00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036 #ifndef __POINTMATCHER_DATAPOINTSFILTERS_H
00037 #define __POINTMATCHER_DATAPOINTSFILTERS_H
00038
00039 #include "PointMatcher.h"
00040
00041 template<typename T>
00042 struct DataPointsFiltersImpl
00043 {
00044 typedef PointMatcherSupport::Parametrizable Parametrizable;
00045 typedef PointMatcherSupport::Parametrizable P;
00046 typedef Parametrizable::Parameters Parameters;
00047 typedef Parametrizable::ParameterDoc ParameterDoc;
00048 typedef Parametrizable::ParametersDoc ParametersDoc;
00049 typedef Parametrizable::InvalidParameter InvalidParameter;
00050
00051 typedef typename PointMatcher<T>::Vector Vector;
00052 typedef typename PointMatcher<T>::Matrix Matrix;
00053 typedef typename PointMatcher<T>::DataPoints DataPoints;
00054 typedef typename PointMatcher<T>::DataPointsFilter DataPointsFilter;
00055 typedef typename PointMatcher<T>::DataPoints::InvalidField InvalidField;
00056
00058 struct IdentityDataPointsFilter: public DataPointsFilter
00059 {
00060 inline static const std::string description()
00061 {
00062 return "Does nothing.";
00063 }
00064
00065
00066
00067
00068
00069
00070
00071
00073
00074
00075 virtual DataPoints filter(const DataPoints& input);
00076 virtual void inPlaceFilter(DataPoints& cloud);
00077 };
00078
00079
00081 struct RemoveNaNDataPointsFilter: public DataPointsFilter
00082 {
00083 inline static const std::string description()
00084 {
00085 return "Remove points having NaN as coordinate.";
00086 }
00087
00088 virtual DataPoints filter(const DataPoints& input);
00089 virtual void inPlaceFilter(DataPoints& cloud);
00090 };
00091
00093 struct MaxDistDataPointsFilter: public DataPointsFilter
00094 {
00095 inline static const std::string description()
00096 {
00097 return "Subsampling. Filter points beyond a maximum distance measured on a specific axis. If dim is set to -1, points are filtered based on a maximum radius.";
00098 }
00099 inline static const ParametersDoc availableParameters()
00100 {
00101 return boost::assign::list_of<ParameterDoc>
00102 ( "dim", "dimension on which the filter will be applied. x=0, y=1, z=2, radius=-1", "-1", "-1", "2", &P::Comp<int> )
00103 ( "maxDist", "maximum distance authorized. If dim is set to -1 (radius), the absolute value of minDist will be used. All points beyond that will be filtered.", "1", "-inf", "inf", &P::Comp<T> )
00104 ;
00105 }
00106
00107 const int dim;
00108 const T maxDist;
00109
00111 MaxDistDataPointsFilter(const Parameters& params = Parameters());
00112 virtual DataPoints filter(const DataPoints& input);
00113 virtual void inPlaceFilter(DataPoints& cloud);
00114 };
00115
00117 struct MinDistDataPointsFilter: public DataPointsFilter
00118 {
00119 inline static const std::string description()
00120 {
00121 return "Subsampling. Filter points before a minimum distance measured on a specific axis. If dim is set to -1, points are filtered based on a minimum radius.";
00122 }
00123 inline static const ParametersDoc availableParameters()
00124 {
00125 return boost::assign::list_of<ParameterDoc>
00126 ( "dim", "dimension on which the filter will be applied. x=0, y=1, z=2, radius=-1", "-1", "-1", "2", &P::Comp<int> )
00127 ( "minDist", "minimum value authorized. If dim is set to -1 (radius), the absolute value of minDist will be used. All points before that will be filtered.", "1", "-inf", "inf", &P::Comp<T> )
00128 ;
00129 }
00130
00131 const int dim;
00132 const T minDist;
00133
00135 MinDistDataPointsFilter(const Parameters& params = Parameters());
00136 virtual DataPoints filter(const DataPoints& input);
00137 virtual void inPlaceFilter(DataPoints& cloud);
00138 };
00139
00141 struct BoundingBoxDataPointsFilter: public DataPointsFilter
00142 {
00143 inline static const std::string description()
00144 {
00145 return "Subsampling. Remove points laying in a bounding box which is axis aligned.";
00146 }
00147 inline static const ParametersDoc availableParameters()
00148 {
00149 return boost::assign::list_of<ParameterDoc>
00150 ( "xMin", "minimum value on x-axis defining one side of the bounding box", "-1", "-inf", "inf", &P::Comp<T> )
00151 ( "xMax", "maximum value on x-axis defining one side of the bounding box", "1", "-inf", "inf", &P::Comp<T> )
00152 ( "yMin", "minimum value on y-axis defining one side of the bounding box", "-1", "-inf", "inf", &P::Comp<T> )
00153 ( "yMax", "maximum value on y-axis defining one side of the bounding box", "1", "-inf", "inf", &P::Comp<T> )
00154 ( "zMin", "minimum value on z-axis defining one side of the bounding box", "-1", "-inf", "inf", &P::Comp<T> )
00155 ( "zMax", "maximum value on z-axis defining one side of the bounding box", "1", "-inf", "inf", &P::Comp<T> )
00156 ( "removeInside", "If set to true (1), remove points inside the bounding box; else (0), remove points outside the bounding box", "1", "0", "1", P::Comp<bool> )
00157 ;
00158 }
00159
00160 const T xMin;
00161 const T xMax;
00162 const T yMin;
00163 const T yMax;
00164 const T zMin;
00165 const T zMax;
00166 const bool removeInside;
00167
00169 BoundingBoxDataPointsFilter(const Parameters& params = Parameters());
00170 virtual DataPoints filter(const DataPoints& input);
00171 virtual void inPlaceFilter(DataPoints& cloud);
00172 };
00173
00175 struct MaxQuantileOnAxisDataPointsFilter: public DataPointsFilter
00176 {
00177 inline static const std::string description()
00178 {
00179 return "Subsampling. Filter points beyond a maximum quantile measured on a specific axis.";
00180 }
00181 inline static const ParametersDoc availableParameters()
00182 {
00183 return boost::assign::list_of<ParameterDoc>
00184 ( "dim", "dimension on which the filter will be applied. x=0, y=1, z=2", "0", "0", "2", &P::Comp<unsigned> )
00185 ( "ratio", "maximum quantile authorized. All points beyond that will be filtered.", "0.5", "0.0000001", "0.9999999", &P::Comp<T> )
00186 ;
00187 }
00188
00189 const unsigned dim;
00190 const T ratio;
00191
00193 MaxQuantileOnAxisDataPointsFilter(const Parameters& params = Parameters());
00194 virtual DataPoints filter(const DataPoints& input);
00195 virtual void inPlaceFilter(DataPoints& cloud);
00196 };
00197
00199 struct MaxDensityDataPointsFilter: public DataPointsFilter
00200 {
00201 inline static const std::string description()
00202 {
00203 return "Subsampling. Reduce the points number by randomly removing points with a density highler than a treshold.";
00204 }
00205 inline static const ParametersDoc availableParameters()
00206 {
00207 return boost::assign::list_of<ParameterDoc>
00208 ( "maxDensity", "Maximum density of points to target. Unit: number of points per m^3.", "10", "0.0000001", "inf", &P::Comp<T> )
00209 ;
00210 }
00211
00212 const T maxDensity;
00213
00215 MaxDensityDataPointsFilter(const Parameters& params = Parameters());
00216 virtual DataPoints filter(const DataPoints& input);
00217 virtual void inPlaceFilter(DataPoints& cloud);
00218 };
00219
00221 struct SurfaceNormalDataPointsFilter: public DataPointsFilter
00222 {
00223 inline static const std::string description()
00224 {
00225 return "Normals. This filter extracts the normal to each point by taking the eigenvector corresponding to the smallest eigenvalue of its nearest neighbors.";
00226 }
00227 inline static const ParametersDoc availableParameters()
00228 {
00229 return boost::assign::list_of<ParameterDoc>
00230 ( "knn", "number of nearest neighbors to consider, including the point itself", "5", "3", "2147483647", &P::Comp<unsigned> )
00231 ( "epsilon", "approximation to use for the nearest-neighbor search", "0", "0", "inf", &P::Comp<T> )
00232 ( "keepNormals", "whether the normals should be added as descriptors to the resulting cloud", "1" )
00233 ( "keepDensities", "whether the point densities should be added as descriptors to the resulting cloud", "0" )
00234 ( "keepEigenValues", "whether the eigen values should be added as descriptors to the resulting cloud", "0" )
00235 ( "keepEigenVectors", "whether the eigen vectors should be added as descriptors to the resulting cloud", "0" )
00236 ( "keepMatchedIds" , "whethen the identifiers of matches points should be added as descriptors to the resulting cloud", "0" )
00237 ;
00238 }
00239
00240 const unsigned knn;
00241 const double epsilon;
00242 const bool keepNormals;
00243 const bool keepDensities;
00244 const bool keepEigenValues;
00245 const bool keepEigenVectors;
00246 const bool keepMatchedIds;
00247
00248 SurfaceNormalDataPointsFilter(const Parameters& params = Parameters());
00249 virtual ~SurfaceNormalDataPointsFilter() {};
00250 virtual DataPoints filter(const DataPoints& input);
00251 virtual void inPlaceFilter(DataPoints& cloud);
00252
00253 static Vector computeNormal(const Vector eigenVa, const Matrix eigenVe);
00254 static T computeDensity(const Matrix NN);
00255 static Vector serializeEigVec(const Matrix eigenVe);
00256 };
00257
00259 struct SamplingSurfaceNormalDataPointsFilter: public DataPointsFilter
00260 {
00261 inline static const std::string description()
00262 {
00263 return "Subsampling, Normals. This filter decomposes the point-cloud space in boxes, by recursively splitting the cloud through axis-aligned hyperplanes such as to maximize the evenness of the aspect ratio of the box. When the number of points in a box reaches a value knn or lower, the filter computes the center of mass of these points and its normal by taking the eigenvector corresponding to the smallest eigenvalue of all points in the box.";
00264 }
00265 inline static const ParametersDoc availableParameters()
00266 {
00267 return boost::assign::list_of<ParameterDoc>
00268 ( "ratio", "ratio of points to keep with random subsampling. Matrix (normal, density, etc.) will be associated to all points in the same bin.", "0.5", "0.0000001", "0.9999999", &P::Comp<T> )
00269 ( "knn", "determined how many points are used to compute the normals. Direct link with the rapidity of the computation (large = fast). Technically, limit over which a box is splitted in two", "7", "3", "2147483647", &P::Comp<unsigned> )
00270 ( "samplingMethod", "if set to 0, random subsampling using the parameter ratio. If set to 1, bin subsampling with the resulting number of points being 1/knn.", "0", "0", "1", &P::Comp<unsigned> )
00271 ( "maxBoxDim", "maximum length of a box above which the box is discarded", "inf" )
00272 ( "averageExistingDescriptors", "whether the filter keep the existing point descriptors and average them or should it drop them", "1" )
00273 ( "keepNormals", "whether the normals should be added as descriptors to the resulting cloud", "1" )
00274 ( "keepDensities", "whether the point densities should be added as descriptors to the resulting cloud", "0" )
00275 ( "keepEigenValues", "whether the eigen values should be added as descriptors to the resulting cloud", "0" )
00276 ( "keepEigenVectors", "whether the eigen vectors should be added as descriptors to the resulting cloud", "0" )
00277 ;
00278 }
00279
00280 const T ratio;
00281 const unsigned knn;
00282 const unsigned samplingMethod;
00283 const T maxBoxDim;
00284 const bool averageExistingDescriptors;
00285 const bool keepNormals;
00286 const bool keepDensities;
00287 const bool keepEigenValues;
00288 const bool keepEigenVectors;
00289
00290
00291 public:
00292 SamplingSurfaceNormalDataPointsFilter(const Parameters& params = Parameters());
00293 virtual ~SamplingSurfaceNormalDataPointsFilter() {}
00294 virtual DataPoints filter(const DataPoints& input);
00295 virtual void inPlaceFilter(DataPoints& cloud);
00296
00297 protected:
00298 struct BuildData
00299 {
00300 typedef std::vector<int> Indices;
00301 typedef typename DataPoints::View View;
00302
00303 Indices indices;
00304 Indices indicesToKeep;
00305 Matrix& features;
00306 Matrix& descriptors;
00307 boost::optional<View> normals;
00308 boost::optional<View> densities;
00309 boost::optional<View> eigenValues;
00310 boost::optional<View> eigenVectors;
00311 int outputInsertionPoint;
00312 int unfitPointsCount;
00313
00314 BuildData(Matrix& features, Matrix& descriptors):
00315 features(features),
00316 descriptors(descriptors),
00317 unfitPointsCount(0)
00318 {
00319 const int pointsCount(features.cols());
00320 indices.reserve(pointsCount);
00321 for (int i = 0; i < pointsCount; ++i)
00322 indices.push_back(i);
00323 }
00324 };
00325
00326 struct CompareDim
00327 {
00328 const int dim;
00329 const BuildData& buildData;
00330 CompareDim(const int dim, const BuildData& buildData):dim(dim),buildData(buildData){}
00331 bool operator() (const int& p0, const int& p1)
00332 {
00333 return buildData.features(dim, p0) <
00334 buildData.features(dim, p1);
00335 }
00336 };
00337
00338 protected:
00339 void buildNew(BuildData& data, const int first, const int last, const Vector minValues, const Vector maxValues) const;
00340 void fuseRange(BuildData& data, const int first, const int last) const;
00341 };
00342
00344 struct OrientNormalsDataPointsFilter: public DataPointsFilter
00345 {
00346 inline static const std::string description()
00347 {
00348 return "Normals. Reorient normals so that they all point in the same direction, with respect to the observation points.";
00349 }
00350
00351 inline static const ParametersDoc availableParameters()
00352 {
00353 return boost::assign::list_of<ParameterDoc>
00354 ( "towardCenter", "If set to true(1), all the normals will point inside the surface (i.e. toward the observation points).", "1", "0", "1", &P::Comp<bool> )
00355 ;
00356 }
00357
00358 OrientNormalsDataPointsFilter(const Parameters& params = Parameters());
00359 virtual ~OrientNormalsDataPointsFilter() {};
00360 virtual DataPoints filter(const DataPoints& input);
00361 virtual void inPlaceFilter(DataPoints& cloud);
00362
00363 const bool towardCenter;
00364 };
00365
00367 struct RandomSamplingDataPointsFilter: public DataPointsFilter
00368 {
00369 inline static const std::string description()
00370 {
00371 return "Subsampling. This filter reduces the size of the point cloud by randomly dropping points. Based on \\cite{Masuda1996Random}";
00372 }
00373 inline static const ParametersDoc availableParameters()
00374 {
00375 return boost::assign::list_of<ParameterDoc>
00376 ( "prob", "probability to keep a point, one over decimation factor ", "0.75", "0", "1", &P::Comp<T> )
00377 ;
00378 }
00379
00380 const double prob;
00381
00382 RandomSamplingDataPointsFilter(const Parameters& params = Parameters());
00383 virtual ~RandomSamplingDataPointsFilter() {};
00384 virtual DataPoints filter(const DataPoints& input);
00385 virtual void inPlaceFilter(DataPoints& cloud);
00386
00387 protected:
00388 RandomSamplingDataPointsFilter(const std::string& className, const ParametersDoc paramsDoc, const Parameters& params);
00389
00390 };
00391
00393 struct MaxPointCountDataPointsFilter: public RandomSamplingDataPointsFilter
00394 {
00395 inline static const std::string description()
00396 {
00397 return "Conditional subsampling. This filter reduces the size of the point cloud by randomly dropping points if their number is above maxCount. Based on \\cite{Masuda1996Random}";
00398 }
00399 inline static const ParametersDoc availableParameters()
00400 {
00401 return boost::assign::list_of<ParameterDoc>
00402 ( "prob", "probability to keep a point, one over decimation factor ", "0.75", "0", "1", &P::Comp<T> )
00403 ( "maxCount", "maximum number of points", "1000", "0", "2147483647", &P::Comp<unsigned> )
00404 ;
00405 }
00406
00407 const unsigned maxCount;
00408
00409 MaxPointCountDataPointsFilter(const Parameters& params = Parameters());
00410 virtual ~MaxPointCountDataPointsFilter() {};
00411 virtual DataPoints filter(const DataPoints& input);
00412 virtual void inPlaceFilter(DataPoints& cloud);
00413 };
00414
00416 struct FixStepSamplingDataPointsFilter: public DataPointsFilter
00417 {
00418 inline static const std::string description()
00419 {
00420 return "Subsampling. This filter reduces the size of the point cloud by only keeping one point over step ones; with step varying in time from startStep to endStep, each iteration getting multiplied by stepMult. If use as prefilter (i.e. before the iterations), only startStep is used.";
00421 }
00422 inline static const ParametersDoc availableParameters()
00423 {
00424 return boost::assign::list_of<ParameterDoc>
00425 ( "startStep", "initial number of point to skip (initial decimation factor)", "10", "1", "2147483647", &P::Comp<unsigned> )
00426 ( "endStep", "maximal or minimal number of points to skip (final decimation factor)", "10", "1", "2147483647", &P::Comp<unsigned> )
00427 ( "stepMult", "multiplication factor to compute the new decimation factor for each iteration", "1", "0.0000001", "inf", &P::Comp<double> )
00428 ;
00429 }
00430
00431
00432 const unsigned startStep;
00433 const unsigned endStep;
00434 const double stepMult;
00435
00436 protected:
00437 double step;
00438
00439 public:
00440 FixStepSamplingDataPointsFilter(const Parameters& params = Parameters());
00441 virtual ~FixStepSamplingDataPointsFilter() {};
00442 virtual void init();
00443 virtual DataPoints filter(const DataPoints& input);
00444 virtual void inPlaceFilter(DataPoints& cloud);
00445 };
00446
00448 struct ShadowDataPointsFilter: public DataPointsFilter
00449 {
00450 inline static const std::string description()
00451 {
00452 return "Remove ghost points appearing on edge discontinuties. Assume that the origine of the point cloud is close to where the laser center was. Requires surface normal for every points";
00453 }
00454
00455 inline static const ParametersDoc availableParameters()
00456 {
00457 return boost::assign::list_of<ParameterDoc>
00458 ( "eps", "Small angle (in rad) around which a normal shoudn't be observable", "0.1", "0.0", "3.1416", &P::Comp<T> )
00459 ;
00460 }
00461
00462 const T eps;
00463
00465 ShadowDataPointsFilter(const Parameters& params = Parameters());
00466
00467 virtual DataPoints filter(const DataPoints& input);
00468 virtual void inPlaceFilter(DataPoints& cloud);
00469 };
00470
00472 struct SimpleSensorNoiseDataPointsFilter: public DataPointsFilter
00473 {
00474 inline static const std::string description()
00475 {
00476 return "Add a 1D descriptor named <sensorNoise> that would represent the noise radius expressed in meter based on SICK LMS specifications \\cite{Pomerleau2012Noise}.";
00477 }
00478
00479 inline static const ParametersDoc availableParameters()
00480 {
00481 return boost::assign::list_of<ParameterDoc>
00482 ( "sensorType", "Type of the sensor used. Choices: 0=Sick LMS-1xx, 1=Hokuyo URG-04LX, 2=Hokuyo UTM-30LX, 3=Kinect/Xtion", "0", "0", "2147483647", &P::Comp<unsigned> )
00483 ( "gain", "If the point cloud is coming from an untrusty source, you can use the gain to augment the uncertainty", "1", "1", "inf", &P::Comp<T> )
00484 ;
00485 }
00486
00487 const unsigned sensorType;
00488 const T gain;
00489
00491 SimpleSensorNoiseDataPointsFilter(const Parameters& params = Parameters());
00492
00493 virtual DataPoints filter(const DataPoints& input);
00494 virtual void inPlaceFilter(DataPoints& cloud);
00495
00496 private:
00501 Matrix computeLaserNoise(const T minRadius, const T beamAngle, const T beamConst, const Matrix features);
00502
00503 };
00504
00506 struct ObservationDirectionDataPointsFilter: public DataPointsFilter
00507 {
00508 inline static const std::string description()
00509 {
00510 return "Observation direction. This filter extracts observation directions (vector from point to sensor), considering a sensor at position (x,y,z).";
00511 }
00512
00513 inline static const ParametersDoc availableParameters()
00514 {
00515 return boost::assign::list_of<ParameterDoc>
00516 ( "x", "x-coordinate of sensor", "0" )
00517 ( "y", "y-coordinate of sensor", "0" )
00518 ( "z", "z-coordinate of sensor", "0" )
00519 ;
00520 }
00521
00522 const T centerX;
00523 const T centerY;
00524 const T centerZ;
00525
00527 ObservationDirectionDataPointsFilter(const Parameters& params = Parameters());
00528 virtual DataPoints filter(const DataPoints& input);
00529 virtual void inPlaceFilter(DataPoints& cloud);
00530 };
00531
00532 struct VoxelGridDataPointsFilter : public DataPointsFilter
00533 {
00534
00535 typedef PointMatcher<T> PM;
00536 typedef typename PM::DataPoints DataPoints;
00537 typedef typename PM::DataPointsFilter DataPointsFilter;
00538
00539 typedef PointMatcherSupport::Parametrizable Parametrizable;
00540 typedef PointMatcherSupport::Parametrizable P;
00541 typedef Parametrizable::Parameters Parameters;
00542 typedef Parametrizable::ParameterDoc ParameterDoc;
00543 typedef Parametrizable::ParametersDoc ParametersDoc;
00544 typedef Parametrizable::InvalidParameter InvalidParameter;
00545
00546 typedef typename PointMatcher<T>::Matrix Matrix;
00547 typedef typename PointMatcher<T>::Vector Vector;
00548 typedef typename Eigen::Matrix<T,2,1> Vector2;
00549 typedef typename Eigen::Matrix<T,3,1> Vector3;
00550 typedef typename PointMatcher<T>::DataPoints::InvalidField InvalidField;
00551
00552
00553 virtual ~VoxelGridDataPointsFilter() {};
00554
00555 inline static const std::string description()
00556 {
00557 return "Construct Voxel grid of the point cloud. Down-sample by taking centroid or center of grid cells./n";
00558 }
00559
00560 inline static const ParametersDoc availableParameters()
00561 {
00562 return boost::assign::list_of<ParameterDoc>
00563 ( "vSizeX", "Dimension of each voxel cell in x direction", "1.0", "-inf", "inf", &P::Comp<T> )
00564 ( "vSizeY", "Dimension of each voxel cell in y direction", "1.0", "-inf", "inf", &P::Comp<T> )
00565 ( "vSizeZ", "Dimension of each voxel cell in z direction", "1.0", "-inf", "inf", &P::Comp<T> )
00566 ( "useCentroid", "If 1 (true), down-sample by using centroid of voxel cell. If false (0), use center of voxel cell.", "1", "0", "1", P::Comp<bool> )
00567 ( "averageExistingDescriptors", "whether the filter keep the existing point descriptors and average them or should it drop them", "1", "0", "1", P::Comp<bool> )
00568 ;
00569 }
00570
00571 const T vSizeX;
00572 const T vSizeY;
00573 const T vSizeZ;
00574 const bool useCentroid;
00575 const bool averageExistingDescriptors;
00576
00577 struct Voxel {
00578 unsigned int numPoints;
00579 unsigned int firstPoint;
00580 Voxel() : numPoints(0), firstPoint(0) {}
00581 };
00582
00583
00584 VoxelGridDataPointsFilter(const Parameters& params = Parameters());
00585
00586 VoxelGridDataPointsFilter();
00587
00588 virtual DataPoints filter(const DataPoints& input);
00589 virtual void inPlaceFilter(DataPoints& cloud);
00590
00591 };
00592
00593 };
00594
00595 #endif // __POINTMATCHER_DATAPOINTSFILTERS_H