with which the camera was calibrated. Normally\n\
00188 # this will be the full camera resolution in pixels.\n\
00189 uint32 height\n\
00190 uint32 width\n\
00191 \n\
00192 # The distortion model used. Supported models are listed in\n\
00193 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00194 # simple model of radial and tangential distortion - is sufficent.\n\
00195 string distortion_model\n\
00196 \n\
00197 # The distortion parameters, size depending on the distortion model.\n\
00198 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00199 float64[] D\n\
00200 \n\
00201 # Intrinsic camera matrix for the raw (distorted) images.\n\
00202 # [fx 0 cx]\n\
00203 # K = [ 0 fy cy]\n\
00204 # [ 0 0 1]\n\
00205 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00206 # coordinates using the focal lengths (fx, fy) and principal point\n\
00207 # (cx, cy).\n\
00208 float64[9] K # 3x3 row-major matrix\n\
00209 \n\
00210 # Rectification matrix (stereo cameras only)\n\
00211 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00212 # stereo image plane so that epipolar lines in both stereo images are\n\
00213 # parallel.\n\
00214 float64[9] R # 3x3 row-major matrix\n\
00215 \n\
00216 # Projection/camera matrix\n\
00217 # [fx' 0 cx' Tx]\n\
00218 # P = [ 0 fy' cy' Ty]\n\
00219 # [ 0 0 1 0]\n\
00220 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00221 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00222 # is the normal camera intrinsic matrix for the rectified image.\n\
00223 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00224 # coordinates using the focal lengths (fx', fy') and principal point\n\
00225 # (cx', cy') - these may differ from the values in K.\n\
00226 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00227 # also have R = the identity and P[1:3,1:3] = K.\n\
00228 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00229 # position of the optical center of the second camera in the first\n\
00230 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00231 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00232 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00233 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00234 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00235 # the rectified image is given by:\n\
00236 # [u v w]' = P * [X Y Z 1]'\n\
00237 # x = u / w\n\
00238 # y = v / w\n\
00239 # This holds for both images of a stereo pair.\n\
00240 float64[12] P # 3x4 row-major matrix\n\
00241 \n\
00242 \n\
00243 #######################################################################\n\
00244 # Operational Parameters #\n\
00245 #######################################################################\n\
00246 # These define the image region actually captured by the camera #\n\
00247 # driver. Although they affect the geometry of the output image, they #\n\
00248 # may be changed freely without recalibrating the camera. #\n\
00249 #######################################################################\n\
00250 \n\
00251 # Binning refers here to any camera setting which combines rectangular\n\
00252 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00253 # resolution of the output image to\n\
00254 # (width / binning_x) x (height / binning_y).\n\
00255 # The default values binning_x = binning_y = 0 is considered the same\n\
00256 # as binning_x = binning_y = 1 (no subsampling).\n\
00257 uint32 binning_x\n\
00258 uint32 binning_y\n\
00259 \n\
00260 # Region of interest (subwindow of full camera resolution), given in\n\
00261 # full resolution (unbinned) image coordinates. A particular ROI\n\
00262 # always denotes the same window of pixels on the camera sensor,\n\
00263 # regardless of binning settings.\n\
00264 # The default setting of roi (all values 0) is considered the same as\n\
00265 # full resolution (roi.width = width, roi.height = height).\n\
00266 RegionOfInterest roi\n\
00267 \n\
00268 ================================================================================\n\
00269 MSG: sensor_msgs/RegionOfInterest\n\
00270 # This message is used to specify a region of interest within an image.\n\
00271 #\n\
00272 # When used to specify the ROI setting of the camera when the image was\n\
00273 # taken, the height and width fields should either match the height and\n\
00274 # width fields for the associated image; or height = width = 0\n\
00275 # indicates that the full resolution image was captured.\n\
00276 \n\
00277 uint32 x_offset # Leftmost pixel of the ROI\n\
00278 # (0 if the ROI includes the left edge of the image)\n\
00279 uint32 y_offset # Topmost pixel of the ROI\n\
00280 # (0 if the ROI includes the top edge of the image)\n\
00281 uint32 height # Height of ROI\n\
00282 uint32 width # Width of ROI\n\
00283 \n\
00284 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00285 # ROI in this message. Typically this should be False if the full image\n\
00286 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00287 # used).\n\
00288 bool do_rectify\n\
00289 \n\
00290 ================================================================================\n\
00291 MSG: worldmodel_msgs/PerceptInfo\n\
00292 # This message contains information about the estimated class and object identity \n\
00293 \n\
00294 # A string identifying the object's class (all objects of a class look the same)\n\
00295 string class_id\n\
00296 \n\
00297 # The class association support of the observation\n\
00298 # The support is the log odd likelihood ratio given by log(p(y/observation y belongs to object of class class_id) / p(y/observation y is a false positive))\n\
00299 float32 class_support\n\
00300 \n\
00301 # A string identifying a specific object\n\
00302 string object_id\n\
00303 \n\
00304 # The object association support of the observation\n\
00305 # The support is the log odd likelihood ratio given by log(p(observation belongs to object object_id) / p(observation is false positive or belongs to another object))\n\
00306 float32 object_support\n\
00307 \n\
00308 # A string that contains the name or a description of the specific object\n\
00309 string name\n\
00310 \n\
00311 "; }
00312 public:
00313 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00314
00315 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00316
00317 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00318 {
00319 ros::serialization::OStream stream(write_ptr, 1000000000);
00320 ros::serialization::serialize(stream, header);
00321 ros::serialization::serialize(stream, camera_info);
00322 ros::serialization::serialize(stream, x);
00323 ros::serialization::serialize(stream, y);
00324 ros::serialization::serialize(stream, width);
00325 ros::serialization::serialize(stream, height);
00326 ros::serialization::serialize(stream, distance);
00327 ros::serialization::serialize(stream, info);
00328 return stream.getData();
00329 }
00330
00331 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00332 {
00333 ros::serialization::IStream stream(read_ptr, 1000000000);
00334 ros::serialization::deserialize(stream, header);
00335 ros::serialization::deserialize(stream, camera_info);
00336 ros::serialization::deserialize(stream, x);
00337 ros::serialization::deserialize(stream, y);
00338 ros::serialization::deserialize(stream, width);
00339 ros::serialization::deserialize(stream, height);
00340 ros::serialization::deserialize(stream, distance);
00341 ros::serialization::deserialize(stream, info);
00342 return stream.getData();
00343 }
00344
00345 ROS_DEPRECATED virtual uint32_t serializationLength() const
00346 {
00347 uint32_t size = 0;
00348 size += ros::serialization::serializationLength(header);
00349 size += ros::serialization::serializationLength(camera_info);
00350 size += ros::serialization::serializationLength(x);
00351 size += ros::serialization::serializationLength(y);
00352 size += ros::serialization::serializationLength(width);
00353 size += ros::serialization::serializationLength(height);
00354 size += ros::serialization::serializationLength(distance);
00355 size += ros::serialization::serializationLength(info);
00356 return size;
00357 }
00358
00359 typedef boost::shared_ptr< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > Ptr;
00360 typedef boost::shared_ptr< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> const> ConstPtr;
00361 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00362 };
00363 typedef ::worldmodel_msgs::ImagePercept_<std::allocator<void> > ImagePercept;
00364
00365 typedef boost::shared_ptr< ::worldmodel_msgs::ImagePercept> ImagePerceptPtr;
00366 typedef boost::shared_ptr< ::worldmodel_msgs::ImagePercept const> ImagePerceptConstPtr;
00367
00368
00369 template<typename ContainerAllocator>
00370 std::ostream& operator<<(std::ostream& s, const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> & v)
00371 {
00372 ros::message_operations::Printer< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> >::stream(s, "", v);
00373 return s;}
00374
00375 }
00376
00377 namespace ros
00378 {
00379 namespace message_traits
00380 {
00381 template<class ContainerAllocator> struct IsMessage< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > : public TrueType {};
00382 template<class ContainerAllocator> struct IsMessage< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> const> : public TrueType {};
00383 template<class ContainerAllocator>
00384 struct MD5Sum< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > {
00385 static const char* value()
00386 {
00387 return "cfe1ba9ccbb3e43950b420f7336a3c6c";
00388 }
00389
00390 static const char* value(const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> &) { return value(); }
00391 static const uint64_t static_value1 = 0xcfe1ba9ccbb3e439ULL;
00392 static const uint64_t static_value2 = 0x50b420f7336a3c6cULL;
00393 };
00394
00395 template<class ContainerAllocator>
00396 struct DataType< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > {
00397 static const char* value()
00398 {
00399 return "worldmodel_msgs/ImagePercept";
00400 }
00401
00402 static const char* value(const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> &) { return value(); }
00403 };
00404
00405 template<class ContainerAllocator>
00406 struct Definition< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > {
00407 static const char* value()
00408 {
00409 return "# worldmodel_msgs/ImagePercept\n\
00410 # This message represents an observation of an object in a single image.\n\
00411 \n\
00412 # The header should equal the header of the corresponding image.\n\
00413 Header header\n\
00414 \n\
00415 # The camera info which is needed to project from image coordinates to world coordinates\n\
00416 sensor_msgs/CameraInfo camera_info\n\
00417 \n\
00418 # Center coordinates of the percept in image coordinates\n\
00419 # x: axis points to the right in the image\n\
00420 # y: axis points downward in the image\n\
00421 float32 x\n\
00422 float32 y\n\
00423 \n\
00424 # Normalized size of the percept in image coordinates (or 0.0)\n\
00425 float32 width\n\
00426 float32 height\n\
00427 \n\
00428 # Distance estimate (slope distance) (or 0.0)\n\
00429 float32 distance\n\
00430 \n\
00431 # Additional information about the percept\n\
00432 worldmodel_msgs/PerceptInfo info\n\
00433 \n\
00434 ================================================================================\n\
00435 MSG: std_msgs/Header\n\
00436 # Standard metadata for higher-level stamped data types.\n\
00437 # This is generally used to communicate timestamped data \n\
00438 # in a particular coordinate frame.\n\
00439 # \n\
00440 # sequence ID: consecutively increasing ID \n\
00441 uint32 seq\n\
00442 #Two-integer timestamp that is expressed as:\n\
00443 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00444 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00445 # time-handling sugar is provided by the client library\n\
00446 time stamp\n\
00447 #Frame this data is associated with\n\
00448 # 0: no frame\n\
00449 # 1: global frame\n\
00450 string frame_id\n\
00451 \n\
00452 ================================================================================\n\
00453 MSG: sensor_msgs/CameraInfo\n\
00454 # This message defines meta information for a camera. It should be in a\n\
00455 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00456 # image topics named:\n\
00457 #\n\
00458 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00459 # image - monochrome, distorted\n\
00460 # image_color - color, distorted\n\
00461 # image_rect - monochrome, rectified\n\
00462 # image_rect_color - color, rectified\n\
00463 #\n\
00464 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00465 # for producing the four processed image topics from image_raw and\n\
00466 # camera_info. The meaning of the camera parameters are described in\n\
00467 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00468 #\n\
00469 # The image_geometry package provides a user-friendly interface to\n\
00470 # common operations using this meta information. If you want to, e.g.,\n\
00471 # project a 3d point into image coordinates, we strongly recommend\n\
00472 # using image_geometry.\n\
00473 #\n\
00474 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00475 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00476 # indicates an uncalibrated camera.\n\
00477 \n\
00478 #######################################################################\n\
00479 # Image acquisition info #\n\
00480 #######################################################################\n\
00481 \n\
00482 # Time of image acquisition, camera coordinate frame ID\n\
00483 Header header # Header timestamp should be acquisition time of image\n\
00484 # Header frame_id should be optical frame of camera\n\
00485 # origin of frame should be optical center of camera\n\
00486 # +x should point to the right in the image\n\
00487 # +y should point down in the image\n\
00488 # +z should point into the plane of the image\n\
00489 \n\
00490 \n\
00491 #######################################################################\n\
00492 # Calibration Parameters #\n\
00493 #######################################################################\n\
00494 # These are fixed during camera calibration. Their values will be the #\n\
00495 # same in all messages until the camera is recalibrated. Note that #\n\
00496 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00497 # #\n\
00498 # The internal parameters can be used to warp a raw (distorted) image #\n\
00499 # to: #\n\
00500 # 1. An undistorted image (requires D and K) #\n\
00501 # 2. A rectified image (requires D, K, R) #\n\
00502 # The projection matrix P projects 3D points into the rectified image.#\n\
00503 #######################################################################\n\
00504 \n\
00505 # The image dimensions with which the camera was calibrated. Normally\n\
00506 # this will be the full camera resolution in pixels.\n\
00507 uint32 height\n\
00508 uint32 width\n\
00509 \n\
00510 # The distortion model used. Supported models are listed in\n\
00511 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00512 # simple model of radial and tangential distortion - is sufficent.\n\
00513 string distortion_model\n\
00514 \n\
00515 # The distortion parameters, size depending on the distortion model.\n\
00516 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00517 float64[] D\n\
00518 \n\
00519 # Intrinsic camera matrix for the raw (distorted) images.\n\
00520 # [fx 0 cx]\n\
00521 # K = [ 0 fy cy]\n\
00522 # [ 0 0 1]\n\
00523 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00524 # coordinates using the focal lengths (fx, fy) and principal point\n\
00525 # (cx, cy).\n\
00526 float64[9] K # 3x3 row-major matrix\n\
00527 \n\
00528 # Rectification matrix (stereo cameras only)\n\
00529 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00530 # stereo image plane so that epipolar lines in both stereo images are\n\
00531 # parallel.\n\
00532 float64[9] R # 3x3 row-major matrix\n\
00533 \n\
00534 # Projection/camera matrix\n\
00535 # [fx' 0 cx' Tx]\n\
00536 # P = [ 0 fy' cy' Ty]\n\
00537 # [ 0 0 1 0]\n\
00538 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00539 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00540 # is the normal camera intrinsic matrix for the rectified image.\n\
00541 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00542 # coordinates using the focal lengths (fx', fy') and principal point\n\
00543 # (cx', cy') - these may differ from the values in K.\n\
00544 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00545 # also have R = the identity and P[1:3,1:3] = K.\n\
00546 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00547 # position of the optical center of the second camera in the first\n\
00548 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00549 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00550 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00551 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00552 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00553 # the rectified image is given by:\n\
00554 # [u v w]' = P * [X Y Z 1]'\n\
00555 # x = u / w\n\
00556 # y = v / w\n\
00557 # This holds for both images of a stereo pair.\n\
00558 float64[12] P # 3x4 row-major matrix\n\
00559 \n\
00560 \n\
00561 #######################################################################\n\
00562 # Operational Parameters #\n\
00563 #######################################################################\n\
00564 # These define the image region actually captured by the camera #\n\
00565 # driver. Although they affect the geometry of the output image, they #\n\
00566 # may be changed freely without recalibrating the camera. #\n\
00567 #######################################################################\n\
00568 \n\
00569 # Binning refers here to any camera setting which combines rectangular\n\
00570 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00571 # resolution of the output image to\n\
00572 # (width / binning_x) x (height / binning_y).\n\
00573 # The default values binning_x = binning_y = 0 is considered the same\n\
00574 # as binning_x = binning_y = 1 (no subsampling).\n\
00575 uint32 binning_x\n\
00576 uint32 binning_y\n\
00577 \n\
00578 # Region of interest (subwindow of full camera resolution), given in\n\
00579 # full resolution (unbinned) image coordinates. A particular ROI\n\
00580 # always denotes the same window of pixels on the camera sensor,\n\
00581 # regardless of binning settings.\n\
00582 # The default setting of roi (all values 0) is considered the same as\n\
00583 # full resolution (roi.width = width, roi.height = height).\n\
00584 RegionOfInterest roi\n\
00585 \n\
00586 ================================================================================\n\
00587 MSG: sensor_msgs/RegionOfInterest\n\
00588 # This message is used to specify a region of interest within an image.\n\
00589 #\n\
00590 # When used to specify the ROI setting of the camera when the image was\n\
00591 # taken, the height and width fields should either match the height and\n\
00592 # width fields for the associated image; or height = width = 0\n\
00593 # indicates that the full resolution image was captured.\n\
00594 \n\
00595 uint32 x_offset # Leftmost pixel of the ROI\n\
00596 # (0 if the ROI includes the left edge of the image)\n\
00597 uint32 y_offset # Topmost pixel of the ROI\n\
00598 # (0 if the ROI includes the top edge of the image)\n\
00599 uint32 height # Height of ROI\n\
00600 uint32 width # Width of ROI\n\
00601 \n\
00602 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00603 # ROI in this message. Typically this should be False if the full image\n\
00604 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00605 # used).\n\
00606 bool do_rectify\n\
00607 \n\
00608 ================================================================================\n\
00609 MSG: worldmodel_msgs/PerceptInfo\n\
00610 # This message contains information about the estimated class and object identity \n\
00611 \n\
00612 # A string identifying the object's class (all objects of a class look the same)\n\
00613 string class_id\n\
00614 \n\
00615 # The class association support of the observation\n\
00616 # The support is the log odd likelihood ratio given by log(p(y/observation y belongs to object of class class_id) / p(y/observation y is a false positive))\n\
00617 float32 class_support\n\
00618 \n\
00619 # A string identifying a specific object\n\
00620 string object_id\n\
00621 \n\
00622 # The object association support of the observation\n\
00623 # The support is the log odd likelihood ratio given by log(p(observation belongs to object object_id) / p(observation is false positive or belongs to another object))\n\
00624 float32 object_support\n\
00625 \n\
00626 # A string that contains the name or a description of the specific object\n\
00627 string name\n\
00628 \n\
00629 ";
00630 }
00631
00632 static const char* value(const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> &) { return value(); }
00633 };
00634
00635 template<class ContainerAllocator> struct HasHeader< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > : public TrueType {};
00636 template<class ContainerAllocator> struct HasHeader< const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> > : public TrueType {};
00637 }
00638 }
00639
00640 namespace ros
00641 {
00642 namespace serialization
00643 {
00644
00645 template<class ContainerAllocator> struct Serializer< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> >
00646 {
00647 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00648 {
00649 stream.next(m.header);
00650 stream.next(m.camera_info);
00651 stream.next(m.x);
00652 stream.next(m.y);
00653 stream.next(m.width);
00654 stream.next(m.height);
00655 stream.next(m.distance);
00656 stream.next(m.info);
00657 }
00658
00659 ROS_DECLARE_ALLINONE_SERIALIZER;
00660 };
00661 }
00662 }
00663
00664 namespace ros
00665 {
00666 namespace message_operations
00667 {
00668
00669 template<class ContainerAllocator>
00670 struct Printer< ::worldmodel_msgs::ImagePercept_<ContainerAllocator> >
00671 {
00672 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::worldmodel_msgs::ImagePercept_<ContainerAllocator> & v)
00673 {
00674 s << indent << "header: ";
00675 s << std::endl;
00676 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header);
00677 s << indent << "camera_info: ";
00678 s << std::endl;
00679 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info);
00680 s << indent << "x: ";
00681 Printer<float>::stream(s, indent + " ", v.x);
00682 s << indent << "y: ";
00683 Printer<float>::stream(s, indent + " ", v.y);
00684 s << indent << "width: ";
00685 Printer<float>::stream(s, indent + " ", v.width);
00686 s << indent << "height: ";
00687 Printer<float>::stream(s, indent + " ", v.height);
00688 s << indent << "distance: ";
00689 Printer<float>::stream(s, indent + " ", v.distance);
00690 s << indent << "info: ";
00691 s << std::endl;
00692 Printer< ::worldmodel_msgs::PerceptInfo_<ContainerAllocator> >::stream(s, indent + " ", v.info);
00693 }
00694 };
00695
00696
00697 }
00698 }
00699
00700 #endif // WORLDMODEL_MSGS_MESSAGE_IMAGEPERCEPT_H
00701