.. _program_listing_file_sophus_sim3.hpp: Program Listing for File sim3.hpp ================================= |exhale_lsh| :ref:`Return to documentation for file ` (``sophus/sim3.hpp``) .. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS .. code-block:: cpp #pragma once #include "rxso3.hpp" #include "sim_details.hpp" namespace Sophus { template class Sim3; using Sim3d = Sim3; using Sim3f = Sim3; } // namespace Sophus namespace Eigen { namespace internal { template struct traits> { using Scalar = Scalar_; using TranslationType = Sophus::Vector3; using RxSO3Type = Sophus::RxSO3; }; template struct traits, Options>> : traits> { using Scalar = Scalar_; using TranslationType = Map, Options>; using RxSO3Type = Map, Options>; }; template struct traits const, Options>> : traits const> { using Scalar = Scalar_; using TranslationType = Map const, Options>; using RxSO3Type = Map const, Options>; }; } // namespace internal } // namespace Eigen namespace Sophus { template class Sim3Base { public: using Scalar = typename Eigen::internal::traits::Scalar; using TranslationType = typename Eigen::internal::traits::TranslationType; using RxSO3Type = typename Eigen::internal::traits::RxSO3Type; using QuaternionType = typename RxSO3Type::QuaternionType; static int constexpr DoF = 7; static int constexpr num_parameters = 7; static int constexpr N = 4; static int constexpr Dim = 3; using Transformation = Matrix; using Point = Vector3; using HomogeneousPoint = Vector4; using Line = ParametrizedLine3; using Hyperplane = Hyperplane3; using Tangent = Vector; using Adjoint = Matrix; template using ReturnScalar = typename Eigen::ScalarBinaryOpTraits< Scalar, typename OtherDerived::Scalar>::ReturnType; template using Sim3Product = Sim3>; template using PointProduct = Vector3>; template using HomogeneousPointProduct = Vector4>; SOPHUS_FUNC Adjoint Adj() const { Matrix3 const R = rxso3().rotationMatrix(); Adjoint res; res.setZero(); res.template block<3, 3>(0, 0) = rxso3().matrix(); res.template block<3, 3>(0, 3) = SO3::hat(translation()) * R; res.template block<3, 1>(0, 6) = -translation(); res.template block<3, 3>(3, 3) = R; res(6, 6) = Scalar(1); return res; } template SOPHUS_FUNC Sim3 cast() const { return Sim3(rxso3().template cast(), translation().template cast()); } SOPHUS_FUNC Sim3 inverse() const { RxSO3 invR = rxso3().inverse(); return Sim3(invR, invR * (translation() * Scalar(-1))); } SOPHUS_FUNC Tangent log() const { // The derivation of the closed-form Sim(3) logarithm for is done // analogously to the closed-form solution of the SE(3) logarithm, see // J. Gallier, D. Xu, "Computing exponentials of skew symmetric matrices // and logarithms of orthogonal matrices", IJRA 2002. // https:///pdfs.semanticscholar.org/cfe3/e4b39de63c8cabd89bf3feff7f5449fc981d.pdf // (Sec. 6., pp. 8) Tangent res; auto omega_sigma_and_theta = rxso3().logAndTheta(); Vector3 const omega = omega_sigma_and_theta.tangent.template head<3>(); Scalar sigma = omega_sigma_and_theta.tangent[3]; Matrix3 const Omega = SO3::hat(omega); Matrix3 const W_inv = details::calcWInv( Omega, omega_sigma_and_theta.theta, sigma, scale()); res.segment(0, 3) = W_inv * translation(); res.segment(3, 3) = omega; res[6] = sigma; return res; } SOPHUS_FUNC Transformation matrix() const { Transformation homogeneous_matrix; homogeneous_matrix.template topLeftCorner<3, 4>() = matrix3x4(); homogeneous_matrix.row(3) = Matrix(Scalar(0), Scalar(0), Scalar(0), Scalar(1)); return homogeneous_matrix; } SOPHUS_FUNC Matrix matrix3x4() const { Matrix matrix; matrix.template topLeftCorner<3, 3>() = rxso3().matrix(); matrix.col(3) = translation(); return matrix; } template SOPHUS_FUNC Sim3Base& operator=( Sim3Base const& other) { rxso3() = other.rxso3(); translation() = other.translation(); return *this; } template SOPHUS_FUNC Sim3Product operator*( Sim3Base const& other) const { return Sim3Product( rxso3() * other.rxso3(), translation() + rxso3() * other.translation()); } template ::value>::type> SOPHUS_FUNC PointProduct operator*( Eigen::MatrixBase const& p) const { return rxso3() * p + translation(); } template ::value>::type> SOPHUS_FUNC HomogeneousPointProduct operator*( Eigen::MatrixBase const& p) const { const PointProduct tp = rxso3() * p.template head<3>() + p(3) * translation(); return HomogeneousPointProduct(tp(0), tp(1), tp(2), p(3)); } SOPHUS_FUNC Line operator*(Line const& l) const { Line rotatedLine = rxso3() * l; return Line(rotatedLine.origin() + translation(), rotatedLine.direction()); } SOPHUS_FUNC Hyperplane operator*(Hyperplane const& p) const { Hyperplane const rotated = rxso3() * p; return Hyperplane(rotated.normal(), rotated.offset() - translation().dot(rotated.normal())); } template >::value>::type> SOPHUS_FUNC Sim3Base& operator*=( Sim3Base const& other) { *static_cast(this) = *this * other; return *this; } SOPHUS_FUNC Matrix Dx_this_mul_exp_x_at_0() const { Matrix J; J.template block<4, 3>(0, 0).setZero(); J.template block<4, 4>(0, 3) = rxso3().Dx_this_mul_exp_x_at_0(); J.template block<3, 3>(4, 0) = rxso3().matrix(); J.template block<3, 4>(4, 3).setZero(); return J; } SOPHUS_FUNC Matrix Dx_log_this_inv_by_x_at_this() const { Matrix J; J.template block<3, 4>(0, 0).setZero(); J.template block<3, 3>(0, 4) = rxso3().inverse().matrix(); J.template block<4, 4>(3, 0) = rxso3().Dx_log_this_inv_by_x_at_this(); J.template block<4, 3>(3, 4).setZero(); return J; } SOPHUS_FUNC Sophus::Vector params() const { Sophus::Vector p; p << rxso3().params(), translation(); return p; } SOPHUS_FUNC void setQuaternion(Eigen::Quaternion const& quat) { rxso3().setQuaternion(quat); } SOPHUS_FUNC QuaternionType const& quaternion() const { return rxso3().quaternion(); } SOPHUS_FUNC Matrix3 rotationMatrix() const { return rxso3().rotationMatrix(); } SOPHUS_FUNC RxSO3Type& rxso3() { return static_cast(this)->rxso3(); } SOPHUS_FUNC RxSO3Type const& rxso3() const { return static_cast(this)->rxso3(); } SOPHUS_FUNC Scalar scale() const { return rxso3().scale(); } SOPHUS_FUNC void setRotationMatrix(Matrix3& R) { rxso3().setRotationMatrix(R); } SOPHUS_FUNC void setScale(Scalar const& scale) { rxso3().setScale(scale); } SOPHUS_FUNC void setScaledRotationMatrix(Matrix3 const& sR) { rxso3().setScaledRotationMatrix(sR); } SOPHUS_FUNC TranslationType& translation() { return static_cast(this)->translation(); } SOPHUS_FUNC TranslationType const& translation() const { return static_cast(this)->translation(); } }; template class Sim3 : public Sim3Base> { public: using Base = Sim3Base>; static int constexpr DoF = Base::DoF; static int constexpr num_parameters = Base::num_parameters; using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using RxSo3Member = RxSO3; using TranslationMember = Vector3; using Base::operator=; SOPHUS_FUNC Sim3& operator=(Sim3 const& other) = default; EIGEN_MAKE_ALIGNED_OPERATOR_NEW SOPHUS_FUNC Sim3(); SOPHUS_FUNC Sim3(Sim3 const& other) = default; template SOPHUS_FUNC Sim3(Sim3Base const& other) : rxso3_(other.rxso3()), translation_(other.translation()) { static_assert(std::is_same::value, "must be same Scalar type"); } template SOPHUS_FUNC explicit Sim3(RxSO3Base const& rxso3, Eigen::MatrixBase const& translation) : rxso3_(rxso3), translation_(translation) { static_assert(std::is_same::value, "must be same Scalar type"); static_assert(std::is_same::value, "must be same Scalar type"); } template SOPHUS_FUNC explicit Sim3(Eigen::QuaternionBase const& quaternion, Eigen::MatrixBase const& translation) : rxso3_(quaternion), translation_(translation) { static_assert(std::is_same::value, "must be same Scalar type"); static_assert(std::is_same::value, "must be same Scalar type"); } template SOPHUS_FUNC explicit Sim3(Scalar const& scale, Eigen::QuaternionBase const& unit_quaternion, Eigen::MatrixBase const& translation) : Sim3(RxSO3(scale, unit_quaternion), translation) {} SOPHUS_FUNC explicit Sim3(Matrix const& T) : rxso3_(T.template topLeftCorner<3, 3>()), translation_(T.template block<3, 1>(0, 3)) {} SOPHUS_FUNC Scalar* data() { // rxso3_ and translation_ are laid out sequentially with no padding return rxso3_.data(); } SOPHUS_FUNC Scalar const* data() const { // rxso3_ and translation_ are laid out sequentially with no padding return rxso3_.data(); } SOPHUS_FUNC RxSo3Member& rxso3() { return rxso3_; } SOPHUS_FUNC RxSo3Member const& rxso3() const { return rxso3_; } SOPHUS_FUNC TranslationMember& translation() { return translation_; } SOPHUS_FUNC TranslationMember const& translation() const { return translation_; } SOPHUS_FUNC static Sophus::Matrix Dx_exp_x_at_0() { Sophus::Matrix J; J.template block<4, 3>(0, 0).setZero(); J.template block<4, 4>(0, 3) = RxSO3::Dx_exp_x_at_0(); J.template block<3, 3>(4, 0).setIdentity(); J.template block<3, 4>(4, 3).setZero(); return J; } SOPHUS_FUNC static Sophus::Matrix Dx_exp_x( const Tangent& a) { Sophus::Matrix J; static Matrix3 const I = Matrix3::Identity(); Vector3 const omega = a.template segment<3>(3); Vector3 const upsilon = a.template head<3>(); Scalar const sigma = a[6]; Scalar const theta = omega.norm(); Matrix3 const Omega = SO3::hat(omega); Matrix3 const Omega2 = Omega * Omega; Vector3 theta_domega; if (theta < Constants::epsilon()) { theta_domega = Vector3::Zero(); } else { theta_domega = omega / theta; } static Matrix3 const Omega_domega[3] = { SO3::hat(Vector3::Unit(0)), SO3::hat(Vector3::Unit(1)), SO3::hat(Vector3::Unit(2))}; Matrix3 const Omega2_domega[3] = { Omega_domega[0] * Omega + Omega * Omega_domega[0], Omega_domega[1] * Omega + Omega * Omega_domega[1], Omega_domega[2] * Omega + Omega * Omega_domega[2]}; Matrix3 const W = details::calcW(Omega, theta, sigma); J.template block<4, 3>(0, 0).setZero(); J.template block<4, 4>(0, 3) = RxSO3::Dx_exp_x(a.template tail<4>()); J.template block<3, 4>(4, 3).setZero(); J.template block<3, 3>(4, 0) = W; Scalar A, B, C, A_dtheta, B_dtheta, A_dsigma, B_dsigma, C_dsigma; details::calcW_derivatives(theta, sigma, A, B, C, A_dsigma, B_dsigma, C_dsigma, A_dtheta, B_dtheta); for (int i = 0; i < 3; ++i) { J.template block<3, 1>(4, 3 + i) = (A_dtheta * theta_domega[i] * Omega + A * Omega_domega[i] + B_dtheta * theta_domega[i] * Omega2 + B * Omega2_domega[i]) * upsilon; } J.template block<3, 1>(4, 6) = (A_dsigma * Omega + B_dsigma * Omega2 + C_dsigma * I) * upsilon; return J; } SOPHUS_FUNC static Sophus::Matrix Dx_exp_x_times_point_at_0( Point const& point) { Sophus::Matrix J; J << Sophus::Matrix3::Identity(), Sophus::RxSO3::Dx_exp_x_times_point_at_0(point); return J; } SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) { return generator(i); } SOPHUS_FUNC static Sim3 exp(Tangent const& a) { // For the derivation of the exponential map of Sim(3) see // H. Strasdat, "Local Accuracy and Global Consistency for Efficient Visual // SLAM", PhD thesis, 2012. // http:///hauke.strasdat.net/files/strasdat_thesis_2012.pdf (A.5, pp. 186) Vector3 const upsilon = a.segment(0, 3); Vector3 const omega = a.segment(3, 3); Scalar const sigma = a[6]; Scalar theta; RxSO3 rxso3 = RxSO3::expAndTheta(a.template tail<4>(), &theta); Matrix3 const Omega = SO3::hat(omega); Matrix3 const W = details::calcW(Omega, theta, sigma); return Sim3(rxso3, W * upsilon); } SOPHUS_FUNC static Transformation generator(int i) { SOPHUS_ENSURE(i >= 0 || i <= 6, "i should be in range [0,6]."); Tangent e; e.setZero(); e[i] = Scalar(1); return hat(e); } SOPHUS_FUNC static Transformation hat(Tangent const& a) { Transformation Omega; Omega.template topLeftCorner<3, 3>() = RxSO3::hat(a.template tail<4>()); Omega.col(3).template head<3>() = a.template head<3>(); Omega.row(3).setZero(); return Omega; } SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) { Vector3 const upsilon1 = a.template head<3>(); Vector3 const upsilon2 = b.template head<3>(); Vector3 const omega1 = a.template segment<3>(3); Vector3 const omega2 = b.template segment<3>(3); Scalar sigma1 = a[6]; Scalar sigma2 = b[6]; Tangent res; res.template head<3>() = SO3::hat(omega1) * upsilon2 + SO3::hat(upsilon1) * omega2 + sigma1 * upsilon2 - sigma2 * upsilon1; res.template segment<3>(3) = omega1.cross(omega2); res[6] = Scalar(0); return res; } template static Sim3 sampleUniform(UniformRandomBitGenerator& generator) { std::uniform_real_distribution uniform(Scalar(-1), Scalar(1)); return Sim3(RxSO3::sampleUniform(generator), Vector3(uniform(generator), uniform(generator), uniform(generator))); } SOPHUS_FUNC static Tangent vee(Transformation const& Omega) { Tangent upsilon_omega_sigma; upsilon_omega_sigma.template head<3>() = Omega.col(3).template head<3>(); upsilon_omega_sigma.template tail<4>() = RxSO3::vee(Omega.template topLeftCorner<3, 3>()); return upsilon_omega_sigma; } protected: RxSo3Member rxso3_; TranslationMember translation_; }; template SOPHUS_FUNC Sim3::Sim3() : translation_(TranslationMember::Zero()) { static_assert(std::is_standard_layout::value, "Assume standard layout for the use of offset of check below."); static_assert( offsetof(Sim3, rxso3_) + sizeof(Scalar) * RxSO3::num_parameters == offsetof(Sim3, translation_), "This class assumes packed storage and hence will only work " "correctly depending on the compiler (options) - in " "particular when using [this->data(), this-data() + " "num_parameters] to access the raw data in a contiguous fashion."); } } // namespace Sophus namespace Eigen { template class Map, Options> : public Sophus::Sim3Base, Options>> { public: using Base = Sophus::Sim3Base, Options>>; using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using Base::operator=; using Base::operator*=; using Base::operator*; SOPHUS_FUNC explicit Map(Scalar* coeffs) : rxso3_(coeffs), translation_(coeffs + Sophus::RxSO3::num_parameters) {} SOPHUS_FUNC Map, Options>& rxso3() { return rxso3_; } SOPHUS_FUNC Map, Options> const& rxso3() const { return rxso3_; } SOPHUS_FUNC Map, Options>& translation() { return translation_; } SOPHUS_FUNC Map, Options> const& translation() const { return translation_; } protected: Map, Options> rxso3_; Map, Options> translation_; }; template class Map const, Options> : public Sophus::Sim3Base const, Options>> { using Base = Sophus::Sim3Base const, Options>>; public: using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using Base::operator*=; using Base::operator*; SOPHUS_FUNC explicit Map(Scalar const* coeffs) : rxso3_(coeffs), translation_(coeffs + Sophus::RxSO3::num_parameters) {} SOPHUS_FUNC Map const, Options> const& rxso3() const { return rxso3_; } SOPHUS_FUNC Map const, Options> const& translation() const { return translation_; } protected: Map const, Options> const rxso3_; Map const, Options> const translation_; }; } // namespace Eigen