$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-object_manipulation/doc_stacks/2013-03-01_16-13-18.345538/object_manipulation/object_manipulation_msgs/msg/GraspPlanningActionResult.msg */ 00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONRESULT_H 00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONRESULT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "std_msgs/Header.h" 00018 #include "actionlib_msgs/GoalStatus.h" 00019 #include "object_manipulation_msgs/GraspPlanningResult.h" 00020 00021 namespace object_manipulation_msgs 00022 { 00023 template <class ContainerAllocator> 00024 struct GraspPlanningActionResult_ { 00025 typedef GraspPlanningActionResult_<ContainerAllocator> Type; 00026 00027 GraspPlanningActionResult_() 00028 : header() 00029 , status() 00030 , result() 00031 { 00032 } 00033 00034 GraspPlanningActionResult_(const ContainerAllocator& _alloc) 00035 : header(_alloc) 00036 , status(_alloc) 00037 , result(_alloc) 00038 { 00039 } 00040 00041 typedef ::std_msgs::Header_<ContainerAllocator> _header_type; 00042 ::std_msgs::Header_<ContainerAllocator> header; 00043 00044 typedef ::actionlib_msgs::GoalStatus_<ContainerAllocator> _status_type; 00045 ::actionlib_msgs::GoalStatus_<ContainerAllocator> status; 00046 00047 typedef ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> _result_type; 00048 ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> result; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "object_manipulation_msgs/GraspPlanningActionResult"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "079c7691212d2a05ab136adedb1d64d4"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 Header header\n\ 00069 actionlib_msgs/GoalStatus status\n\ 00070 GraspPlanningResult result\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: std_msgs/Header\n\ 00074 # Standard metadata for higher-level stamped data types.\n\ 00075 # This is generally used to communicate timestamped data \n\ 00076 # in a particular coordinate frame.\n\ 00077 # \n\ 00078 # sequence ID: consecutively increasing ID \n\ 00079 uint32 seq\n\ 00080 #Two-integer timestamp that is expressed as:\n\ 00081 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00082 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00083 # time-handling sugar is provided by the client library\n\ 00084 time stamp\n\ 00085 #Frame this data is associated with\n\ 00086 # 0: no frame\n\ 00087 # 1: global frame\n\ 00088 string frame_id\n\ 00089 \n\ 00090 ================================================================================\n\ 00091 MSG: actionlib_msgs/GoalStatus\n\ 00092 GoalID goal_id\n\ 00093 uint8 status\n\ 00094 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00095 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00096 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00097 # and has since completed its execution (Terminal State)\n\ 00098 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00099 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00100 # to some failure (Terminal State)\n\ 00101 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00102 # because the goal was unattainable or invalid (Terminal State)\n\ 00103 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00104 # and has not yet completed execution\n\ 00105 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00106 # but the action server has not yet confirmed that the goal is canceled\n\ 00107 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00108 # and was successfully cancelled (Terminal State)\n\ 00109 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00110 # sent over the wire by an action server\n\ 00111 \n\ 00112 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00113 string text\n\ 00114 \n\ 00115 \n\ 00116 ================================================================================\n\ 00117 MSG: actionlib_msgs/GoalID\n\ 00118 # The stamp should store the time at which this goal was requested.\n\ 00119 # It is used by an action server when it tries to preempt all\n\ 00120 # goals that were requested before a certain time\n\ 00121 time stamp\n\ 00122 \n\ 00123 # The id provides a way to associate feedback and\n\ 00124 # result message with specific goal requests. The id\n\ 00125 # specified must be unique.\n\ 00126 string id\n\ 00127 \n\ 00128 \n\ 00129 ================================================================================\n\ 00130 MSG: object_manipulation_msgs/GraspPlanningResult\n\ 00131 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00132 \n\ 00133 # the list of planned grasps\n\ 00134 Grasp[] grasps\n\ 00135 \n\ 00136 # whether an error occurred\n\ 00137 GraspPlanningErrorCode error_code\n\ 00138 \n\ 00139 \n\ 00140 ================================================================================\n\ 00141 MSG: object_manipulation_msgs/Grasp\n\ 00142 \n\ 00143 # The internal posture of the hand for the pre-grasp\n\ 00144 # only positions are used\n\ 00145 sensor_msgs/JointState pre_grasp_posture\n\ 00146 \n\ 00147 # The internal posture of the hand for the grasp\n\ 00148 # positions and efforts are used\n\ 00149 sensor_msgs/JointState grasp_posture\n\ 00150 \n\ 00151 # The position of the end-effector for the grasp relative to a reference frame \n\ 00152 # (that is always specified elsewhere, not in this message)\n\ 00153 geometry_msgs/Pose grasp_pose\n\ 00154 \n\ 00155 # The estimated probability of success for this grasp\n\ 00156 float64 success_probability\n\ 00157 \n\ 00158 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00159 bool cluster_rep\n\ 00160 \n\ 00161 # how far the pre-grasp should ideally be away from the grasp\n\ 00162 float32 desired_approach_distance\n\ 00163 \n\ 00164 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00165 # for the grasp not to be rejected\n\ 00166 float32 min_approach_distance\n\ 00167 \n\ 00168 # an optional list of obstacles that we have semantic information about\n\ 00169 # and that we expect might move in the course of executing this grasp\n\ 00170 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00171 # execution, grasp executors will not check for collisions against these objects\n\ 00172 GraspableObject[] moved_obstacles\n\ 00173 \n\ 00174 ================================================================================\n\ 00175 MSG: sensor_msgs/JointState\n\ 00176 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00177 #\n\ 00178 # The state of each joint (revolute or prismatic) is defined by:\n\ 00179 # * the position of the joint (rad or m),\n\ 00180 # * the velocity of the joint (rad/s or m/s) and \n\ 00181 # * the effort that is applied in the joint (Nm or N).\n\ 00182 #\n\ 00183 # Each joint is uniquely identified by its name\n\ 00184 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00185 # in one message have to be recorded at the same time.\n\ 00186 #\n\ 00187 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00188 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00189 # effort associated with them, you can leave the effort array empty. \n\ 00190 #\n\ 00191 # All arrays in this message should have the same size, or be empty.\n\ 00192 # This is the only way to uniquely associate the joint name with the correct\n\ 00193 # states.\n\ 00194 \n\ 00195 \n\ 00196 Header header\n\ 00197 \n\ 00198 string[] name\n\ 00199 float64[] position\n\ 00200 float64[] velocity\n\ 00201 float64[] effort\n\ 00202 \n\ 00203 ================================================================================\n\ 00204 MSG: geometry_msgs/Pose\n\ 00205 # A representation of pose in free space, composed of postion and orientation. \n\ 00206 Point position\n\ 00207 Quaternion orientation\n\ 00208 \n\ 00209 ================================================================================\n\ 00210 MSG: geometry_msgs/Point\n\ 00211 # This contains the position of a point in free space\n\ 00212 float64 x\n\ 00213 float64 y\n\ 00214 float64 z\n\ 00215 \n\ 00216 ================================================================================\n\ 00217 MSG: geometry_msgs/Quaternion\n\ 00218 # This represents an orientation in free space in quaternion form.\n\ 00219 \n\ 00220 float64 x\n\ 00221 float64 y\n\ 00222 float64 z\n\ 00223 float64 w\n\ 00224 \n\ 00225 ================================================================================\n\ 00226 MSG: object_manipulation_msgs/GraspableObject\n\ 00227 # an object that the object_manipulator can work on\n\ 00228 \n\ 00229 # a graspable object can be represented in multiple ways. This message\n\ 00230 # can contain all of them. Which one is actually used is up to the receiver\n\ 00231 # of this message. When adding new representations, one must be careful that\n\ 00232 # they have reasonable lightweight defaults indicating that that particular\n\ 00233 # representation is not available.\n\ 00234 \n\ 00235 # the tf frame to be used as a reference frame when combining information from\n\ 00236 # the different representations below\n\ 00237 string reference_frame_id\n\ 00238 \n\ 00239 # potential recognition results from a database of models\n\ 00240 # all poses are relative to the object reference pose\n\ 00241 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00242 \n\ 00243 # the point cloud itself\n\ 00244 sensor_msgs/PointCloud cluster\n\ 00245 \n\ 00246 # a region of a PointCloud2 of interest\n\ 00247 object_manipulation_msgs/SceneRegion region\n\ 00248 \n\ 00249 # the name that this object has in the collision environment\n\ 00250 string collision_name\n\ 00251 ================================================================================\n\ 00252 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00253 # Informs that a specific model from the Model Database has been \n\ 00254 # identified at a certain location\n\ 00255 \n\ 00256 # the database id of the model\n\ 00257 int32 model_id\n\ 00258 \n\ 00259 # the pose that it can be found in\n\ 00260 geometry_msgs/PoseStamped pose\n\ 00261 \n\ 00262 # a measure of the confidence level in this detection result\n\ 00263 float32 confidence\n\ 00264 \n\ 00265 # the name of the object detector that generated this detection result\n\ 00266 string detector_name\n\ 00267 \n\ 00268 ================================================================================\n\ 00269 MSG: geometry_msgs/PoseStamped\n\ 00270 # A Pose with reference coordinate frame and timestamp\n\ 00271 Header header\n\ 00272 Pose pose\n\ 00273 \n\ 00274 ================================================================================\n\ 00275 MSG: sensor_msgs/PointCloud\n\ 00276 # This message holds a collection of 3d points, plus optional additional\n\ 00277 # information about each point.\n\ 00278 \n\ 00279 # Time of sensor data acquisition, coordinate frame ID.\n\ 00280 Header header\n\ 00281 \n\ 00282 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00283 # in the frame given in the header.\n\ 00284 geometry_msgs/Point32[] points\n\ 00285 \n\ 00286 # Each channel should have the same number of elements as points array,\n\ 00287 # and the data in each channel should correspond 1:1 with each point.\n\ 00288 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00289 ChannelFloat32[] channels\n\ 00290 \n\ 00291 ================================================================================\n\ 00292 MSG: geometry_msgs/Point32\n\ 00293 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00294 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00295 # \n\ 00296 # This recommendation is to promote interoperability. \n\ 00297 #\n\ 00298 # This message is designed to take up less space when sending\n\ 00299 # lots of points at once, as in the case of a PointCloud. \n\ 00300 \n\ 00301 float32 x\n\ 00302 float32 y\n\ 00303 float32 z\n\ 00304 ================================================================================\n\ 00305 MSG: sensor_msgs/ChannelFloat32\n\ 00306 # This message is used by the PointCloud message to hold optional data\n\ 00307 # associated with each point in the cloud. The length of the values\n\ 00308 # array should be the same as the length of the points array in the\n\ 00309 # PointCloud, and each value should be associated with the corresponding\n\ 00310 # point.\n\ 00311 \n\ 00312 # Channel names in existing practice include:\n\ 00313 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00314 # This is opposite to usual conventions but remains for\n\ 00315 # historical reasons. The newer PointCloud2 message has no\n\ 00316 # such problem.\n\ 00317 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00318 # (R,G,B) values packed into the least significant 24 bits,\n\ 00319 # in order.\n\ 00320 # \"intensity\" - laser or pixel intensity.\n\ 00321 # \"distance\"\n\ 00322 \n\ 00323 # The channel name should give semantics of the channel (e.g.\n\ 00324 # \"intensity\" instead of \"value\").\n\ 00325 string name\n\ 00326 \n\ 00327 # The values array should be 1-1 with the elements of the associated\n\ 00328 # PointCloud.\n\ 00329 float32[] values\n\ 00330 \n\ 00331 ================================================================================\n\ 00332 MSG: object_manipulation_msgs/SceneRegion\n\ 00333 # Point cloud\n\ 00334 sensor_msgs/PointCloud2 cloud\n\ 00335 \n\ 00336 # Indices for the region of interest\n\ 00337 int32[] mask\n\ 00338 \n\ 00339 # One of the corresponding 2D images, if applicable\n\ 00340 sensor_msgs/Image image\n\ 00341 \n\ 00342 # The disparity image, if applicable\n\ 00343 sensor_msgs/Image disparity_image\n\ 00344 \n\ 00345 # Camera info for the camera that took the image\n\ 00346 sensor_msgs/CameraInfo cam_info\n\ 00347 \n\ 00348 # a 3D region of interest for grasp planning\n\ 00349 geometry_msgs/PoseStamped roi_box_pose\n\ 00350 geometry_msgs/Vector3 roi_box_dims\n\ 00351 \n\ 00352 ================================================================================\n\ 00353 MSG: sensor_msgs/PointCloud2\n\ 00354 # This message holds a collection of N-dimensional points, which may\n\ 00355 # contain additional information such as normals, intensity, etc. The\n\ 00356 # point data is stored as a binary blob, its layout described by the\n\ 00357 # contents of the \"fields\" array.\n\ 00358 \n\ 00359 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00360 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00361 # camera depth sensors such as stereo or time-of-flight.\n\ 00362 \n\ 00363 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00364 # points).\n\ 00365 Header header\n\ 00366 \n\ 00367 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00368 # 1 and width is the length of the point cloud.\n\ 00369 uint32 height\n\ 00370 uint32 width\n\ 00371 \n\ 00372 # Describes the channels and their layout in the binary data blob.\n\ 00373 PointField[] fields\n\ 00374 \n\ 00375 bool is_bigendian # Is this data bigendian?\n\ 00376 uint32 point_step # Length of a point in bytes\n\ 00377 uint32 row_step # Length of a row in bytes\n\ 00378 uint8[] data # Actual point data, size is (row_step*height)\n\ 00379 \n\ 00380 bool is_dense # True if there are no invalid points\n\ 00381 \n\ 00382 ================================================================================\n\ 00383 MSG: sensor_msgs/PointField\n\ 00384 # This message holds the description of one point entry in the\n\ 00385 # PointCloud2 message format.\n\ 00386 uint8 INT8 = 1\n\ 00387 uint8 UINT8 = 2\n\ 00388 uint8 INT16 = 3\n\ 00389 uint8 UINT16 = 4\n\ 00390 uint8 INT32 = 5\n\ 00391 uint8 UINT32 = 6\n\ 00392 uint8 FLOAT32 = 7\n\ 00393 uint8 FLOAT64 = 8\n\ 00394 \n\ 00395 string name # Name of field\n\ 00396 uint32 offset # Offset from start of point struct\n\ 00397 uint8 datatype # Datatype enumeration, see above\n\ 00398 uint32 count # How many elements in the field\n\ 00399 \n\ 00400 ================================================================================\n\ 00401 MSG: sensor_msgs/Image\n\ 00402 # This message contains an uncompressed image\n\ 00403 # (0, 0) is at top-left corner of image\n\ 00404 #\n\ 00405 \n\ 00406 Header header # Header timestamp should be acquisition time of image\n\ 00407 # Header frame_id should be optical frame of camera\n\ 00408 # origin of frame should be optical center of cameara\n\ 00409 # +x should point to the right in the image\n\ 00410 # +y should point down in the image\n\ 00411 # +z should point into to plane of the image\n\ 00412 # If the frame_id here and the frame_id of the CameraInfo\n\ 00413 # message associated with the image conflict\n\ 00414 # the behavior is undefined\n\ 00415 \n\ 00416 uint32 height # image height, that is, number of rows\n\ 00417 uint32 width # image width, that is, number of columns\n\ 00418 \n\ 00419 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00420 # If you want to standardize a new string format, join\n\ 00421 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00422 \n\ 00423 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00424 # taken from the list of strings in src/image_encodings.cpp\n\ 00425 \n\ 00426 uint8 is_bigendian # is this data bigendian?\n\ 00427 uint32 step # Full row length in bytes\n\ 00428 uint8[] data # actual matrix data, size is (step * rows)\n\ 00429 \n\ 00430 ================================================================================\n\ 00431 MSG: sensor_msgs/CameraInfo\n\ 00432 # This message defines meta information for a camera. It should be in a\n\ 00433 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00434 # image topics named:\n\ 00435 #\n\ 00436 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00437 # image - monochrome, distorted\n\ 00438 # image_color - color, distorted\n\ 00439 # image_rect - monochrome, rectified\n\ 00440 # image_rect_color - color, rectified\n\ 00441 #\n\ 00442 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00443 # for producing the four processed image topics from image_raw and\n\ 00444 # camera_info. The meaning of the camera parameters are described in\n\ 00445 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00446 #\n\ 00447 # The image_geometry package provides a user-friendly interface to\n\ 00448 # common operations using this meta information. If you want to, e.g.,\n\ 00449 # project a 3d point into image coordinates, we strongly recommend\n\ 00450 # using image_geometry.\n\ 00451 #\n\ 00452 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00453 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00454 # indicates an uncalibrated camera.\n\ 00455 \n\ 00456 #######################################################################\n\ 00457 # Image acquisition info #\n\ 00458 #######################################################################\n\ 00459 \n\ 00460 # Time of image acquisition, camera coordinate frame ID\n\ 00461 Header header # Header timestamp should be acquisition time of image\n\ 00462 # Header frame_id should be optical frame of camera\n\ 00463 # origin of frame should be optical center of camera\n\ 00464 # +x should point to the right in the image\n\ 00465 # +y should point down in the image\n\ 00466 # +z should point into the plane of the image\n\ 00467 \n\ 00468 \n\ 00469 #######################################################################\n\ 00470 # Calibration Parameters #\n\ 00471 #######################################################################\n\ 00472 # These are fixed during camera calibration. Their values will be the #\n\ 00473 # same in all messages until the camera is recalibrated. Note that #\n\ 00474 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00475 # #\n\ 00476 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00477 # to: #\n\ 00478 # 1. An undistorted image (requires D and K) #\n\ 00479 # 2. A rectified image (requires D, K, R) #\n\ 00480 # The projection matrix P projects 3D points into the rectified image.#\n\ 00481 #######################################################################\n\ 00482 \n\ 00483 # The image dimensions with which the camera was calibrated. Normally\n\ 00484 # this will be the full camera resolution in pixels.\n\ 00485 uint32 height\n\ 00486 uint32 width\n\ 00487 \n\ 00488 # The distortion model used. Supported models are listed in\n\ 00489 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00490 # simple model of radial and tangential distortion - is sufficent.\n\ 00491 string distortion_model\n\ 00492 \n\ 00493 # The distortion parameters, size depending on the distortion model.\n\ 00494 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00495 float64[] D\n\ 00496 \n\ 00497 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00498 # [fx 0 cx]\n\ 00499 # K = [ 0 fy cy]\n\ 00500 # [ 0 0 1]\n\ 00501 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00502 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00503 # (cx, cy).\n\ 00504 float64[9] K # 3x3 row-major matrix\n\ 00505 \n\ 00506 # Rectification matrix (stereo cameras only)\n\ 00507 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00508 # stereo image plane so that epipolar lines in both stereo images are\n\ 00509 # parallel.\n\ 00510 float64[9] R # 3x3 row-major matrix\n\ 00511 \n\ 00512 # Projection/camera matrix\n\ 00513 # [fx' 0 cx' Tx]\n\ 00514 # P = [ 0 fy' cy' Ty]\n\ 00515 # [ 0 0 1 0]\n\ 00516 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00517 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00518 # is the normal camera intrinsic matrix for the rectified image.\n\ 00519 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00520 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00521 # (cx', cy') - these may differ from the values in K.\n\ 00522 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00523 # also have R = the identity and P[1:3,1:3] = K.\n\ 00524 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00525 # position of the optical center of the second camera in the first\n\ 00526 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00527 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00528 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00529 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00530 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00531 # the rectified image is given by:\n\ 00532 # [u v w]' = P * [X Y Z 1]'\n\ 00533 # x = u / w\n\ 00534 # y = v / w\n\ 00535 # This holds for both images of a stereo pair.\n\ 00536 float64[12] P # 3x4 row-major matrix\n\ 00537 \n\ 00538 \n\ 00539 #######################################################################\n\ 00540 # Operational Parameters #\n\ 00541 #######################################################################\n\ 00542 # These define the image region actually captured by the camera #\n\ 00543 # driver. Although they affect the geometry of the output image, they #\n\ 00544 # may be changed freely without recalibrating the camera. #\n\ 00545 #######################################################################\n\ 00546 \n\ 00547 # Binning refers here to any camera setting which combines rectangular\n\ 00548 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00549 # resolution of the output image to\n\ 00550 # (width / binning_x) x (height / binning_y).\n\ 00551 # The default values binning_x = binning_y = 0 is considered the same\n\ 00552 # as binning_x = binning_y = 1 (no subsampling).\n\ 00553 uint32 binning_x\n\ 00554 uint32 binning_y\n\ 00555 \n\ 00556 # Region of interest (subwindow of full camera resolution), given in\n\ 00557 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00558 # always denotes the same window of pixels on the camera sensor,\n\ 00559 # regardless of binning settings.\n\ 00560 # The default setting of roi (all values 0) is considered the same as\n\ 00561 # full resolution (roi.width = width, roi.height = height).\n\ 00562 RegionOfInterest roi\n\ 00563 \n\ 00564 ================================================================================\n\ 00565 MSG: sensor_msgs/RegionOfInterest\n\ 00566 # This message is used to specify a region of interest within an image.\n\ 00567 #\n\ 00568 # When used to specify the ROI setting of the camera when the image was\n\ 00569 # taken, the height and width fields should either match the height and\n\ 00570 # width fields for the associated image; or height = width = 0\n\ 00571 # indicates that the full resolution image was captured.\n\ 00572 \n\ 00573 uint32 x_offset # Leftmost pixel of the ROI\n\ 00574 # (0 if the ROI includes the left edge of the image)\n\ 00575 uint32 y_offset # Topmost pixel of the ROI\n\ 00576 # (0 if the ROI includes the top edge of the image)\n\ 00577 uint32 height # Height of ROI\n\ 00578 uint32 width # Width of ROI\n\ 00579 \n\ 00580 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00581 # ROI in this message. Typically this should be False if the full image\n\ 00582 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00583 # used).\n\ 00584 bool do_rectify\n\ 00585 \n\ 00586 ================================================================================\n\ 00587 MSG: geometry_msgs/Vector3\n\ 00588 # This represents a vector in free space. \n\ 00589 \n\ 00590 float64 x\n\ 00591 float64 y\n\ 00592 float64 z\n\ 00593 ================================================================================\n\ 00594 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 00595 # Error codes for grasp and place planning\n\ 00596 \n\ 00597 # plan completed as expected\n\ 00598 int32 SUCCESS = 0\n\ 00599 \n\ 00600 # tf error encountered while transforming\n\ 00601 int32 TF_ERROR = 1 \n\ 00602 \n\ 00603 # some other error\n\ 00604 int32 OTHER_ERROR = 2\n\ 00605 \n\ 00606 # the actual value of this error code\n\ 00607 int32 value\n\ 00608 "; } 00609 public: 00610 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00611 00612 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00613 00614 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00615 { 00616 ros::serialization::OStream stream(write_ptr, 1000000000); 00617 ros::serialization::serialize(stream, header); 00618 ros::serialization::serialize(stream, status); 00619 ros::serialization::serialize(stream, result); 00620 return stream.getData(); 00621 } 00622 00623 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00624 { 00625 ros::serialization::IStream stream(read_ptr, 1000000000); 00626 ros::serialization::deserialize(stream, header); 00627 ros::serialization::deserialize(stream, status); 00628 ros::serialization::deserialize(stream, result); 00629 return stream.getData(); 00630 } 00631 00632 ROS_DEPRECATED virtual uint32_t serializationLength() const 00633 { 00634 uint32_t size = 0; 00635 size += ros::serialization::serializationLength(header); 00636 size += ros::serialization::serializationLength(status); 00637 size += ros::serialization::serializationLength(result); 00638 return size; 00639 } 00640 00641 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> > Ptr; 00642 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> const> ConstPtr; 00643 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00644 }; // struct GraspPlanningActionResult 00645 typedef ::object_manipulation_msgs::GraspPlanningActionResult_<std::allocator<void> > GraspPlanningActionResult; 00646 00647 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionResult> GraspPlanningActionResultPtr; 00648 typedef boost::shared_ptr< ::object_manipulation_msgs::GraspPlanningActionResult const> GraspPlanningActionResultConstPtr; 00649 00650 00651 template<typename ContainerAllocator> 00652 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> & v) 00653 { 00654 ros::message_operations::Printer< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> >::stream(s, "", v); 00655 return s;} 00656 00657 } // namespace object_manipulation_msgs 00658 00659 namespace ros 00660 { 00661 namespace message_traits 00662 { 00663 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> > : public TrueType {}; 00664 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> const> : public TrueType {}; 00665 template<class ContainerAllocator> 00666 struct MD5Sum< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> > { 00667 static const char* value() 00668 { 00669 return "079c7691212d2a05ab136adedb1d64d4"; 00670 } 00671 00672 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> &) { return value(); } 00673 static const uint64_t static_value1 = 0x079c7691212d2a05ULL; 00674 static const uint64_t static_value2 = 0xab136adedb1d64d4ULL; 00675 }; 00676 00677 template<class ContainerAllocator> 00678 struct DataType< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> > { 00679 static const char* value() 00680 { 00681 return "object_manipulation_msgs/GraspPlanningActionResult"; 00682 } 00683 00684 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> &) { return value(); } 00685 }; 00686 00687 template<class ContainerAllocator> 00688 struct Definition< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> > { 00689 static const char* value() 00690 { 00691 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00692 \n\ 00693 Header header\n\ 00694 actionlib_msgs/GoalStatus status\n\ 00695 GraspPlanningResult result\n\ 00696 \n\ 00697 ================================================================================\n\ 00698 MSG: std_msgs/Header\n\ 00699 # Standard metadata for higher-level stamped data types.\n\ 00700 # This is generally used to communicate timestamped data \n\ 00701 # in a particular coordinate frame.\n\ 00702 # \n\ 00703 # sequence ID: consecutively increasing ID \n\ 00704 uint32 seq\n\ 00705 #Two-integer timestamp that is expressed as:\n\ 00706 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00707 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00708 # time-handling sugar is provided by the client library\n\ 00709 time stamp\n\ 00710 #Frame this data is associated with\n\ 00711 # 0: no frame\n\ 00712 # 1: global frame\n\ 00713 string frame_id\n\ 00714 \n\ 00715 ================================================================================\n\ 00716 MSG: actionlib_msgs/GoalStatus\n\ 00717 GoalID goal_id\n\ 00718 uint8 status\n\ 00719 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00720 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00721 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00722 # and has since completed its execution (Terminal State)\n\ 00723 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00724 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00725 # to some failure (Terminal State)\n\ 00726 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00727 # because the goal was unattainable or invalid (Terminal State)\n\ 00728 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00729 # and has not yet completed execution\n\ 00730 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00731 # but the action server has not yet confirmed that the goal is canceled\n\ 00732 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00733 # and was successfully cancelled (Terminal State)\n\ 00734 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00735 # sent over the wire by an action server\n\ 00736 \n\ 00737 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00738 string text\n\ 00739 \n\ 00740 \n\ 00741 ================================================================================\n\ 00742 MSG: actionlib_msgs/GoalID\n\ 00743 # The stamp should store the time at which this goal was requested.\n\ 00744 # It is used by an action server when it tries to preempt all\n\ 00745 # goals that were requested before a certain time\n\ 00746 time stamp\n\ 00747 \n\ 00748 # The id provides a way to associate feedback and\n\ 00749 # result message with specific goal requests. The id\n\ 00750 # specified must be unique.\n\ 00751 string id\n\ 00752 \n\ 00753 \n\ 00754 ================================================================================\n\ 00755 MSG: object_manipulation_msgs/GraspPlanningResult\n\ 00756 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00757 \n\ 00758 # the list of planned grasps\n\ 00759 Grasp[] grasps\n\ 00760 \n\ 00761 # whether an error occurred\n\ 00762 GraspPlanningErrorCode error_code\n\ 00763 \n\ 00764 \n\ 00765 ================================================================================\n\ 00766 MSG: object_manipulation_msgs/Grasp\n\ 00767 \n\ 00768 # The internal posture of the hand for the pre-grasp\n\ 00769 # only positions are used\n\ 00770 sensor_msgs/JointState pre_grasp_posture\n\ 00771 \n\ 00772 # The internal posture of the hand for the grasp\n\ 00773 # positions and efforts are used\n\ 00774 sensor_msgs/JointState grasp_posture\n\ 00775 \n\ 00776 # The position of the end-effector for the grasp relative to a reference frame \n\ 00777 # (that is always specified elsewhere, not in this message)\n\ 00778 geometry_msgs/Pose grasp_pose\n\ 00779 \n\ 00780 # The estimated probability of success for this grasp\n\ 00781 float64 success_probability\n\ 00782 \n\ 00783 # Debug flag to indicate that this grasp would be the best in its cluster\n\ 00784 bool cluster_rep\n\ 00785 \n\ 00786 # how far the pre-grasp should ideally be away from the grasp\n\ 00787 float32 desired_approach_distance\n\ 00788 \n\ 00789 # how much distance between pre-grasp and grasp must actually be feasible \n\ 00790 # for the grasp not to be rejected\n\ 00791 float32 min_approach_distance\n\ 00792 \n\ 00793 # an optional list of obstacles that we have semantic information about\n\ 00794 # and that we expect might move in the course of executing this grasp\n\ 00795 # the grasp planner is expected to make sure they move in an OK way; during\n\ 00796 # execution, grasp executors will not check for collisions against these objects\n\ 00797 GraspableObject[] moved_obstacles\n\ 00798 \n\ 00799 ================================================================================\n\ 00800 MSG: sensor_msgs/JointState\n\ 00801 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\ 00802 #\n\ 00803 # The state of each joint (revolute or prismatic) is defined by:\n\ 00804 # * the position of the joint (rad or m),\n\ 00805 # * the velocity of the joint (rad/s or m/s) and \n\ 00806 # * the effort that is applied in the joint (Nm or N).\n\ 00807 #\n\ 00808 # Each joint is uniquely identified by its name\n\ 00809 # The header specifies the time at which the joint states were recorded. All the joint states\n\ 00810 # in one message have to be recorded at the same time.\n\ 00811 #\n\ 00812 # This message consists of a multiple arrays, one for each part of the joint state. \n\ 00813 # The goal is to make each of the fields optional. When e.g. your joints have no\n\ 00814 # effort associated with them, you can leave the effort array empty. \n\ 00815 #\n\ 00816 # All arrays in this message should have the same size, or be empty.\n\ 00817 # This is the only way to uniquely associate the joint name with the correct\n\ 00818 # states.\n\ 00819 \n\ 00820 \n\ 00821 Header header\n\ 00822 \n\ 00823 string[] name\n\ 00824 float64[] position\n\ 00825 float64[] velocity\n\ 00826 float64[] effort\n\ 00827 \n\ 00828 ================================================================================\n\ 00829 MSG: geometry_msgs/Pose\n\ 00830 # A representation of pose in free space, composed of postion and orientation. \n\ 00831 Point position\n\ 00832 Quaternion orientation\n\ 00833 \n\ 00834 ================================================================================\n\ 00835 MSG: geometry_msgs/Point\n\ 00836 # This contains the position of a point in free space\n\ 00837 float64 x\n\ 00838 float64 y\n\ 00839 float64 z\n\ 00840 \n\ 00841 ================================================================================\n\ 00842 MSG: geometry_msgs/Quaternion\n\ 00843 # This represents an orientation in free space in quaternion form.\n\ 00844 \n\ 00845 float64 x\n\ 00846 float64 y\n\ 00847 float64 z\n\ 00848 float64 w\n\ 00849 \n\ 00850 ================================================================================\n\ 00851 MSG: object_manipulation_msgs/GraspableObject\n\ 00852 # an object that the object_manipulator can work on\n\ 00853 \n\ 00854 # a graspable object can be represented in multiple ways. This message\n\ 00855 # can contain all of them. Which one is actually used is up to the receiver\n\ 00856 # of this message. When adding new representations, one must be careful that\n\ 00857 # they have reasonable lightweight defaults indicating that that particular\n\ 00858 # representation is not available.\n\ 00859 \n\ 00860 # the tf frame to be used as a reference frame when combining information from\n\ 00861 # the different representations below\n\ 00862 string reference_frame_id\n\ 00863 \n\ 00864 # potential recognition results from a database of models\n\ 00865 # all poses are relative to the object reference pose\n\ 00866 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\ 00867 \n\ 00868 # the point cloud itself\n\ 00869 sensor_msgs/PointCloud cluster\n\ 00870 \n\ 00871 # a region of a PointCloud2 of interest\n\ 00872 object_manipulation_msgs/SceneRegion region\n\ 00873 \n\ 00874 # the name that this object has in the collision environment\n\ 00875 string collision_name\n\ 00876 ================================================================================\n\ 00877 MSG: household_objects_database_msgs/DatabaseModelPose\n\ 00878 # Informs that a specific model from the Model Database has been \n\ 00879 # identified at a certain location\n\ 00880 \n\ 00881 # the database id of the model\n\ 00882 int32 model_id\n\ 00883 \n\ 00884 # the pose that it can be found in\n\ 00885 geometry_msgs/PoseStamped pose\n\ 00886 \n\ 00887 # a measure of the confidence level in this detection result\n\ 00888 float32 confidence\n\ 00889 \n\ 00890 # the name of the object detector that generated this detection result\n\ 00891 string detector_name\n\ 00892 \n\ 00893 ================================================================================\n\ 00894 MSG: geometry_msgs/PoseStamped\n\ 00895 # A Pose with reference coordinate frame and timestamp\n\ 00896 Header header\n\ 00897 Pose pose\n\ 00898 \n\ 00899 ================================================================================\n\ 00900 MSG: sensor_msgs/PointCloud\n\ 00901 # This message holds a collection of 3d points, plus optional additional\n\ 00902 # information about each point.\n\ 00903 \n\ 00904 # Time of sensor data acquisition, coordinate frame ID.\n\ 00905 Header header\n\ 00906 \n\ 00907 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00908 # in the frame given in the header.\n\ 00909 geometry_msgs/Point32[] points\n\ 00910 \n\ 00911 # Each channel should have the same number of elements as points array,\n\ 00912 # and the data in each channel should correspond 1:1 with each point.\n\ 00913 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00914 ChannelFloat32[] channels\n\ 00915 \n\ 00916 ================================================================================\n\ 00917 MSG: geometry_msgs/Point32\n\ 00918 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00919 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00920 # \n\ 00921 # This recommendation is to promote interoperability. \n\ 00922 #\n\ 00923 # This message is designed to take up less space when sending\n\ 00924 # lots of points at once, as in the case of a PointCloud. \n\ 00925 \n\ 00926 float32 x\n\ 00927 float32 y\n\ 00928 float32 z\n\ 00929 ================================================================================\n\ 00930 MSG: sensor_msgs/ChannelFloat32\n\ 00931 # This message is used by the PointCloud message to hold optional data\n\ 00932 # associated with each point in the cloud. The length of the values\n\ 00933 # array should be the same as the length of the points array in the\n\ 00934 # PointCloud, and each value should be associated with the corresponding\n\ 00935 # point.\n\ 00936 \n\ 00937 # Channel names in existing practice include:\n\ 00938 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00939 # This is opposite to usual conventions but remains for\n\ 00940 # historical reasons. The newer PointCloud2 message has no\n\ 00941 # such problem.\n\ 00942 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00943 # (R,G,B) values packed into the least significant 24 bits,\n\ 00944 # in order.\n\ 00945 # \"intensity\" - laser or pixel intensity.\n\ 00946 # \"distance\"\n\ 00947 \n\ 00948 # The channel name should give semantics of the channel (e.g.\n\ 00949 # \"intensity\" instead of \"value\").\n\ 00950 string name\n\ 00951 \n\ 00952 # The values array should be 1-1 with the elements of the associated\n\ 00953 # PointCloud.\n\ 00954 float32[] values\n\ 00955 \n\ 00956 ================================================================================\n\ 00957 MSG: object_manipulation_msgs/SceneRegion\n\ 00958 # Point cloud\n\ 00959 sensor_msgs/PointCloud2 cloud\n\ 00960 \n\ 00961 # Indices for the region of interest\n\ 00962 int32[] mask\n\ 00963 \n\ 00964 # One of the corresponding 2D images, if applicable\n\ 00965 sensor_msgs/Image image\n\ 00966 \n\ 00967 # The disparity image, if applicable\n\ 00968 sensor_msgs/Image disparity_image\n\ 00969 \n\ 00970 # Camera info for the camera that took the image\n\ 00971 sensor_msgs/CameraInfo cam_info\n\ 00972 \n\ 00973 # a 3D region of interest for grasp planning\n\ 00974 geometry_msgs/PoseStamped roi_box_pose\n\ 00975 geometry_msgs/Vector3 roi_box_dims\n\ 00976 \n\ 00977 ================================================================================\n\ 00978 MSG: sensor_msgs/PointCloud2\n\ 00979 # This message holds a collection of N-dimensional points, which may\n\ 00980 # contain additional information such as normals, intensity, etc. The\n\ 00981 # point data is stored as a binary blob, its layout described by the\n\ 00982 # contents of the \"fields\" array.\n\ 00983 \n\ 00984 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00985 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00986 # camera depth sensors such as stereo or time-of-flight.\n\ 00987 \n\ 00988 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00989 # points).\n\ 00990 Header header\n\ 00991 \n\ 00992 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00993 # 1 and width is the length of the point cloud.\n\ 00994 uint32 height\n\ 00995 uint32 width\n\ 00996 \n\ 00997 # Describes the channels and their layout in the binary data blob.\n\ 00998 PointField[] fields\n\ 00999 \n\ 01000 bool is_bigendian # Is this data bigendian?\n\ 01001 uint32 point_step # Length of a point in bytes\n\ 01002 uint32 row_step # Length of a row in bytes\n\ 01003 uint8[] data # Actual point data, size is (row_step*height)\n\ 01004 \n\ 01005 bool is_dense # True if there are no invalid points\n\ 01006 \n\ 01007 ================================================================================\n\ 01008 MSG: sensor_msgs/PointField\n\ 01009 # This message holds the description of one point entry in the\n\ 01010 # PointCloud2 message format.\n\ 01011 uint8 INT8 = 1\n\ 01012 uint8 UINT8 = 2\n\ 01013 uint8 INT16 = 3\n\ 01014 uint8 UINT16 = 4\n\ 01015 uint8 INT32 = 5\n\ 01016 uint8 UINT32 = 6\n\ 01017 uint8 FLOAT32 = 7\n\ 01018 uint8 FLOAT64 = 8\n\ 01019 \n\ 01020 string name # Name of field\n\ 01021 uint32 offset # Offset from start of point struct\n\ 01022 uint8 datatype # Datatype enumeration, see above\n\ 01023 uint32 count # How many elements in the field\n\ 01024 \n\ 01025 ================================================================================\n\ 01026 MSG: sensor_msgs/Image\n\ 01027 # This message contains an uncompressed image\n\ 01028 # (0, 0) is at top-left corner of image\n\ 01029 #\n\ 01030 \n\ 01031 Header header # Header timestamp should be acquisition time of image\n\ 01032 # Header frame_id should be optical frame of camera\n\ 01033 # origin of frame should be optical center of cameara\n\ 01034 # +x should point to the right in the image\n\ 01035 # +y should point down in the image\n\ 01036 # +z should point into to plane of the image\n\ 01037 # If the frame_id here and the frame_id of the CameraInfo\n\ 01038 # message associated with the image conflict\n\ 01039 # the behavior is undefined\n\ 01040 \n\ 01041 uint32 height # image height, that is, number of rows\n\ 01042 uint32 width # image width, that is, number of columns\n\ 01043 \n\ 01044 # The legal values for encoding are in file src/image_encodings.cpp\n\ 01045 # If you want to standardize a new string format, join\n\ 01046 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 01047 \n\ 01048 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 01049 # taken from the list of strings in src/image_encodings.cpp\n\ 01050 \n\ 01051 uint8 is_bigendian # is this data bigendian?\n\ 01052 uint32 step # Full row length in bytes\n\ 01053 uint8[] data # actual matrix data, size is (step * rows)\n\ 01054 \n\ 01055 ================================================================================\n\ 01056 MSG: sensor_msgs/CameraInfo\n\ 01057 # This message defines meta information for a camera. It should be in a\n\ 01058 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 01059 # image topics named:\n\ 01060 #\n\ 01061 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 01062 # image - monochrome, distorted\n\ 01063 # image_color - color, distorted\n\ 01064 # image_rect - monochrome, rectified\n\ 01065 # image_rect_color - color, rectified\n\ 01066 #\n\ 01067 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 01068 # for producing the four processed image topics from image_raw and\n\ 01069 # camera_info. The meaning of the camera parameters are described in\n\ 01070 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 01071 #\n\ 01072 # The image_geometry package provides a user-friendly interface to\n\ 01073 # common operations using this meta information. If you want to, e.g.,\n\ 01074 # project a 3d point into image coordinates, we strongly recommend\n\ 01075 # using image_geometry.\n\ 01076 #\n\ 01077 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 01078 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 01079 # indicates an uncalibrated camera.\n\ 01080 \n\ 01081 #######################################################################\n\ 01082 # Image acquisition info #\n\ 01083 #######################################################################\n\ 01084 \n\ 01085 # Time of image acquisition, camera coordinate frame ID\n\ 01086 Header header # Header timestamp should be acquisition time of image\n\ 01087 # Header frame_id should be optical frame of camera\n\ 01088 # origin of frame should be optical center of camera\n\ 01089 # +x should point to the right in the image\n\ 01090 # +y should point down in the image\n\ 01091 # +z should point into the plane of the image\n\ 01092 \n\ 01093 \n\ 01094 #######################################################################\n\ 01095 # Calibration Parameters #\n\ 01096 #######################################################################\n\ 01097 # These are fixed during camera calibration. Their values will be the #\n\ 01098 # same in all messages until the camera is recalibrated. Note that #\n\ 01099 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 01100 # #\n\ 01101 # The internal parameters can be used to warp a raw (distorted) image #\n\ 01102 # to: #\n\ 01103 # 1. An undistorted image (requires D and K) #\n\ 01104 # 2. A rectified image (requires D, K, R) #\n\ 01105 # The projection matrix P projects 3D points into the rectified image.#\n\ 01106 #######################################################################\n\ 01107 \n\ 01108 # The image dimensions with which the camera was calibrated. Normally\n\ 01109 # this will be the full camera resolution in pixels.\n\ 01110 uint32 height\n\ 01111 uint32 width\n\ 01112 \n\ 01113 # The distortion model used. Supported models are listed in\n\ 01114 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 01115 # simple model of radial and tangential distortion - is sufficent.\n\ 01116 string distortion_model\n\ 01117 \n\ 01118 # The distortion parameters, size depending on the distortion model.\n\ 01119 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 01120 float64[] D\n\ 01121 \n\ 01122 # Intrinsic camera matrix for the raw (distorted) images.\n\ 01123 # [fx 0 cx]\n\ 01124 # K = [ 0 fy cy]\n\ 01125 # [ 0 0 1]\n\ 01126 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 01127 # coordinates using the focal lengths (fx, fy) and principal point\n\ 01128 # (cx, cy).\n\ 01129 float64[9] K # 3x3 row-major matrix\n\ 01130 \n\ 01131 # Rectification matrix (stereo cameras only)\n\ 01132 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 01133 # stereo image plane so that epipolar lines in both stereo images are\n\ 01134 # parallel.\n\ 01135 float64[9] R # 3x3 row-major matrix\n\ 01136 \n\ 01137 # Projection/camera matrix\n\ 01138 # [fx' 0 cx' Tx]\n\ 01139 # P = [ 0 fy' cy' Ty]\n\ 01140 # [ 0 0 1 0]\n\ 01141 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 01142 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 01143 # is the normal camera intrinsic matrix for the rectified image.\n\ 01144 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 01145 # coordinates using the focal lengths (fx', fy') and principal point\n\ 01146 # (cx', cy') - these may differ from the values in K.\n\ 01147 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 01148 # also have R = the identity and P[1:3,1:3] = K.\n\ 01149 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 01150 # position of the optical center of the second camera in the first\n\ 01151 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 01152 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 01153 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 01154 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 01155 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 01156 # the rectified image is given by:\n\ 01157 # [u v w]' = P * [X Y Z 1]'\n\ 01158 # x = u / w\n\ 01159 # y = v / w\n\ 01160 # This holds for both images of a stereo pair.\n\ 01161 float64[12] P # 3x4 row-major matrix\n\ 01162 \n\ 01163 \n\ 01164 #######################################################################\n\ 01165 # Operational Parameters #\n\ 01166 #######################################################################\n\ 01167 # These define the image region actually captured by the camera #\n\ 01168 # driver. Although they affect the geometry of the output image, they #\n\ 01169 # may be changed freely without recalibrating the camera. #\n\ 01170 #######################################################################\n\ 01171 \n\ 01172 # Binning refers here to any camera setting which combines rectangular\n\ 01173 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 01174 # resolution of the output image to\n\ 01175 # (width / binning_x) x (height / binning_y).\n\ 01176 # The default values binning_x = binning_y = 0 is considered the same\n\ 01177 # as binning_x = binning_y = 1 (no subsampling).\n\ 01178 uint32 binning_x\n\ 01179 uint32 binning_y\n\ 01180 \n\ 01181 # Region of interest (subwindow of full camera resolution), given in\n\ 01182 # full resolution (unbinned) image coordinates. A particular ROI\n\ 01183 # always denotes the same window of pixels on the camera sensor,\n\ 01184 # regardless of binning settings.\n\ 01185 # The default setting of roi (all values 0) is considered the same as\n\ 01186 # full resolution (roi.width = width, roi.height = height).\n\ 01187 RegionOfInterest roi\n\ 01188 \n\ 01189 ================================================================================\n\ 01190 MSG: sensor_msgs/RegionOfInterest\n\ 01191 # This message is used to specify a region of interest within an image.\n\ 01192 #\n\ 01193 # When used to specify the ROI setting of the camera when the image was\n\ 01194 # taken, the height and width fields should either match the height and\n\ 01195 # width fields for the associated image; or height = width = 0\n\ 01196 # indicates that the full resolution image was captured.\n\ 01197 \n\ 01198 uint32 x_offset # Leftmost pixel of the ROI\n\ 01199 # (0 if the ROI includes the left edge of the image)\n\ 01200 uint32 y_offset # Topmost pixel of the ROI\n\ 01201 # (0 if the ROI includes the top edge of the image)\n\ 01202 uint32 height # Height of ROI\n\ 01203 uint32 width # Width of ROI\n\ 01204 \n\ 01205 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 01206 # ROI in this message. Typically this should be False if the full image\n\ 01207 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 01208 # used).\n\ 01209 bool do_rectify\n\ 01210 \n\ 01211 ================================================================================\n\ 01212 MSG: geometry_msgs/Vector3\n\ 01213 # This represents a vector in free space. \n\ 01214 \n\ 01215 float64 x\n\ 01216 float64 y\n\ 01217 float64 z\n\ 01218 ================================================================================\n\ 01219 MSG: object_manipulation_msgs/GraspPlanningErrorCode\n\ 01220 # Error codes for grasp and place planning\n\ 01221 \n\ 01222 # plan completed as expected\n\ 01223 int32 SUCCESS = 0\n\ 01224 \n\ 01225 # tf error encountered while transforming\n\ 01226 int32 TF_ERROR = 1 \n\ 01227 \n\ 01228 # some other error\n\ 01229 int32 OTHER_ERROR = 2\n\ 01230 \n\ 01231 # the actual value of this error code\n\ 01232 int32 value\n\ 01233 "; 01234 } 01235 01236 static const char* value(const ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> &) { return value(); } 01237 }; 01238 01239 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> > : public TrueType {}; 01240 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> > : public TrueType {}; 01241 } // namespace message_traits 01242 } // namespace ros 01243 01244 namespace ros 01245 { 01246 namespace serialization 01247 { 01248 01249 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> > 01250 { 01251 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01252 { 01253 stream.next(m.header); 01254 stream.next(m.status); 01255 stream.next(m.result); 01256 } 01257 01258 ROS_DECLARE_ALLINONE_SERIALIZER; 01259 }; // struct GraspPlanningActionResult_ 01260 } // namespace serialization 01261 } // namespace ros 01262 01263 namespace ros 01264 { 01265 namespace message_operations 01266 { 01267 01268 template<class ContainerAllocator> 01269 struct Printer< ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> > 01270 { 01271 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::GraspPlanningActionResult_<ContainerAllocator> & v) 01272 { 01273 s << indent << "header: "; 01274 s << std::endl; 01275 Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + " ", v.header); 01276 s << indent << "status: "; 01277 s << std::endl; 01278 Printer< ::actionlib_msgs::GoalStatus_<ContainerAllocator> >::stream(s, indent + " ", v.status); 01279 s << indent << "result: "; 01280 s << std::endl; 01281 Printer< ::object_manipulation_msgs::GraspPlanningResult_<ContainerAllocator> >::stream(s, indent + " ", v.result); 01282 } 01283 }; 01284 01285 01286 } // namespace message_operations 01287 } // namespace ros 01288 01289 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_GRASPPLANNINGACTIONRESULT_H 01290