$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-pr2_object_manipulation/doc_stacks/2013-03-05_12-10-38.333207/pr2_object_manipulation/perception/object_recognition_gui/msg/ObjectRecognitionGuiGoal.msg */ 00002 #ifndef OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIGOAL_H 00003 #define OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIGOAL_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "sensor_msgs/Image.h" 00018 #include "sensor_msgs/CameraInfo.h" 00019 #include "object_recognition_gui/ModelHypothesisList.h" 00020 00021 namespace object_recognition_gui 00022 { 00023 template <class ContainerAllocator> 00024 struct ObjectRecognitionGuiGoal_ { 00025 typedef ObjectRecognitionGuiGoal_<ContainerAllocator> Type; 00026 00027 ObjectRecognitionGuiGoal_() 00028 : image() 00029 , camera_info() 00030 , model_hypotheses() 00031 { 00032 } 00033 00034 ObjectRecognitionGuiGoal_(const ContainerAllocator& _alloc) 00035 : image(_alloc) 00036 , camera_info(_alloc) 00037 , model_hypotheses(_alloc) 00038 { 00039 } 00040 00041 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type; 00042 ::sensor_msgs::Image_<ContainerAllocator> image; 00043 00044 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type; 00045 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info; 00046 00047 typedef std::vector< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::other > _model_hypotheses_type; 00048 std::vector< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::other > model_hypotheses; 00049 00050 00051 ROS_DEPRECATED uint32_t get_model_hypotheses_size() const { return (uint32_t)model_hypotheses.size(); } 00052 ROS_DEPRECATED void set_model_hypotheses_size(uint32_t size) { model_hypotheses.resize((size_t)size); } 00053 ROS_DEPRECATED void get_model_hypotheses_vec(std::vector< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::other > & vec) const { vec = this->model_hypotheses; } 00054 ROS_DEPRECATED void set_model_hypotheses_vec(const std::vector< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::other > & vec) { this->model_hypotheses = vec; } 00055 private: 00056 static const char* __s_getDataType_() { return "object_recognition_gui/ObjectRecognitionGuiGoal"; } 00057 public: 00058 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00059 00060 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00061 00062 private: 00063 static const char* __s_getMD5Sum_() { return "a0e81c2c24c7bbc0a1bc7c21f4c1b1c6"; } 00064 public: 00065 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00066 00067 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00068 00069 private: 00070 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00071 \n\ 00072 #the original sensor data (depth/disparity image)\n\ 00073 sensor_msgs/Image image\n\ 00074 sensor_msgs/CameraInfo camera_info\n\ 00075 \n\ 00076 #list of mesh/pose hypotheses for each recognized point cluster\n\ 00077 ModelHypothesisList[] model_hypotheses\n\ 00078 \n\ 00079 ================================================================================\n\ 00080 MSG: sensor_msgs/Image\n\ 00081 # This message contains an uncompressed image\n\ 00082 # (0, 0) is at top-left corner of image\n\ 00083 #\n\ 00084 \n\ 00085 Header header # Header timestamp should be acquisition time of image\n\ 00086 # Header frame_id should be optical frame of camera\n\ 00087 # origin of frame should be optical center of cameara\n\ 00088 # +x should point to the right in the image\n\ 00089 # +y should point down in the image\n\ 00090 # +z should point into to plane of the image\n\ 00091 # If the frame_id here and the frame_id of the CameraInfo\n\ 00092 # message associated with the image conflict\n\ 00093 # the behavior is undefined\n\ 00094 \n\ 00095 uint32 height # image height, that is, number of rows\n\ 00096 uint32 width # image width, that is, number of columns\n\ 00097 \n\ 00098 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00099 # If you want to standardize a new string format, join\n\ 00100 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00101 \n\ 00102 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00103 # taken from the list of strings in src/image_encodings.cpp\n\ 00104 \n\ 00105 uint8 is_bigendian # is this data bigendian?\n\ 00106 uint32 step # Full row length in bytes\n\ 00107 uint8[] data # actual matrix data, size is (step * rows)\n\ 00108 \n\ 00109 ================================================================================\n\ 00110 MSG: std_msgs/Header\n\ 00111 # Standard metadata for higher-level stamped data types.\n\ 00112 # This is generally used to communicate timestamped data \n\ 00113 # in a particular coordinate frame.\n\ 00114 # \n\ 00115 # sequence ID: consecutively increasing ID \n\ 00116 uint32 seq\n\ 00117 #Two-integer timestamp that is expressed as:\n\ 00118 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00119 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00120 # time-handling sugar is provided by the client library\n\ 00121 time stamp\n\ 00122 #Frame this data is associated with\n\ 00123 # 0: no frame\n\ 00124 # 1: global frame\n\ 00125 string frame_id\n\ 00126 \n\ 00127 ================================================================================\n\ 00128 MSG: sensor_msgs/CameraInfo\n\ 00129 # This message defines meta information for a camera. It should be in a\n\ 00130 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00131 # image topics named:\n\ 00132 #\n\ 00133 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00134 # image - monochrome, distorted\n\ 00135 # image_color - color, distorted\n\ 00136 # image_rect - monochrome, rectified\n\ 00137 # image_rect_color - color, rectified\n\ 00138 #\n\ 00139 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00140 # for producing the four processed image topics from image_raw and\n\ 00141 # camera_info. The meaning of the camera parameters are described in\n\ 00142 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00143 #\n\ 00144 # The image_geometry package provides a user-friendly interface to\n\ 00145 # common operations using this meta information. If you want to, e.g.,\n\ 00146 # project a 3d point into image coordinates, we strongly recommend\n\ 00147 # using image_geometry.\n\ 00148 #\n\ 00149 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00150 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00151 # indicates an uncalibrated camera.\n\ 00152 \n\ 00153 #######################################################################\n\ 00154 # Image acquisition info #\n\ 00155 #######################################################################\n\ 00156 \n\ 00157 # Time of image acquisition, camera coordinate frame ID\n\ 00158 Header header # Header timestamp should be acquisition time of image\n\ 00159 # Header frame_id should be optical frame of camera\n\ 00160 # origin of frame should be optical center of camera\n\ 00161 # +x should point to the right in the image\n\ 00162 # +y should point down in the image\n\ 00163 # +z should point into the plane of the image\n\ 00164 \n\ 00165 \n\ 00166 #######################################################################\n\ 00167 # Calibration Parameters #\n\ 00168 #######################################################################\n\ 00169 # These are fixed during camera calibration. Their values will be the #\n\ 00170 # same in all messages until the camera is recalibrated. Note that #\n\ 00171 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00172 # #\n\ 00173 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00174 # to: #\n\ 00175 # 1. An undistorted image (requires D and K) #\n\ 00176 # 2. A rectified image (requires D, K, R) #\n\ 00177 # The projection matrix P projects 3D points into the rectified image.#\n\ 00178 #######################################################################\n\ 00179 \n\ 00180 # The image dimensions with which the camera was calibrated. Normally\n\ 00181 # this will be the full camera resolution in pixels.\n\ 00182 uint32 height\n\ 00183 uint32 width\n\ 00184 \n\ 00185 # The distortion model used. Supported models are listed in\n\ 00186 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00187 # simple model of radial and tangential distortion - is sufficent.\n\ 00188 string distortion_model\n\ 00189 \n\ 00190 # The distortion parameters, size depending on the distortion model.\n\ 00191 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00192 float64[] D\n\ 00193 \n\ 00194 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00195 # [fx 0 cx]\n\ 00196 # K = [ 0 fy cy]\n\ 00197 # [ 0 0 1]\n\ 00198 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00199 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00200 # (cx, cy).\n\ 00201 float64[9] K # 3x3 row-major matrix\n\ 00202 \n\ 00203 # Rectification matrix (stereo cameras only)\n\ 00204 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00205 # stereo image plane so that epipolar lines in both stereo images are\n\ 00206 # parallel.\n\ 00207 float64[9] R # 3x3 row-major matrix\n\ 00208 \n\ 00209 # Projection/camera matrix\n\ 00210 # [fx' 0 cx' Tx]\n\ 00211 # P = [ 0 fy' cy' Ty]\n\ 00212 # [ 0 0 1 0]\n\ 00213 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00214 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00215 # is the normal camera intrinsic matrix for the rectified image.\n\ 00216 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00217 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00218 # (cx', cy') - these may differ from the values in K.\n\ 00219 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00220 # also have R = the identity and P[1:3,1:3] = K.\n\ 00221 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00222 # position of the optical center of the second camera in the first\n\ 00223 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00224 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00225 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00226 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00227 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00228 # the rectified image is given by:\n\ 00229 # [u v w]' = P * [X Y Z 1]'\n\ 00230 # x = u / w\n\ 00231 # y = v / w\n\ 00232 # This holds for both images of a stereo pair.\n\ 00233 float64[12] P # 3x4 row-major matrix\n\ 00234 \n\ 00235 \n\ 00236 #######################################################################\n\ 00237 # Operational Parameters #\n\ 00238 #######################################################################\n\ 00239 # These define the image region actually captured by the camera #\n\ 00240 # driver. Although they affect the geometry of the output image, they #\n\ 00241 # may be changed freely without recalibrating the camera. #\n\ 00242 #######################################################################\n\ 00243 \n\ 00244 # Binning refers here to any camera setting which combines rectangular\n\ 00245 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00246 # resolution of the output image to\n\ 00247 # (width / binning_x) x (height / binning_y).\n\ 00248 # The default values binning_x = binning_y = 0 is considered the same\n\ 00249 # as binning_x = binning_y = 1 (no subsampling).\n\ 00250 uint32 binning_x\n\ 00251 uint32 binning_y\n\ 00252 \n\ 00253 # Region of interest (subwindow of full camera resolution), given in\n\ 00254 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00255 # always denotes the same window of pixels on the camera sensor,\n\ 00256 # regardless of binning settings.\n\ 00257 # The default setting of roi (all values 0) is considered the same as\n\ 00258 # full resolution (roi.width = width, roi.height = height).\n\ 00259 RegionOfInterest roi\n\ 00260 \n\ 00261 ================================================================================\n\ 00262 MSG: sensor_msgs/RegionOfInterest\n\ 00263 # This message is used to specify a region of interest within an image.\n\ 00264 #\n\ 00265 # When used to specify the ROI setting of the camera when the image was\n\ 00266 # taken, the height and width fields should either match the height and\n\ 00267 # width fields for the associated image; or height = width = 0\n\ 00268 # indicates that the full resolution image was captured.\n\ 00269 \n\ 00270 uint32 x_offset # Leftmost pixel of the ROI\n\ 00271 # (0 if the ROI includes the left edge of the image)\n\ 00272 uint32 y_offset # Topmost pixel of the ROI\n\ 00273 # (0 if the ROI includes the top edge of the image)\n\ 00274 uint32 height # Height of ROI\n\ 00275 uint32 width # Width of ROI\n\ 00276 \n\ 00277 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00278 # ROI in this message. Typically this should be False if the full image\n\ 00279 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00280 # used).\n\ 00281 bool do_rectify\n\ 00282 \n\ 00283 ================================================================================\n\ 00284 MSG: object_recognition_gui/ModelHypothesisList\n\ 00285 ModelHypothesis[] hypotheses\n\ 00286 \n\ 00287 #initial guess if this can be a correct recognition result at all\n\ 00288 bool accept\n\ 00289 ================================================================================\n\ 00290 MSG: object_recognition_gui/ModelHypothesis\n\ 00291 #describes a hypothesis about a recognized object (mesh+pose)\n\ 00292 \n\ 00293 arm_navigation_msgs/Shape mesh\n\ 00294 geometry_msgs/PoseStamped pose\n\ 00295 \n\ 00296 ================================================================================\n\ 00297 MSG: arm_navigation_msgs/Shape\n\ 00298 byte SPHERE=0\n\ 00299 byte BOX=1\n\ 00300 byte CYLINDER=2\n\ 00301 byte MESH=3\n\ 00302 \n\ 00303 byte type\n\ 00304 \n\ 00305 \n\ 00306 #### define sphere, box, cylinder ####\n\ 00307 # the origin of each shape is considered at the shape's center\n\ 00308 \n\ 00309 # for sphere\n\ 00310 # radius := dimensions[0]\n\ 00311 \n\ 00312 # for cylinder\n\ 00313 # radius := dimensions[0]\n\ 00314 # length := dimensions[1]\n\ 00315 # the length is along the Z axis\n\ 00316 \n\ 00317 # for box\n\ 00318 # size_x := dimensions[0]\n\ 00319 # size_y := dimensions[1]\n\ 00320 # size_z := dimensions[2]\n\ 00321 float64[] dimensions\n\ 00322 \n\ 00323 \n\ 00324 #### define mesh ####\n\ 00325 \n\ 00326 # list of triangles; triangle k is defined by tre vertices located\n\ 00327 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00328 int32[] triangles\n\ 00329 geometry_msgs/Point[] vertices\n\ 00330 \n\ 00331 ================================================================================\n\ 00332 MSG: geometry_msgs/Point\n\ 00333 # This contains the position of a point in free space\n\ 00334 float64 x\n\ 00335 float64 y\n\ 00336 float64 z\n\ 00337 \n\ 00338 ================================================================================\n\ 00339 MSG: geometry_msgs/PoseStamped\n\ 00340 # A Pose with reference coordinate frame and timestamp\n\ 00341 Header header\n\ 00342 Pose pose\n\ 00343 \n\ 00344 ================================================================================\n\ 00345 MSG: geometry_msgs/Pose\n\ 00346 # A representation of pose in free space, composed of postion and orientation. \n\ 00347 Point position\n\ 00348 Quaternion orientation\n\ 00349 \n\ 00350 ================================================================================\n\ 00351 MSG: geometry_msgs/Quaternion\n\ 00352 # This represents an orientation in free space in quaternion form.\n\ 00353 \n\ 00354 float64 x\n\ 00355 float64 y\n\ 00356 float64 z\n\ 00357 float64 w\n\ 00358 \n\ 00359 "; } 00360 public: 00361 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00362 00363 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00364 00365 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00366 { 00367 ros::serialization::OStream stream(write_ptr, 1000000000); 00368 ros::serialization::serialize(stream, image); 00369 ros::serialization::serialize(stream, camera_info); 00370 ros::serialization::serialize(stream, model_hypotheses); 00371 return stream.getData(); 00372 } 00373 00374 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00375 { 00376 ros::serialization::IStream stream(read_ptr, 1000000000); 00377 ros::serialization::deserialize(stream, image); 00378 ros::serialization::deserialize(stream, camera_info); 00379 ros::serialization::deserialize(stream, model_hypotheses); 00380 return stream.getData(); 00381 } 00382 00383 ROS_DEPRECATED virtual uint32_t serializationLength() const 00384 { 00385 uint32_t size = 0; 00386 size += ros::serialization::serializationLength(image); 00387 size += ros::serialization::serializationLength(camera_info); 00388 size += ros::serialization::serializationLength(model_hypotheses); 00389 return size; 00390 } 00391 00392 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > Ptr; 00393 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> const> ConstPtr; 00394 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00395 }; // struct ObjectRecognitionGuiGoal 00396 typedef ::object_recognition_gui::ObjectRecognitionGuiGoal_<std::allocator<void> > ObjectRecognitionGuiGoal; 00397 00398 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal> ObjectRecognitionGuiGoalPtr; 00399 typedef boost::shared_ptr< ::object_recognition_gui::ObjectRecognitionGuiGoal const> ObjectRecognitionGuiGoalConstPtr; 00400 00401 00402 template<typename ContainerAllocator> 00403 std::ostream& operator<<(std::ostream& s, const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> & v) 00404 { 00405 ros::message_operations::Printer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> >::stream(s, "", v); 00406 return s;} 00407 00408 } // namespace object_recognition_gui 00409 00410 namespace ros 00411 { 00412 namespace message_traits 00413 { 00414 template<class ContainerAllocator> struct IsMessage< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > : public TrueType {}; 00415 template<class ContainerAllocator> struct IsMessage< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> const> : public TrueType {}; 00416 template<class ContainerAllocator> 00417 struct MD5Sum< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > { 00418 static const char* value() 00419 { 00420 return "a0e81c2c24c7bbc0a1bc7c21f4c1b1c6"; 00421 } 00422 00423 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> &) { return value(); } 00424 static const uint64_t static_value1 = 0xa0e81c2c24c7bbc0ULL; 00425 static const uint64_t static_value2 = 0xa1bc7c21f4c1b1c6ULL; 00426 }; 00427 00428 template<class ContainerAllocator> 00429 struct DataType< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > { 00430 static const char* value() 00431 { 00432 return "object_recognition_gui/ObjectRecognitionGuiGoal"; 00433 } 00434 00435 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> &) { return value(); } 00436 }; 00437 00438 template<class ContainerAllocator> 00439 struct Definition< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > { 00440 static const char* value() 00441 { 00442 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00443 \n\ 00444 #the original sensor data (depth/disparity image)\n\ 00445 sensor_msgs/Image image\n\ 00446 sensor_msgs/CameraInfo camera_info\n\ 00447 \n\ 00448 #list of mesh/pose hypotheses for each recognized point cluster\n\ 00449 ModelHypothesisList[] model_hypotheses\n\ 00450 \n\ 00451 ================================================================================\n\ 00452 MSG: sensor_msgs/Image\n\ 00453 # This message contains an uncompressed image\n\ 00454 # (0, 0) is at top-left corner of image\n\ 00455 #\n\ 00456 \n\ 00457 Header header # Header timestamp should be acquisition time of image\n\ 00458 # Header frame_id should be optical frame of camera\n\ 00459 # origin of frame should be optical center of cameara\n\ 00460 # +x should point to the right in the image\n\ 00461 # +y should point down in the image\n\ 00462 # +z should point into to plane of the image\n\ 00463 # If the frame_id here and the frame_id of the CameraInfo\n\ 00464 # message associated with the image conflict\n\ 00465 # the behavior is undefined\n\ 00466 \n\ 00467 uint32 height # image height, that is, number of rows\n\ 00468 uint32 width # image width, that is, number of columns\n\ 00469 \n\ 00470 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00471 # If you want to standardize a new string format, join\n\ 00472 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00473 \n\ 00474 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00475 # taken from the list of strings in src/image_encodings.cpp\n\ 00476 \n\ 00477 uint8 is_bigendian # is this data bigendian?\n\ 00478 uint32 step # Full row length in bytes\n\ 00479 uint8[] data # actual matrix data, size is (step * rows)\n\ 00480 \n\ 00481 ================================================================================\n\ 00482 MSG: std_msgs/Header\n\ 00483 # Standard metadata for higher-level stamped data types.\n\ 00484 # This is generally used to communicate timestamped data \n\ 00485 # in a particular coordinate frame.\n\ 00486 # \n\ 00487 # sequence ID: consecutively increasing ID \n\ 00488 uint32 seq\n\ 00489 #Two-integer timestamp that is expressed as:\n\ 00490 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00491 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00492 # time-handling sugar is provided by the client library\n\ 00493 time stamp\n\ 00494 #Frame this data is associated with\n\ 00495 # 0: no frame\n\ 00496 # 1: global frame\n\ 00497 string frame_id\n\ 00498 \n\ 00499 ================================================================================\n\ 00500 MSG: sensor_msgs/CameraInfo\n\ 00501 # This message defines meta information for a camera. It should be in a\n\ 00502 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00503 # image topics named:\n\ 00504 #\n\ 00505 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00506 # image - monochrome, distorted\n\ 00507 # image_color - color, distorted\n\ 00508 # image_rect - monochrome, rectified\n\ 00509 # image_rect_color - color, rectified\n\ 00510 #\n\ 00511 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00512 # for producing the four processed image topics from image_raw and\n\ 00513 # camera_info. The meaning of the camera parameters are described in\n\ 00514 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00515 #\n\ 00516 # The image_geometry package provides a user-friendly interface to\n\ 00517 # common operations using this meta information. If you want to, e.g.,\n\ 00518 # project a 3d point into image coordinates, we strongly recommend\n\ 00519 # using image_geometry.\n\ 00520 #\n\ 00521 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00522 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00523 # indicates an uncalibrated camera.\n\ 00524 \n\ 00525 #######################################################################\n\ 00526 # Image acquisition info #\n\ 00527 #######################################################################\n\ 00528 \n\ 00529 # Time of image acquisition, camera coordinate frame ID\n\ 00530 Header header # Header timestamp should be acquisition time of image\n\ 00531 # Header frame_id should be optical frame of camera\n\ 00532 # origin of frame should be optical center of camera\n\ 00533 # +x should point to the right in the image\n\ 00534 # +y should point down in the image\n\ 00535 # +z should point into the plane of the image\n\ 00536 \n\ 00537 \n\ 00538 #######################################################################\n\ 00539 # Calibration Parameters #\n\ 00540 #######################################################################\n\ 00541 # These are fixed during camera calibration. Their values will be the #\n\ 00542 # same in all messages until the camera is recalibrated. Note that #\n\ 00543 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00544 # #\n\ 00545 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00546 # to: #\n\ 00547 # 1. An undistorted image (requires D and K) #\n\ 00548 # 2. A rectified image (requires D, K, R) #\n\ 00549 # The projection matrix P projects 3D points into the rectified image.#\n\ 00550 #######################################################################\n\ 00551 \n\ 00552 # The image dimensions with which the camera was calibrated. Normally\n\ 00553 # this will be the full camera resolution in pixels.\n\ 00554 uint32 height\n\ 00555 uint32 width\n\ 00556 \n\ 00557 # The distortion model used. Supported models are listed in\n\ 00558 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00559 # simple model of radial and tangential distortion - is sufficent.\n\ 00560 string distortion_model\n\ 00561 \n\ 00562 # The distortion parameters, size depending on the distortion model.\n\ 00563 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00564 float64[] D\n\ 00565 \n\ 00566 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00567 # [fx 0 cx]\n\ 00568 # K = [ 0 fy cy]\n\ 00569 # [ 0 0 1]\n\ 00570 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00571 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00572 # (cx, cy).\n\ 00573 float64[9] K # 3x3 row-major matrix\n\ 00574 \n\ 00575 # Rectification matrix (stereo cameras only)\n\ 00576 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00577 # stereo image plane so that epipolar lines in both stereo images are\n\ 00578 # parallel.\n\ 00579 float64[9] R # 3x3 row-major matrix\n\ 00580 \n\ 00581 # Projection/camera matrix\n\ 00582 # [fx' 0 cx' Tx]\n\ 00583 # P = [ 0 fy' cy' Ty]\n\ 00584 # [ 0 0 1 0]\n\ 00585 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00586 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00587 # is the normal camera intrinsic matrix for the rectified image.\n\ 00588 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00589 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00590 # (cx', cy') - these may differ from the values in K.\n\ 00591 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00592 # also have R = the identity and P[1:3,1:3] = K.\n\ 00593 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00594 # position of the optical center of the second camera in the first\n\ 00595 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00596 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00597 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00598 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00599 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00600 # the rectified image is given by:\n\ 00601 # [u v w]' = P * [X Y Z 1]'\n\ 00602 # x = u / w\n\ 00603 # y = v / w\n\ 00604 # This holds for both images of a stereo pair.\n\ 00605 float64[12] P # 3x4 row-major matrix\n\ 00606 \n\ 00607 \n\ 00608 #######################################################################\n\ 00609 # Operational Parameters #\n\ 00610 #######################################################################\n\ 00611 # These define the image region actually captured by the camera #\n\ 00612 # driver. Although they affect the geometry of the output image, they #\n\ 00613 # may be changed freely without recalibrating the camera. #\n\ 00614 #######################################################################\n\ 00615 \n\ 00616 # Binning refers here to any camera setting which combines rectangular\n\ 00617 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00618 # resolution of the output image to\n\ 00619 # (width / binning_x) x (height / binning_y).\n\ 00620 # The default values binning_x = binning_y = 0 is considered the same\n\ 00621 # as binning_x = binning_y = 1 (no subsampling).\n\ 00622 uint32 binning_x\n\ 00623 uint32 binning_y\n\ 00624 \n\ 00625 # Region of interest (subwindow of full camera resolution), given in\n\ 00626 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00627 # always denotes the same window of pixels on the camera sensor,\n\ 00628 # regardless of binning settings.\n\ 00629 # The default setting of roi (all values 0) is considered the same as\n\ 00630 # full resolution (roi.width = width, roi.height = height).\n\ 00631 RegionOfInterest roi\n\ 00632 \n\ 00633 ================================================================================\n\ 00634 MSG: sensor_msgs/RegionOfInterest\n\ 00635 # This message is used to specify a region of interest within an image.\n\ 00636 #\n\ 00637 # When used to specify the ROI setting of the camera when the image was\n\ 00638 # taken, the height and width fields should either match the height and\n\ 00639 # width fields for the associated image; or height = width = 0\n\ 00640 # indicates that the full resolution image was captured.\n\ 00641 \n\ 00642 uint32 x_offset # Leftmost pixel of the ROI\n\ 00643 # (0 if the ROI includes the left edge of the image)\n\ 00644 uint32 y_offset # Topmost pixel of the ROI\n\ 00645 # (0 if the ROI includes the top edge of the image)\n\ 00646 uint32 height # Height of ROI\n\ 00647 uint32 width # Width of ROI\n\ 00648 \n\ 00649 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00650 # ROI in this message. Typically this should be False if the full image\n\ 00651 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00652 # used).\n\ 00653 bool do_rectify\n\ 00654 \n\ 00655 ================================================================================\n\ 00656 MSG: object_recognition_gui/ModelHypothesisList\n\ 00657 ModelHypothesis[] hypotheses\n\ 00658 \n\ 00659 #initial guess if this can be a correct recognition result at all\n\ 00660 bool accept\n\ 00661 ================================================================================\n\ 00662 MSG: object_recognition_gui/ModelHypothesis\n\ 00663 #describes a hypothesis about a recognized object (mesh+pose)\n\ 00664 \n\ 00665 arm_navigation_msgs/Shape mesh\n\ 00666 geometry_msgs/PoseStamped pose\n\ 00667 \n\ 00668 ================================================================================\n\ 00669 MSG: arm_navigation_msgs/Shape\n\ 00670 byte SPHERE=0\n\ 00671 byte BOX=1\n\ 00672 byte CYLINDER=2\n\ 00673 byte MESH=3\n\ 00674 \n\ 00675 byte type\n\ 00676 \n\ 00677 \n\ 00678 #### define sphere, box, cylinder ####\n\ 00679 # the origin of each shape is considered at the shape's center\n\ 00680 \n\ 00681 # for sphere\n\ 00682 # radius := dimensions[0]\n\ 00683 \n\ 00684 # for cylinder\n\ 00685 # radius := dimensions[0]\n\ 00686 # length := dimensions[1]\n\ 00687 # the length is along the Z axis\n\ 00688 \n\ 00689 # for box\n\ 00690 # size_x := dimensions[0]\n\ 00691 # size_y := dimensions[1]\n\ 00692 # size_z := dimensions[2]\n\ 00693 float64[] dimensions\n\ 00694 \n\ 00695 \n\ 00696 #### define mesh ####\n\ 00697 \n\ 00698 # list of triangles; triangle k is defined by tre vertices located\n\ 00699 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00700 int32[] triangles\n\ 00701 geometry_msgs/Point[] vertices\n\ 00702 \n\ 00703 ================================================================================\n\ 00704 MSG: geometry_msgs/Point\n\ 00705 # This contains the position of a point in free space\n\ 00706 float64 x\n\ 00707 float64 y\n\ 00708 float64 z\n\ 00709 \n\ 00710 ================================================================================\n\ 00711 MSG: geometry_msgs/PoseStamped\n\ 00712 # A Pose with reference coordinate frame and timestamp\n\ 00713 Header header\n\ 00714 Pose pose\n\ 00715 \n\ 00716 ================================================================================\n\ 00717 MSG: geometry_msgs/Pose\n\ 00718 # A representation of pose in free space, composed of postion and orientation. \n\ 00719 Point position\n\ 00720 Quaternion orientation\n\ 00721 \n\ 00722 ================================================================================\n\ 00723 MSG: geometry_msgs/Quaternion\n\ 00724 # This represents an orientation in free space in quaternion form.\n\ 00725 \n\ 00726 float64 x\n\ 00727 float64 y\n\ 00728 float64 z\n\ 00729 float64 w\n\ 00730 \n\ 00731 "; 00732 } 00733 00734 static const char* value(const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> &) { return value(); } 00735 }; 00736 00737 } // namespace message_traits 00738 } // namespace ros 00739 00740 namespace ros 00741 { 00742 namespace serialization 00743 { 00744 00745 template<class ContainerAllocator> struct Serializer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > 00746 { 00747 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00748 { 00749 stream.next(m.image); 00750 stream.next(m.camera_info); 00751 stream.next(m.model_hypotheses); 00752 } 00753 00754 ROS_DECLARE_ALLINONE_SERIALIZER; 00755 }; // struct ObjectRecognitionGuiGoal_ 00756 } // namespace serialization 00757 } // namespace ros 00758 00759 namespace ros 00760 { 00761 namespace message_operations 00762 { 00763 00764 template<class ContainerAllocator> 00765 struct Printer< ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> > 00766 { 00767 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_recognition_gui::ObjectRecognitionGuiGoal_<ContainerAllocator> & v) 00768 { 00769 s << indent << "image: "; 00770 s << std::endl; 00771 Printer< ::sensor_msgs::Image_<ContainerAllocator> >::stream(s, indent + " ", v.image); 00772 s << indent << "camera_info: "; 00773 s << std::endl; 00774 Printer< ::sensor_msgs::CameraInfo_<ContainerAllocator> >::stream(s, indent + " ", v.camera_info); 00775 s << indent << "model_hypotheses[]" << std::endl; 00776 for (size_t i = 0; i < v.model_hypotheses.size(); ++i) 00777 { 00778 s << indent << " model_hypotheses[" << i << "]: "; 00779 s << std::endl; 00780 s << indent; 00781 Printer< ::object_recognition_gui::ModelHypothesisList_<ContainerAllocator> >::stream(s, indent + " ", v.model_hypotheses[i]); 00782 } 00783 } 00784 }; 00785 00786 00787 } // namespace message_operations 00788 } // namespace ros 00789 00790 #endif // OBJECT_RECOGNITION_GUI_MESSAGE_OBJECTRECOGNITIONGUIGOAL_H 00791