$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-shared_autonomy/doc_stacks/2013-03-05_12-20-03.150958/shared_autonomy/bosch_object_segmentation_gui/msg/ObjectSegmentationGuiAction.msg */ 00002 #ifndef BOSCH_OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTION_H 00003 #define BOSCH_OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTION_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "bosch_object_segmentation_gui/ObjectSegmentationGuiActionGoal.h" 00018 #include "bosch_object_segmentation_gui/ObjectSegmentationGuiActionResult.h" 00019 #include "bosch_object_segmentation_gui/ObjectSegmentationGuiActionFeedback.h" 00020 00021 namespace bosch_object_segmentation_gui 00022 { 00023 template <class ContainerAllocator> 00024 struct ObjectSegmentationGuiAction_ { 00025 typedef ObjectSegmentationGuiAction_<ContainerAllocator> Type; 00026 00027 ObjectSegmentationGuiAction_() 00028 : action_goal() 00029 , action_result() 00030 , action_feedback() 00031 { 00032 } 00033 00034 ObjectSegmentationGuiAction_(const ContainerAllocator& _alloc) 00035 : action_goal(_alloc) 00036 , action_result(_alloc) 00037 , action_feedback(_alloc) 00038 { 00039 } 00040 00041 typedef ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> _action_goal_type; 00042 ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> action_goal; 00043 00044 typedef ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionResult_<ContainerAllocator> _action_result_type; 00045 ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionResult_<ContainerAllocator> action_result; 00046 00047 typedef ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionFeedback_<ContainerAllocator> _action_feedback_type; 00048 ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionFeedback_<ContainerAllocator> action_feedback; 00049 00050 00051 private: 00052 static const char* __s_getDataType_() { return "bosch_object_segmentation_gui/ObjectSegmentationGuiAction"; } 00053 public: 00054 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00055 00056 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00057 00058 private: 00059 static const char* __s_getMD5Sum_() { return "ef7ff001f65c9b85b7778ccfa48cf741"; } 00060 public: 00061 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00062 00063 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00064 00065 private: 00066 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00067 \n\ 00068 ObjectSegmentationGuiActionGoal action_goal\n\ 00069 ObjectSegmentationGuiActionResult action_result\n\ 00070 ObjectSegmentationGuiActionFeedback action_feedback\n\ 00071 \n\ 00072 ================================================================================\n\ 00073 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiActionGoal\n\ 00074 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00075 \n\ 00076 Header header\n\ 00077 actionlib_msgs/GoalID goal_id\n\ 00078 ObjectSegmentationGuiGoal goal\n\ 00079 \n\ 00080 ================================================================================\n\ 00081 MSG: std_msgs/Header\n\ 00082 # Standard metadata for higher-level stamped data types.\n\ 00083 # This is generally used to communicate timestamped data \n\ 00084 # in a particular coordinate frame.\n\ 00085 # \n\ 00086 # sequence ID: consecutively increasing ID \n\ 00087 uint32 seq\n\ 00088 #Two-integer timestamp that is expressed as:\n\ 00089 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00090 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00091 # time-handling sugar is provided by the client library\n\ 00092 time stamp\n\ 00093 #Frame this data is associated with\n\ 00094 # 0: no frame\n\ 00095 # 1: global frame\n\ 00096 string frame_id\n\ 00097 \n\ 00098 ================================================================================\n\ 00099 MSG: actionlib_msgs/GoalID\n\ 00100 # The stamp should store the time at which this goal was requested.\n\ 00101 # It is used by an action server when it tries to preempt all\n\ 00102 # goals that were requested before a certain time\n\ 00103 time stamp\n\ 00104 \n\ 00105 # The id provides a way to associate feedback and\n\ 00106 # result message with specific goal requests. The id\n\ 00107 # specified must be unique.\n\ 00108 string id\n\ 00109 \n\ 00110 \n\ 00111 ================================================================================\n\ 00112 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiGoal\n\ 00113 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00114 sensor_msgs/Image image\n\ 00115 sensor_msgs/CameraInfo camera_info\n\ 00116 sensor_msgs/Image wide_field\n\ 00117 sensor_msgs/CameraInfo wide_camera_info\n\ 00118 \n\ 00119 sensor_msgs/PointCloud2 point_cloud\n\ 00120 stereo_msgs/DisparityImage disparity_image\n\ 00121 \n\ 00122 \n\ 00123 ================================================================================\n\ 00124 MSG: sensor_msgs/Image\n\ 00125 # This message contains an uncompressed image\n\ 00126 # (0, 0) is at top-left corner of image\n\ 00127 #\n\ 00128 \n\ 00129 Header header # Header timestamp should be acquisition time of image\n\ 00130 # Header frame_id should be optical frame of camera\n\ 00131 # origin of frame should be optical center of cameara\n\ 00132 # +x should point to the right in the image\n\ 00133 # +y should point down in the image\n\ 00134 # +z should point into to plane of the image\n\ 00135 # If the frame_id here and the frame_id of the CameraInfo\n\ 00136 # message associated with the image conflict\n\ 00137 # the behavior is undefined\n\ 00138 \n\ 00139 uint32 height # image height, that is, number of rows\n\ 00140 uint32 width # image width, that is, number of columns\n\ 00141 \n\ 00142 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00143 # If you want to standardize a new string format, join\n\ 00144 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00145 \n\ 00146 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00147 # taken from the list of strings in src/image_encodings.cpp\n\ 00148 \n\ 00149 uint8 is_bigendian # is this data bigendian?\n\ 00150 uint32 step # Full row length in bytes\n\ 00151 uint8[] data # actual matrix data, size is (step * rows)\n\ 00152 \n\ 00153 ================================================================================\n\ 00154 MSG: sensor_msgs/CameraInfo\n\ 00155 # This message defines meta information for a camera. It should be in a\n\ 00156 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00157 # image topics named:\n\ 00158 #\n\ 00159 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00160 # image - monochrome, distorted\n\ 00161 # image_color - color, distorted\n\ 00162 # image_rect - monochrome, rectified\n\ 00163 # image_rect_color - color, rectified\n\ 00164 #\n\ 00165 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00166 # for producing the four processed image topics from image_raw and\n\ 00167 # camera_info. The meaning of the camera parameters are described in\n\ 00168 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00169 #\n\ 00170 # The image_geometry package provides a user-friendly interface to\n\ 00171 # common operations using this meta information. If you want to, e.g.,\n\ 00172 # project a 3d point into image coordinates, we strongly recommend\n\ 00173 # using image_geometry.\n\ 00174 #\n\ 00175 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00176 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00177 # indicates an uncalibrated camera.\n\ 00178 \n\ 00179 #######################################################################\n\ 00180 # Image acquisition info #\n\ 00181 #######################################################################\n\ 00182 \n\ 00183 # Time of image acquisition, camera coordinate frame ID\n\ 00184 Header header # Header timestamp should be acquisition time of image\n\ 00185 # Header frame_id should be optical frame of camera\n\ 00186 # origin of frame should be optical center of camera\n\ 00187 # +x should point to the right in the image\n\ 00188 # +y should point down in the image\n\ 00189 # +z should point into the plane of the image\n\ 00190 \n\ 00191 \n\ 00192 #######################################################################\n\ 00193 # Calibration Parameters #\n\ 00194 #######################################################################\n\ 00195 # These are fixed during camera calibration. Their values will be the #\n\ 00196 # same in all messages until the camera is recalibrated. Note that #\n\ 00197 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00198 # #\n\ 00199 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00200 # to: #\n\ 00201 # 1. An undistorted image (requires D and K) #\n\ 00202 # 2. A rectified image (requires D, K, R) #\n\ 00203 # The projection matrix P projects 3D points into the rectified image.#\n\ 00204 #######################################################################\n\ 00205 \n\ 00206 # The image dimensions with which the camera was calibrated. Normally\n\ 00207 # this will be the full camera resolution in pixels.\n\ 00208 uint32 height\n\ 00209 uint32 width\n\ 00210 \n\ 00211 # The distortion model used. Supported models are listed in\n\ 00212 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00213 # simple model of radial and tangential distortion - is sufficent.\n\ 00214 string distortion_model\n\ 00215 \n\ 00216 # The distortion parameters, size depending on the distortion model.\n\ 00217 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00218 float64[] D\n\ 00219 \n\ 00220 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00221 # [fx 0 cx]\n\ 00222 # K = [ 0 fy cy]\n\ 00223 # [ 0 0 1]\n\ 00224 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00225 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00226 # (cx, cy).\n\ 00227 float64[9] K # 3x3 row-major matrix\n\ 00228 \n\ 00229 # Rectification matrix (stereo cameras only)\n\ 00230 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00231 # stereo image plane so that epipolar lines in both stereo images are\n\ 00232 # parallel.\n\ 00233 float64[9] R # 3x3 row-major matrix\n\ 00234 \n\ 00235 # Projection/camera matrix\n\ 00236 # [fx' 0 cx' Tx]\n\ 00237 # P = [ 0 fy' cy' Ty]\n\ 00238 # [ 0 0 1 0]\n\ 00239 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00240 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00241 # is the normal camera intrinsic matrix for the rectified image.\n\ 00242 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00243 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00244 # (cx', cy') - these may differ from the values in K.\n\ 00245 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00246 # also have R = the identity and P[1:3,1:3] = K.\n\ 00247 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00248 # position of the optical center of the second camera in the first\n\ 00249 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00250 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00251 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00252 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00253 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00254 # the rectified image is given by:\n\ 00255 # [u v w]' = P * [X Y Z 1]'\n\ 00256 # x = u / w\n\ 00257 # y = v / w\n\ 00258 # This holds for both images of a stereo pair.\n\ 00259 float64[12] P # 3x4 row-major matrix\n\ 00260 \n\ 00261 \n\ 00262 #######################################################################\n\ 00263 # Operational Parameters #\n\ 00264 #######################################################################\n\ 00265 # These define the image region actually captured by the camera #\n\ 00266 # driver. Although they affect the geometry of the output image, they #\n\ 00267 # may be changed freely without recalibrating the camera. #\n\ 00268 #######################################################################\n\ 00269 \n\ 00270 # Binning refers here to any camera setting which combines rectangular\n\ 00271 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00272 # resolution of the output image to\n\ 00273 # (width / binning_x) x (height / binning_y).\n\ 00274 # The default values binning_x = binning_y = 0 is considered the same\n\ 00275 # as binning_x = binning_y = 1 (no subsampling).\n\ 00276 uint32 binning_x\n\ 00277 uint32 binning_y\n\ 00278 \n\ 00279 # Region of interest (subwindow of full camera resolution), given in\n\ 00280 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00281 # always denotes the same window of pixels on the camera sensor,\n\ 00282 # regardless of binning settings.\n\ 00283 # The default setting of roi (all values 0) is considered the same as\n\ 00284 # full resolution (roi.width = width, roi.height = height).\n\ 00285 RegionOfInterest roi\n\ 00286 \n\ 00287 ================================================================================\n\ 00288 MSG: sensor_msgs/RegionOfInterest\n\ 00289 # This message is used to specify a region of interest within an image.\n\ 00290 #\n\ 00291 # When used to specify the ROI setting of the camera when the image was\n\ 00292 # taken, the height and width fields should either match the height and\n\ 00293 # width fields for the associated image; or height = width = 0\n\ 00294 # indicates that the full resolution image was captured.\n\ 00295 \n\ 00296 uint32 x_offset # Leftmost pixel of the ROI\n\ 00297 # (0 if the ROI includes the left edge of the image)\n\ 00298 uint32 y_offset # Topmost pixel of the ROI\n\ 00299 # (0 if the ROI includes the top edge of the image)\n\ 00300 uint32 height # Height of ROI\n\ 00301 uint32 width # Width of ROI\n\ 00302 \n\ 00303 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00304 # ROI in this message. Typically this should be False if the full image\n\ 00305 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00306 # used).\n\ 00307 bool do_rectify\n\ 00308 \n\ 00309 ================================================================================\n\ 00310 MSG: sensor_msgs/PointCloud2\n\ 00311 # This message holds a collection of N-dimensional points, which may\n\ 00312 # contain additional information such as normals, intensity, etc. The\n\ 00313 # point data is stored as a binary blob, its layout described by the\n\ 00314 # contents of the \"fields\" array.\n\ 00315 \n\ 00316 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00317 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00318 # camera depth sensors such as stereo or time-of-flight.\n\ 00319 \n\ 00320 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00321 # points).\n\ 00322 Header header\n\ 00323 \n\ 00324 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00325 # 1 and width is the length of the point cloud.\n\ 00326 uint32 height\n\ 00327 uint32 width\n\ 00328 \n\ 00329 # Describes the channels and their layout in the binary data blob.\n\ 00330 PointField[] fields\n\ 00331 \n\ 00332 bool is_bigendian # Is this data bigendian?\n\ 00333 uint32 point_step # Length of a point in bytes\n\ 00334 uint32 row_step # Length of a row in bytes\n\ 00335 uint8[] data # Actual point data, size is (row_step*height)\n\ 00336 \n\ 00337 bool is_dense # True if there are no invalid points\n\ 00338 \n\ 00339 ================================================================================\n\ 00340 MSG: sensor_msgs/PointField\n\ 00341 # This message holds the description of one point entry in the\n\ 00342 # PointCloud2 message format.\n\ 00343 uint8 INT8 = 1\n\ 00344 uint8 UINT8 = 2\n\ 00345 uint8 INT16 = 3\n\ 00346 uint8 UINT16 = 4\n\ 00347 uint8 INT32 = 5\n\ 00348 uint8 UINT32 = 6\n\ 00349 uint8 FLOAT32 = 7\n\ 00350 uint8 FLOAT64 = 8\n\ 00351 \n\ 00352 string name # Name of field\n\ 00353 uint32 offset # Offset from start of point struct\n\ 00354 uint8 datatype # Datatype enumeration, see above\n\ 00355 uint32 count # How many elements in the field\n\ 00356 \n\ 00357 ================================================================================\n\ 00358 MSG: stereo_msgs/DisparityImage\n\ 00359 # Separate header for compatibility with current TimeSynchronizer.\n\ 00360 # Likely to be removed in a later release, use image.header instead.\n\ 00361 Header header\n\ 00362 \n\ 00363 # Floating point disparity image. The disparities are pre-adjusted for any\n\ 00364 # x-offset between the principal points of the two cameras (in the case\n\ 00365 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\ 00366 sensor_msgs/Image image\n\ 00367 \n\ 00368 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\ 00369 float32 f # Focal length, pixels\n\ 00370 float32 T # Baseline, world units\n\ 00371 \n\ 00372 # Subwindow of (potentially) valid disparity values.\n\ 00373 sensor_msgs/RegionOfInterest valid_window\n\ 00374 \n\ 00375 # The range of disparities searched.\n\ 00376 # In the disparity image, any disparity less than min_disparity is invalid.\n\ 00377 # The disparity search range defines the horopter, or 3D volume that the\n\ 00378 # stereo algorithm can \"see\". Points with Z outside of:\n\ 00379 # Z_min = fT / max_disparity\n\ 00380 # Z_max = fT / min_disparity\n\ 00381 # could not be found.\n\ 00382 float32 min_disparity\n\ 00383 float32 max_disparity\n\ 00384 \n\ 00385 # Smallest allowed disparity increment. The smallest achievable depth range\n\ 00386 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\ 00387 float32 delta_d\n\ 00388 \n\ 00389 ================================================================================\n\ 00390 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiActionResult\n\ 00391 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00392 \n\ 00393 Header header\n\ 00394 actionlib_msgs/GoalStatus status\n\ 00395 ObjectSegmentationGuiResult result\n\ 00396 \n\ 00397 ================================================================================\n\ 00398 MSG: actionlib_msgs/GoalStatus\n\ 00399 GoalID goal_id\n\ 00400 uint8 status\n\ 00401 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 00402 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 00403 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 00404 # and has since completed its execution (Terminal State)\n\ 00405 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 00406 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 00407 # to some failure (Terminal State)\n\ 00408 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 00409 # because the goal was unattainable or invalid (Terminal State)\n\ 00410 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 00411 # and has not yet completed execution\n\ 00412 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 00413 # but the action server has not yet confirmed that the goal is canceled\n\ 00414 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 00415 # and was successfully cancelled (Terminal State)\n\ 00416 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 00417 # sent over the wire by an action server\n\ 00418 \n\ 00419 #Allow for the user to associate a string with GoalStatus for debugging\n\ 00420 string text\n\ 00421 \n\ 00422 \n\ 00423 ================================================================================\n\ 00424 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiResult\n\ 00425 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00426 # The information for the plane that has been detected\n\ 00427 tabletop_object_detector/Table table\n\ 00428 \n\ 00429 # The raw clusters detected in the scan \n\ 00430 sensor_msgs/PointCloud[] clusters\n\ 00431 \n\ 00432 # Whether the detection has succeeded or failed\n\ 00433 int32 NO_CLOUD_RECEIVED = 1\n\ 00434 int32 NO_TABLE = 2\n\ 00435 int32 OTHER_ERROR = 3\n\ 00436 int32 SUCCESS = 4\n\ 00437 int32 result\n\ 00438 \n\ 00439 \n\ 00440 ================================================================================\n\ 00441 MSG: tabletop_object_detector/Table\n\ 00442 # Informs that a planar table has been detected at a given location\n\ 00443 \n\ 00444 # The pose gives you the transform that take you to the coordinate system\n\ 00445 # of the table, with the origin somewhere in the table plane and the \n\ 00446 # z axis normal to the plane\n\ 00447 geometry_msgs/PoseStamped pose\n\ 00448 \n\ 00449 # These values give you the observed extents of the table, along x and y,\n\ 00450 # in the table's own coordinate system (above)\n\ 00451 # there is no guarantee that the origin of the table coordinate system is\n\ 00452 # inside the boundary defined by these values. \n\ 00453 float32 x_min\n\ 00454 float32 x_max\n\ 00455 float32 y_min\n\ 00456 float32 y_max\n\ 00457 \n\ 00458 # There is no guarantee that the table does NOT extend further than these \n\ 00459 # values; this is just as far as we've observed it.\n\ 00460 \n\ 00461 \n\ 00462 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\ 00463 arm_navigation_msgs/Shape convex_hull\n\ 00464 \n\ 00465 ================================================================================\n\ 00466 MSG: geometry_msgs/PoseStamped\n\ 00467 # A Pose with reference coordinate frame and timestamp\n\ 00468 Header header\n\ 00469 Pose pose\n\ 00470 \n\ 00471 ================================================================================\n\ 00472 MSG: geometry_msgs/Pose\n\ 00473 # A representation of pose in free space, composed of postion and orientation. \n\ 00474 Point position\n\ 00475 Quaternion orientation\n\ 00476 \n\ 00477 ================================================================================\n\ 00478 MSG: geometry_msgs/Point\n\ 00479 # This contains the position of a point in free space\n\ 00480 float64 x\n\ 00481 float64 y\n\ 00482 float64 z\n\ 00483 \n\ 00484 ================================================================================\n\ 00485 MSG: geometry_msgs/Quaternion\n\ 00486 # This represents an orientation in free space in quaternion form.\n\ 00487 \n\ 00488 float64 x\n\ 00489 float64 y\n\ 00490 float64 z\n\ 00491 float64 w\n\ 00492 \n\ 00493 ================================================================================\n\ 00494 MSG: arm_navigation_msgs/Shape\n\ 00495 byte SPHERE=0\n\ 00496 byte BOX=1\n\ 00497 byte CYLINDER=2\n\ 00498 byte MESH=3\n\ 00499 \n\ 00500 byte type\n\ 00501 \n\ 00502 \n\ 00503 #### define sphere, box, cylinder ####\n\ 00504 # the origin of each shape is considered at the shape's center\n\ 00505 \n\ 00506 # for sphere\n\ 00507 # radius := dimensions[0]\n\ 00508 \n\ 00509 # for cylinder\n\ 00510 # radius := dimensions[0]\n\ 00511 # length := dimensions[1]\n\ 00512 # the length is along the Z axis\n\ 00513 \n\ 00514 # for box\n\ 00515 # size_x := dimensions[0]\n\ 00516 # size_y := dimensions[1]\n\ 00517 # size_z := dimensions[2]\n\ 00518 float64[] dimensions\n\ 00519 \n\ 00520 \n\ 00521 #### define mesh ####\n\ 00522 \n\ 00523 # list of triangles; triangle k is defined by tre vertices located\n\ 00524 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 00525 int32[] triangles\n\ 00526 geometry_msgs/Point[] vertices\n\ 00527 \n\ 00528 ================================================================================\n\ 00529 MSG: sensor_msgs/PointCloud\n\ 00530 # This message holds a collection of 3d points, plus optional additional\n\ 00531 # information about each point.\n\ 00532 \n\ 00533 # Time of sensor data acquisition, coordinate frame ID.\n\ 00534 Header header\n\ 00535 \n\ 00536 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 00537 # in the frame given in the header.\n\ 00538 geometry_msgs/Point32[] points\n\ 00539 \n\ 00540 # Each channel should have the same number of elements as points array,\n\ 00541 # and the data in each channel should correspond 1:1 with each point.\n\ 00542 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 00543 ChannelFloat32[] channels\n\ 00544 \n\ 00545 ================================================================================\n\ 00546 MSG: geometry_msgs/Point32\n\ 00547 # This contains the position of a point in free space(with 32 bits of precision).\n\ 00548 # It is recommeded to use Point wherever possible instead of Point32. \n\ 00549 # \n\ 00550 # This recommendation is to promote interoperability. \n\ 00551 #\n\ 00552 # This message is designed to take up less space when sending\n\ 00553 # lots of points at once, as in the case of a PointCloud. \n\ 00554 \n\ 00555 float32 x\n\ 00556 float32 y\n\ 00557 float32 z\n\ 00558 ================================================================================\n\ 00559 MSG: sensor_msgs/ChannelFloat32\n\ 00560 # This message is used by the PointCloud message to hold optional data\n\ 00561 # associated with each point in the cloud. The length of the values\n\ 00562 # array should be the same as the length of the points array in the\n\ 00563 # PointCloud, and each value should be associated with the corresponding\n\ 00564 # point.\n\ 00565 \n\ 00566 # Channel names in existing practice include:\n\ 00567 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 00568 # This is opposite to usual conventions but remains for\n\ 00569 # historical reasons. The newer PointCloud2 message has no\n\ 00570 # such problem.\n\ 00571 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 00572 # (R,G,B) values packed into the least significant 24 bits,\n\ 00573 # in order.\n\ 00574 # \"intensity\" - laser or pixel intensity.\n\ 00575 # \"distance\"\n\ 00576 \n\ 00577 # The channel name should give semantics of the channel (e.g.\n\ 00578 # \"intensity\" instead of \"value\").\n\ 00579 string name\n\ 00580 \n\ 00581 # The values array should be 1-1 with the elements of the associated\n\ 00582 # PointCloud.\n\ 00583 float32[] values\n\ 00584 \n\ 00585 ================================================================================\n\ 00586 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiActionFeedback\n\ 00587 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00588 \n\ 00589 Header header\n\ 00590 actionlib_msgs/GoalStatus status\n\ 00591 ObjectSegmentationGuiFeedback feedback\n\ 00592 \n\ 00593 ================================================================================\n\ 00594 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiFeedback\n\ 00595 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00596 \n\ 00597 \n\ 00598 "; } 00599 public: 00600 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00601 00602 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00603 00604 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00605 { 00606 ros::serialization::OStream stream(write_ptr, 1000000000); 00607 ros::serialization::serialize(stream, action_goal); 00608 ros::serialization::serialize(stream, action_result); 00609 ros::serialization::serialize(stream, action_feedback); 00610 return stream.getData(); 00611 } 00612 00613 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00614 { 00615 ros::serialization::IStream stream(read_ptr, 1000000000); 00616 ros::serialization::deserialize(stream, action_goal); 00617 ros::serialization::deserialize(stream, action_result); 00618 ros::serialization::deserialize(stream, action_feedback); 00619 return stream.getData(); 00620 } 00621 00622 ROS_DEPRECATED virtual uint32_t serializationLength() const 00623 { 00624 uint32_t size = 0; 00625 size += ros::serialization::serializationLength(action_goal); 00626 size += ros::serialization::serializationLength(action_result); 00627 size += ros::serialization::serializationLength(action_feedback); 00628 return size; 00629 } 00630 00631 typedef boost::shared_ptr< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > Ptr; 00632 typedef boost::shared_ptr< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> const> ConstPtr; 00633 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00634 }; // struct ObjectSegmentationGuiAction 00635 typedef ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<std::allocator<void> > ObjectSegmentationGuiAction; 00636 00637 typedef boost::shared_ptr< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction> ObjectSegmentationGuiActionPtr; 00638 typedef boost::shared_ptr< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction const> ObjectSegmentationGuiActionConstPtr; 00639 00640 00641 template<typename ContainerAllocator> 00642 std::ostream& operator<<(std::ostream& s, const ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> & v) 00643 { 00644 ros::message_operations::Printer< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> >::stream(s, "", v); 00645 return s;} 00646 00647 } // namespace bosch_object_segmentation_gui 00648 00649 namespace ros 00650 { 00651 namespace message_traits 00652 { 00653 template<class ContainerAllocator> struct IsMessage< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > : public TrueType {}; 00654 template<class ContainerAllocator> struct IsMessage< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> const> : public TrueType {}; 00655 template<class ContainerAllocator> 00656 struct MD5Sum< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > { 00657 static const char* value() 00658 { 00659 return "ef7ff001f65c9b85b7778ccfa48cf741"; 00660 } 00661 00662 static const char* value(const ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> &) { return value(); } 00663 static const uint64_t static_value1 = 0xef7ff001f65c9b85ULL; 00664 static const uint64_t static_value2 = 0xb7778ccfa48cf741ULL; 00665 }; 00666 00667 template<class ContainerAllocator> 00668 struct DataType< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > { 00669 static const char* value() 00670 { 00671 return "bosch_object_segmentation_gui/ObjectSegmentationGuiAction"; 00672 } 00673 00674 static const char* value(const ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> &) { return value(); } 00675 }; 00676 00677 template<class ContainerAllocator> 00678 struct Definition< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > { 00679 static const char* value() 00680 { 00681 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00682 \n\ 00683 ObjectSegmentationGuiActionGoal action_goal\n\ 00684 ObjectSegmentationGuiActionResult action_result\n\ 00685 ObjectSegmentationGuiActionFeedback action_feedback\n\ 00686 \n\ 00687 ================================================================================\n\ 00688 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiActionGoal\n\ 00689 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00690 \n\ 00691 Header header\n\ 00692 actionlib_msgs/GoalID goal_id\n\ 00693 ObjectSegmentationGuiGoal goal\n\ 00694 \n\ 00695 ================================================================================\n\ 00696 MSG: std_msgs/Header\n\ 00697 # Standard metadata for higher-level stamped data types.\n\ 00698 # This is generally used to communicate timestamped data \n\ 00699 # in a particular coordinate frame.\n\ 00700 # \n\ 00701 # sequence ID: consecutively increasing ID \n\ 00702 uint32 seq\n\ 00703 #Two-integer timestamp that is expressed as:\n\ 00704 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00705 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00706 # time-handling sugar is provided by the client library\n\ 00707 time stamp\n\ 00708 #Frame this data is associated with\n\ 00709 # 0: no frame\n\ 00710 # 1: global frame\n\ 00711 string frame_id\n\ 00712 \n\ 00713 ================================================================================\n\ 00714 MSG: actionlib_msgs/GoalID\n\ 00715 # The stamp should store the time at which this goal was requested.\n\ 00716 # It is used by an action server when it tries to preempt all\n\ 00717 # goals that were requested before a certain time\n\ 00718 time stamp\n\ 00719 \n\ 00720 # The id provides a way to associate feedback and\n\ 00721 # result message with specific goal requests. The id\n\ 00722 # specified must be unique.\n\ 00723 string id\n\ 00724 \n\ 00725 \n\ 00726 ================================================================================\n\ 00727 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiGoal\n\ 00728 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 00729 sensor_msgs/Image image\n\ 00730 sensor_msgs/CameraInfo camera_info\n\ 00731 sensor_msgs/Image wide_field\n\ 00732 sensor_msgs/CameraInfo wide_camera_info\n\ 00733 \n\ 00734 sensor_msgs/PointCloud2 point_cloud\n\ 00735 stereo_msgs/DisparityImage disparity_image\n\ 00736 \n\ 00737 \n\ 00738 ================================================================================\n\ 00739 MSG: sensor_msgs/Image\n\ 00740 # This message contains an uncompressed image\n\ 00741 # (0, 0) is at top-left corner of image\n\ 00742 #\n\ 00743 \n\ 00744 Header header # Header timestamp should be acquisition time of image\n\ 00745 # Header frame_id should be optical frame of camera\n\ 00746 # origin of frame should be optical center of cameara\n\ 00747 # +x should point to the right in the image\n\ 00748 # +y should point down in the image\n\ 00749 # +z should point into to plane of the image\n\ 00750 # If the frame_id here and the frame_id of the CameraInfo\n\ 00751 # message associated with the image conflict\n\ 00752 # the behavior is undefined\n\ 00753 \n\ 00754 uint32 height # image height, that is, number of rows\n\ 00755 uint32 width # image width, that is, number of columns\n\ 00756 \n\ 00757 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00758 # If you want to standardize a new string format, join\n\ 00759 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00760 \n\ 00761 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00762 # taken from the list of strings in src/image_encodings.cpp\n\ 00763 \n\ 00764 uint8 is_bigendian # is this data bigendian?\n\ 00765 uint32 step # Full row length in bytes\n\ 00766 uint8[] data # actual matrix data, size is (step * rows)\n\ 00767 \n\ 00768 ================================================================================\n\ 00769 MSG: sensor_msgs/CameraInfo\n\ 00770 # This message defines meta information for a camera. It should be in a\n\ 00771 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00772 # image topics named:\n\ 00773 #\n\ 00774 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00775 # image - monochrome, distorted\n\ 00776 # image_color - color, distorted\n\ 00777 # image_rect - monochrome, rectified\n\ 00778 # image_rect_color - color, rectified\n\ 00779 #\n\ 00780 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00781 # for producing the four processed image topics from image_raw and\n\ 00782 # camera_info. The meaning of the camera parameters are described in\n\ 00783 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00784 #\n\ 00785 # The image_geometry package provides a user-friendly interface to\n\ 00786 # common operations using this meta information. If you want to, e.g.,\n\ 00787 # project a 3d point into image coordinates, we strongly recommend\n\ 00788 # using image_geometry.\n\ 00789 #\n\ 00790 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00791 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00792 # indicates an uncalibrated camera.\n\ 00793 \n\ 00794 #######################################################################\n\ 00795 # Image acquisition info #\n\ 00796 #######################################################################\n\ 00797 \n\ 00798 # Time of image acquisition, camera coordinate frame ID\n\ 00799 Header header # Header timestamp should be acquisition time of image\n\ 00800 # Header frame_id should be optical frame of camera\n\ 00801 # origin of frame should be optical center of camera\n\ 00802 # +x should point to the right in the image\n\ 00803 # +y should point down in the image\n\ 00804 # +z should point into the plane of the image\n\ 00805 \n\ 00806 \n\ 00807 #######################################################################\n\ 00808 # Calibration Parameters #\n\ 00809 #######################################################################\n\ 00810 # These are fixed during camera calibration. Their values will be the #\n\ 00811 # same in all messages until the camera is recalibrated. Note that #\n\ 00812 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00813 # #\n\ 00814 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00815 # to: #\n\ 00816 # 1. An undistorted image (requires D and K) #\n\ 00817 # 2. A rectified image (requires D, K, R) #\n\ 00818 # The projection matrix P projects 3D points into the rectified image.#\n\ 00819 #######################################################################\n\ 00820 \n\ 00821 # The image dimensions with which the camera was calibrated. Normally\n\ 00822 # this will be the full camera resolution in pixels.\n\ 00823 uint32 height\n\ 00824 uint32 width\n\ 00825 \n\ 00826 # The distortion model used. Supported models are listed in\n\ 00827 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00828 # simple model of radial and tangential distortion - is sufficent.\n\ 00829 string distortion_model\n\ 00830 \n\ 00831 # The distortion parameters, size depending on the distortion model.\n\ 00832 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00833 float64[] D\n\ 00834 \n\ 00835 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00836 # [fx 0 cx]\n\ 00837 # K = [ 0 fy cy]\n\ 00838 # [ 0 0 1]\n\ 00839 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00840 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00841 # (cx, cy).\n\ 00842 float64[9] K # 3x3 row-major matrix\n\ 00843 \n\ 00844 # Rectification matrix (stereo cameras only)\n\ 00845 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00846 # stereo image plane so that epipolar lines in both stereo images are\n\ 00847 # parallel.\n\ 00848 float64[9] R # 3x3 row-major matrix\n\ 00849 \n\ 00850 # Projection/camera matrix\n\ 00851 # [fx' 0 cx' Tx]\n\ 00852 # P = [ 0 fy' cy' Ty]\n\ 00853 # [ 0 0 1 0]\n\ 00854 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00855 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00856 # is the normal camera intrinsic matrix for the rectified image.\n\ 00857 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00858 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00859 # (cx', cy') - these may differ from the values in K.\n\ 00860 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00861 # also have R = the identity and P[1:3,1:3] = K.\n\ 00862 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00863 # position of the optical center of the second camera in the first\n\ 00864 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00865 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00866 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00867 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00868 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00869 # the rectified image is given by:\n\ 00870 # [u v w]' = P * [X Y Z 1]'\n\ 00871 # x = u / w\n\ 00872 # y = v / w\n\ 00873 # This holds for both images of a stereo pair.\n\ 00874 float64[12] P # 3x4 row-major matrix\n\ 00875 \n\ 00876 \n\ 00877 #######################################################################\n\ 00878 # Operational Parameters #\n\ 00879 #######################################################################\n\ 00880 # These define the image region actually captured by the camera #\n\ 00881 # driver. Although they affect the geometry of the output image, they #\n\ 00882 # may be changed freely without recalibrating the camera. #\n\ 00883 #######################################################################\n\ 00884 \n\ 00885 # Binning refers here to any camera setting which combines rectangular\n\ 00886 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00887 # resolution of the output image to\n\ 00888 # (width / binning_x) x (height / binning_y).\n\ 00889 # The default values binning_x = binning_y = 0 is considered the same\n\ 00890 # as binning_x = binning_y = 1 (no subsampling).\n\ 00891 uint32 binning_x\n\ 00892 uint32 binning_y\n\ 00893 \n\ 00894 # Region of interest (subwindow of full camera resolution), given in\n\ 00895 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00896 # always denotes the same window of pixels on the camera sensor,\n\ 00897 # regardless of binning settings.\n\ 00898 # The default setting of roi (all values 0) is considered the same as\n\ 00899 # full resolution (roi.width = width, roi.height = height).\n\ 00900 RegionOfInterest roi\n\ 00901 \n\ 00902 ================================================================================\n\ 00903 MSG: sensor_msgs/RegionOfInterest\n\ 00904 # This message is used to specify a region of interest within an image.\n\ 00905 #\n\ 00906 # When used to specify the ROI setting of the camera when the image was\n\ 00907 # taken, the height and width fields should either match the height and\n\ 00908 # width fields for the associated image; or height = width = 0\n\ 00909 # indicates that the full resolution image was captured.\n\ 00910 \n\ 00911 uint32 x_offset # Leftmost pixel of the ROI\n\ 00912 # (0 if the ROI includes the left edge of the image)\n\ 00913 uint32 y_offset # Topmost pixel of the ROI\n\ 00914 # (0 if the ROI includes the top edge of the image)\n\ 00915 uint32 height # Height of ROI\n\ 00916 uint32 width # Width of ROI\n\ 00917 \n\ 00918 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00919 # ROI in this message. Typically this should be False if the full image\n\ 00920 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00921 # used).\n\ 00922 bool do_rectify\n\ 00923 \n\ 00924 ================================================================================\n\ 00925 MSG: sensor_msgs/PointCloud2\n\ 00926 # This message holds a collection of N-dimensional points, which may\n\ 00927 # contain additional information such as normals, intensity, etc. The\n\ 00928 # point data is stored as a binary blob, its layout described by the\n\ 00929 # contents of the \"fields\" array.\n\ 00930 \n\ 00931 # The point cloud data may be organized 2d (image-like) or 1d\n\ 00932 # (unordered). Point clouds organized as 2d images may be produced by\n\ 00933 # camera depth sensors such as stereo or time-of-flight.\n\ 00934 \n\ 00935 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\ 00936 # points).\n\ 00937 Header header\n\ 00938 \n\ 00939 # 2D structure of the point cloud. If the cloud is unordered, height is\n\ 00940 # 1 and width is the length of the point cloud.\n\ 00941 uint32 height\n\ 00942 uint32 width\n\ 00943 \n\ 00944 # Describes the channels and their layout in the binary data blob.\n\ 00945 PointField[] fields\n\ 00946 \n\ 00947 bool is_bigendian # Is this data bigendian?\n\ 00948 uint32 point_step # Length of a point in bytes\n\ 00949 uint32 row_step # Length of a row in bytes\n\ 00950 uint8[] data # Actual point data, size is (row_step*height)\n\ 00951 \n\ 00952 bool is_dense # True if there are no invalid points\n\ 00953 \n\ 00954 ================================================================================\n\ 00955 MSG: sensor_msgs/PointField\n\ 00956 # This message holds the description of one point entry in the\n\ 00957 # PointCloud2 message format.\n\ 00958 uint8 INT8 = 1\n\ 00959 uint8 UINT8 = 2\n\ 00960 uint8 INT16 = 3\n\ 00961 uint8 UINT16 = 4\n\ 00962 uint8 INT32 = 5\n\ 00963 uint8 UINT32 = 6\n\ 00964 uint8 FLOAT32 = 7\n\ 00965 uint8 FLOAT64 = 8\n\ 00966 \n\ 00967 string name # Name of field\n\ 00968 uint32 offset # Offset from start of point struct\n\ 00969 uint8 datatype # Datatype enumeration, see above\n\ 00970 uint32 count # How many elements in the field\n\ 00971 \n\ 00972 ================================================================================\n\ 00973 MSG: stereo_msgs/DisparityImage\n\ 00974 # Separate header for compatibility with current TimeSynchronizer.\n\ 00975 # Likely to be removed in a later release, use image.header instead.\n\ 00976 Header header\n\ 00977 \n\ 00978 # Floating point disparity image. The disparities are pre-adjusted for any\n\ 00979 # x-offset between the principal points of the two cameras (in the case\n\ 00980 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\ 00981 sensor_msgs/Image image\n\ 00982 \n\ 00983 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\ 00984 float32 f # Focal length, pixels\n\ 00985 float32 T # Baseline, world units\n\ 00986 \n\ 00987 # Subwindow of (potentially) valid disparity values.\n\ 00988 sensor_msgs/RegionOfInterest valid_window\n\ 00989 \n\ 00990 # The range of disparities searched.\n\ 00991 # In the disparity image, any disparity less than min_disparity is invalid.\n\ 00992 # The disparity search range defines the horopter, or 3D volume that the\n\ 00993 # stereo algorithm can \"see\". Points with Z outside of:\n\ 00994 # Z_min = fT / max_disparity\n\ 00995 # Z_max = fT / min_disparity\n\ 00996 # could not be found.\n\ 00997 float32 min_disparity\n\ 00998 float32 max_disparity\n\ 00999 \n\ 01000 # Smallest allowed disparity increment. The smallest achievable depth range\n\ 01001 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\ 01002 float32 delta_d\n\ 01003 \n\ 01004 ================================================================================\n\ 01005 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiActionResult\n\ 01006 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01007 \n\ 01008 Header header\n\ 01009 actionlib_msgs/GoalStatus status\n\ 01010 ObjectSegmentationGuiResult result\n\ 01011 \n\ 01012 ================================================================================\n\ 01013 MSG: actionlib_msgs/GoalStatus\n\ 01014 GoalID goal_id\n\ 01015 uint8 status\n\ 01016 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\ 01017 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\ 01018 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\ 01019 # and has since completed its execution (Terminal State)\n\ 01020 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\ 01021 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\ 01022 # to some failure (Terminal State)\n\ 01023 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\ 01024 # because the goal was unattainable or invalid (Terminal State)\n\ 01025 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\ 01026 # and has not yet completed execution\n\ 01027 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\ 01028 # but the action server has not yet confirmed that the goal is canceled\n\ 01029 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\ 01030 # and was successfully cancelled (Terminal State)\n\ 01031 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\ 01032 # sent over the wire by an action server\n\ 01033 \n\ 01034 #Allow for the user to associate a string with GoalStatus for debugging\n\ 01035 string text\n\ 01036 \n\ 01037 \n\ 01038 ================================================================================\n\ 01039 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiResult\n\ 01040 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01041 # The information for the plane that has been detected\n\ 01042 tabletop_object_detector/Table table\n\ 01043 \n\ 01044 # The raw clusters detected in the scan \n\ 01045 sensor_msgs/PointCloud[] clusters\n\ 01046 \n\ 01047 # Whether the detection has succeeded or failed\n\ 01048 int32 NO_CLOUD_RECEIVED = 1\n\ 01049 int32 NO_TABLE = 2\n\ 01050 int32 OTHER_ERROR = 3\n\ 01051 int32 SUCCESS = 4\n\ 01052 int32 result\n\ 01053 \n\ 01054 \n\ 01055 ================================================================================\n\ 01056 MSG: tabletop_object_detector/Table\n\ 01057 # Informs that a planar table has been detected at a given location\n\ 01058 \n\ 01059 # The pose gives you the transform that take you to the coordinate system\n\ 01060 # of the table, with the origin somewhere in the table plane and the \n\ 01061 # z axis normal to the plane\n\ 01062 geometry_msgs/PoseStamped pose\n\ 01063 \n\ 01064 # These values give you the observed extents of the table, along x and y,\n\ 01065 # in the table's own coordinate system (above)\n\ 01066 # there is no guarantee that the origin of the table coordinate system is\n\ 01067 # inside the boundary defined by these values. \n\ 01068 float32 x_min\n\ 01069 float32 x_max\n\ 01070 float32 y_min\n\ 01071 float32 y_max\n\ 01072 \n\ 01073 # There is no guarantee that the table does NOT extend further than these \n\ 01074 # values; this is just as far as we've observed it.\n\ 01075 \n\ 01076 \n\ 01077 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\ 01078 arm_navigation_msgs/Shape convex_hull\n\ 01079 \n\ 01080 ================================================================================\n\ 01081 MSG: geometry_msgs/PoseStamped\n\ 01082 # A Pose with reference coordinate frame and timestamp\n\ 01083 Header header\n\ 01084 Pose pose\n\ 01085 \n\ 01086 ================================================================================\n\ 01087 MSG: geometry_msgs/Pose\n\ 01088 # A representation of pose in free space, composed of postion and orientation. \n\ 01089 Point position\n\ 01090 Quaternion orientation\n\ 01091 \n\ 01092 ================================================================================\n\ 01093 MSG: geometry_msgs/Point\n\ 01094 # This contains the position of a point in free space\n\ 01095 float64 x\n\ 01096 float64 y\n\ 01097 float64 z\n\ 01098 \n\ 01099 ================================================================================\n\ 01100 MSG: geometry_msgs/Quaternion\n\ 01101 # This represents an orientation in free space in quaternion form.\n\ 01102 \n\ 01103 float64 x\n\ 01104 float64 y\n\ 01105 float64 z\n\ 01106 float64 w\n\ 01107 \n\ 01108 ================================================================================\n\ 01109 MSG: arm_navigation_msgs/Shape\n\ 01110 byte SPHERE=0\n\ 01111 byte BOX=1\n\ 01112 byte CYLINDER=2\n\ 01113 byte MESH=3\n\ 01114 \n\ 01115 byte type\n\ 01116 \n\ 01117 \n\ 01118 #### define sphere, box, cylinder ####\n\ 01119 # the origin of each shape is considered at the shape's center\n\ 01120 \n\ 01121 # for sphere\n\ 01122 # radius := dimensions[0]\n\ 01123 \n\ 01124 # for cylinder\n\ 01125 # radius := dimensions[0]\n\ 01126 # length := dimensions[1]\n\ 01127 # the length is along the Z axis\n\ 01128 \n\ 01129 # for box\n\ 01130 # size_x := dimensions[0]\n\ 01131 # size_y := dimensions[1]\n\ 01132 # size_z := dimensions[2]\n\ 01133 float64[] dimensions\n\ 01134 \n\ 01135 \n\ 01136 #### define mesh ####\n\ 01137 \n\ 01138 # list of triangles; triangle k is defined by tre vertices located\n\ 01139 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\ 01140 int32[] triangles\n\ 01141 geometry_msgs/Point[] vertices\n\ 01142 \n\ 01143 ================================================================================\n\ 01144 MSG: sensor_msgs/PointCloud\n\ 01145 # This message holds a collection of 3d points, plus optional additional\n\ 01146 # information about each point.\n\ 01147 \n\ 01148 # Time of sensor data acquisition, coordinate frame ID.\n\ 01149 Header header\n\ 01150 \n\ 01151 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\ 01152 # in the frame given in the header.\n\ 01153 geometry_msgs/Point32[] points\n\ 01154 \n\ 01155 # Each channel should have the same number of elements as points array,\n\ 01156 # and the data in each channel should correspond 1:1 with each point.\n\ 01157 # Channel names in common practice are listed in ChannelFloat32.msg.\n\ 01158 ChannelFloat32[] channels\n\ 01159 \n\ 01160 ================================================================================\n\ 01161 MSG: geometry_msgs/Point32\n\ 01162 # This contains the position of a point in free space(with 32 bits of precision).\n\ 01163 # It is recommeded to use Point wherever possible instead of Point32. \n\ 01164 # \n\ 01165 # This recommendation is to promote interoperability. \n\ 01166 #\n\ 01167 # This message is designed to take up less space when sending\n\ 01168 # lots of points at once, as in the case of a PointCloud. \n\ 01169 \n\ 01170 float32 x\n\ 01171 float32 y\n\ 01172 float32 z\n\ 01173 ================================================================================\n\ 01174 MSG: sensor_msgs/ChannelFloat32\n\ 01175 # This message is used by the PointCloud message to hold optional data\n\ 01176 # associated with each point in the cloud. The length of the values\n\ 01177 # array should be the same as the length of the points array in the\n\ 01178 # PointCloud, and each value should be associated with the corresponding\n\ 01179 # point.\n\ 01180 \n\ 01181 # Channel names in existing practice include:\n\ 01182 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\ 01183 # This is opposite to usual conventions but remains for\n\ 01184 # historical reasons. The newer PointCloud2 message has no\n\ 01185 # such problem.\n\ 01186 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\ 01187 # (R,G,B) values packed into the least significant 24 bits,\n\ 01188 # in order.\n\ 01189 # \"intensity\" - laser or pixel intensity.\n\ 01190 # \"distance\"\n\ 01191 \n\ 01192 # The channel name should give semantics of the channel (e.g.\n\ 01193 # \"intensity\" instead of \"value\").\n\ 01194 string name\n\ 01195 \n\ 01196 # The values array should be 1-1 with the elements of the associated\n\ 01197 # PointCloud.\n\ 01198 float32[] values\n\ 01199 \n\ 01200 ================================================================================\n\ 01201 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiActionFeedback\n\ 01202 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01203 \n\ 01204 Header header\n\ 01205 actionlib_msgs/GoalStatus status\n\ 01206 ObjectSegmentationGuiFeedback feedback\n\ 01207 \n\ 01208 ================================================================================\n\ 01209 MSG: bosch_object_segmentation_gui/ObjectSegmentationGuiFeedback\n\ 01210 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\ 01211 \n\ 01212 \n\ 01213 "; 01214 } 01215 01216 static const char* value(const ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> &) { return value(); } 01217 }; 01218 01219 } // namespace message_traits 01220 } // namespace ros 01221 01222 namespace ros 01223 { 01224 namespace serialization 01225 { 01226 01227 template<class ContainerAllocator> struct Serializer< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > 01228 { 01229 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 01230 { 01231 stream.next(m.action_goal); 01232 stream.next(m.action_result); 01233 stream.next(m.action_feedback); 01234 } 01235 01236 ROS_DECLARE_ALLINONE_SERIALIZER; 01237 }; // struct ObjectSegmentationGuiAction_ 01238 } // namespace serialization 01239 } // namespace ros 01240 01241 namespace ros 01242 { 01243 namespace message_operations 01244 { 01245 01246 template<class ContainerAllocator> 01247 struct Printer< ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > 01248 { 01249 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::bosch_object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> & v) 01250 { 01251 s << indent << "action_goal: "; 01252 s << std::endl; 01253 Printer< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal); 01254 s << indent << "action_result: "; 01255 s << std::endl; 01256 Printer< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result); 01257 s << indent << "action_feedback: "; 01258 s << std::endl; 01259 Printer< ::bosch_object_segmentation_gui::ObjectSegmentationGuiActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback); 01260 } 01261 }; 01262 01263 01264 } // namespace message_operations 01265 } // namespace ros 01266 01267 #endif // BOSCH_OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTION_H 01268