00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036 #include "DataPointsFiltersImpl.h"
00037 #include "PointMatcherPrivate.h"
00038 #include "MatchersImpl.h"
00039 #include "Functions.h"
00040
00041 #include <algorithm>
00042 #include <boost/format.hpp>
00043
00044
00045 #include "Eigen/QR"
00046
00047 using namespace std;
00048 using namespace PointMatcherSupport;
00049
00050
00051 template<typename T>
00052 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::IdentityDataPointsFilter::filter(
00053 const DataPoints& input)
00054 {
00055 DataPoints output(input);
00056 inPlaceFilter(output);
00057 return output;
00058 }
00059
00060
00061 template<typename T>
00062 void DataPointsFiltersImpl<T>::IdentityDataPointsFilter::inPlaceFilter(
00063 DataPoints& cloud)
00064 {
00065 }
00066
00067 template struct DataPointsFiltersImpl<float>::IdentityDataPointsFilter;
00068 template struct DataPointsFiltersImpl<double>::IdentityDataPointsFilter;
00069
00070
00071
00072 template<typename T>
00073 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::RemoveNaNDataPointsFilter::filter(
00074 const DataPoints& input)
00075 {
00076 DataPoints output(input);
00077 inPlaceFilter(output);
00078 return output;
00079 }
00080
00081
00082 template<typename T>
00083 void DataPointsFiltersImpl<T>::RemoveNaNDataPointsFilter::inPlaceFilter(
00084 DataPoints& cloud)
00085 {
00086 const int nbPointsIn = cloud.features.cols();
00087
00088 int j = 0;
00089 for (int i = 0; i < nbPointsIn; ++i)
00090 {
00091 const BOOST_AUTO(colArray, cloud.features.col(i).array());
00092 const BOOST_AUTO(hasNaN, !(colArray == colArray).all());
00093 if (!hasNaN)
00094 {
00095 cloud.setColFrom(j, cloud, i);
00096 j++;
00097 }
00098 }
00099
00100 cloud.conservativeResize(j);
00101 }
00102
00103 template struct DataPointsFiltersImpl<float>::RemoveNaNDataPointsFilter;
00104 template struct DataPointsFiltersImpl<double>::RemoveNaNDataPointsFilter;
00105
00106
00107
00108
00109 template<typename T>
00110 DataPointsFiltersImpl<T>::MaxDistDataPointsFilter::MaxDistDataPointsFilter(const Parameters& params):
00111 DataPointsFilter("MaxDistDataPointsFilter", MaxDistDataPointsFilter::availableParameters(), params),
00112 dim(Parametrizable::get<unsigned>("dim")),
00113 maxDist(Parametrizable::get<T>("maxDist"))
00114 {
00115 }
00116
00117
00118 template<typename T>
00119 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::MaxDistDataPointsFilter::filter(
00120 const DataPoints& input)
00121 {
00122 DataPoints output(input);
00123 inPlaceFilter(output);
00124 return output;
00125 }
00126
00127
00128 template<typename T>
00129 void DataPointsFiltersImpl<T>::MaxDistDataPointsFilter::inPlaceFilter(
00130 DataPoints& cloud)
00131 {
00132 if (dim >= cloud.features.rows() - 1)
00133 {
00134 throw InvalidParameter(
00135 (boost::format("MaxDistDataPointsFilter: Error, filtering on dimension number %1%, larger than authorized axis id %2%") % dim % (cloud.features.rows() - 2)).str());
00136 }
00137
00138 const int nbPointsIn = cloud.features.cols();
00139 const int nbRows = cloud.features.rows();
00140
00141 int j = 0;
00142 if(dim == -1)
00143 {
00144 for (int i = 0; i < nbPointsIn; i++)
00145 {
00146 const T absMaxDist = anyabs(maxDist);
00147 if (cloud.features.col(i).head(nbRows-1).norm() < absMaxDist)
00148 {
00149 cloud.setColFrom(j, cloud, i);
00150 j++;
00151 }
00152 }
00153 }
00154 else
00155 {
00156 for (int i = 0; i < nbPointsIn; i++)
00157 {
00158 if ((cloud.features(dim, i)) < maxDist)
00159 {
00160 cloud.setColFrom(j, cloud, i);
00161 j++;
00162 }
00163 }
00164 }
00165
00166 cloud.conservativeResize(j);
00167 }
00168
00169 template struct DataPointsFiltersImpl<float>::MaxDistDataPointsFilter;
00170 template struct DataPointsFiltersImpl<double>::MaxDistDataPointsFilter;
00171
00172
00173
00174
00175 template<typename T>
00176 DataPointsFiltersImpl<T>::MinDistDataPointsFilter::MinDistDataPointsFilter(const Parameters& params):
00177 DataPointsFilter("MinDistDataPointsFilter", MinDistDataPointsFilter::availableParameters(), params),
00178 dim(Parametrizable::get<unsigned>("dim")),
00179 minDist(Parametrizable::get<T>("minDist"))
00180 {
00181 }
00182
00183
00184 template<typename T>
00185 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::MinDistDataPointsFilter::filter(
00186 const DataPoints& input)
00187 {
00188 DataPoints output(input);
00189 inPlaceFilter(output);
00190 return output;
00191 }
00192
00193
00194 template<typename T>
00195 void DataPointsFiltersImpl<T>::MinDistDataPointsFilter::inPlaceFilter(
00196 DataPoints& cloud)
00197 {
00198 if (dim >= cloud.features.rows() - 1)
00199 throw InvalidParameter((boost::format("MinDistDataPointsFilter: Error, filtering on dimension number %1%, larger than feature dimensionality %2%") % dim % (cloud.features.rows() - 2)).str());
00200
00201 const int nbPointsIn = cloud.features.cols();
00202 const int nbRows = cloud.features.rows();
00203
00204 int j = 0;
00205 if(dim == -1)
00206 {
00207 const T absMinDist = anyabs(minDist);
00208 for (int i = 0; i < nbPointsIn; i++)
00209 {
00210 if (cloud.features.col(i).head(nbRows-1).norm() > absMinDist)
00211 {
00212 cloud.setColFrom(j, cloud, i);
00213 j++;
00214 }
00215 }
00216 }
00217 else
00218 {
00219 for (int i = 0; i < nbPointsIn; i++)
00220 {
00221 if ((cloud.features(dim, i)) > minDist)
00222 {
00223 cloud.setColFrom(j, cloud, i);
00224 j++;
00225 }
00226 }
00227 }
00228
00229 cloud.conservativeResize(j);
00230
00231 }
00232
00233 template struct DataPointsFiltersImpl<float>::MinDistDataPointsFilter;
00234 template struct DataPointsFiltersImpl<double>::MinDistDataPointsFilter;
00235
00236
00237
00238
00239 template<typename T>
00240 DataPointsFiltersImpl<T>::BoundingBoxDataPointsFilter::BoundingBoxDataPointsFilter(const Parameters& params):
00241 DataPointsFilter("BoundingBoxDataPointsFilter", BoundingBoxDataPointsFilter::availableParameters(), params),
00242 xMin(Parametrizable::get<T>("xMin")),
00243 xMax(Parametrizable::get<T>("xMax")),
00244 yMin(Parametrizable::get<T>("yMin")),
00245 yMax(Parametrizable::get<T>("yMax")),
00246 zMin(Parametrizable::get<T>("zMin")),
00247 zMax(Parametrizable::get<T>("zMax")),
00248 removeInside(Parametrizable::get<bool>("removeInside"))
00249 {
00250 }
00251
00252
00253 template<typename T>
00254 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::BoundingBoxDataPointsFilter::filter(
00255 const DataPoints& input)
00256 {
00257 DataPoints output(input);
00258 inPlaceFilter(output);
00259 return output;
00260 }
00261
00262
00263 template<typename T>
00264 void DataPointsFiltersImpl<T>::BoundingBoxDataPointsFilter::inPlaceFilter(
00265 DataPoints& cloud)
00266 {
00267 const int nbPointsIn = cloud.features.cols();
00268 const int nbRows = cloud.features.rows();
00269
00270 int j = 0;
00271 for (int i = 0; i < nbPointsIn; i++)
00272 {
00273 bool keepPt = false;
00274 const Vector point = cloud.features.col(i);
00275
00276
00277 const bool x_in = (point(0) > xMin && point(0) < xMax);
00278 const bool y_in = (point(1) > yMin && point(1) < yMax);
00279 const bool z_in = (point(2) > zMin && point(2) < zMax) || nbRows == 3;
00280 const bool in_box = x_in && y_in && z_in;
00281
00282 if(removeInside)
00283 keepPt = !in_box;
00284 else
00285 keepPt = in_box;
00286
00287 if(keepPt)
00288 {
00289 cloud.setColFrom(j, cloud, i);
00290 j++;
00291 }
00292 }
00293
00294 cloud.conservativeResize(j);
00295 }
00296
00297 template struct DataPointsFiltersImpl<float>::BoundingBoxDataPointsFilter;
00298 template struct DataPointsFiltersImpl<double>::BoundingBoxDataPointsFilter;
00299
00300
00301
00302
00303 template<typename T>
00304 DataPointsFiltersImpl<T>::MaxQuantileOnAxisDataPointsFilter::MaxQuantileOnAxisDataPointsFilter(const Parameters& params):
00305 DataPointsFilter("MaxQuantileOnAxisDataPointsFilter", MaxQuantileOnAxisDataPointsFilter::availableParameters(), params),
00306 dim(Parametrizable::get<unsigned>("dim")),
00307 ratio(Parametrizable::get<T>("ratio"))
00308 {
00309 }
00310
00311
00312 template<typename T>
00313 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::MaxQuantileOnAxisDataPointsFilter::filter(
00314 const DataPoints& input)
00315 {
00316 DataPoints output(input);
00317 inPlaceFilter(output);
00318 return output;
00319 }
00320
00321
00322 template<typename T>
00323 void DataPointsFiltersImpl<T>::MaxQuantileOnAxisDataPointsFilter::inPlaceFilter(
00324 DataPoints& cloud)
00325 {
00326 if (int(dim) >= cloud.features.rows())
00327 throw InvalidParameter((boost::format("MaxQuantileOnAxisDataPointsFilter: Error, filtering on dimension number %1%, larger than feature dimensionality %2%") % dim % cloud.features.rows()).str());
00328
00329 const int nbPointsIn = cloud.features.cols();
00330 const int nbPointsOut = nbPointsIn * ratio;
00331
00332
00333 vector<T> values;
00334 values.reserve(cloud.features.cols());
00335 for (int x = 0; x < cloud.features.cols(); ++x)
00336 values.push_back(cloud.features(dim, x));
00337
00338
00339 nth_element(values.begin(), values.begin() + (values.size() * ratio), values.end());
00340 const T limit = values[nbPointsOut];
00341
00342
00343 int j = 0;
00344 for (int i = 0; i < nbPointsIn; i++)
00345 {
00346 if (cloud.features(dim, i) < limit)
00347 {
00348 assert(j <= i);
00349 cloud.setColFrom(j, cloud, i);
00350 j++;
00351 }
00352 }
00353 assert(j <= nbPointsOut);
00354
00355 cloud.conservativeResize(j);
00356
00357 }
00358
00359 template struct DataPointsFiltersImpl<float>::MaxQuantileOnAxisDataPointsFilter;
00360 template struct DataPointsFiltersImpl<double>::MaxQuantileOnAxisDataPointsFilter;
00361
00362
00363
00364
00365 template<typename T>
00366 DataPointsFiltersImpl<T>::MaxDensityDataPointsFilter::MaxDensityDataPointsFilter(const Parameters& params):
00367 DataPointsFilter("MaxDensityDataPointsFilter", MaxDensityDataPointsFilter::availableParameters(), params),
00368 maxDensity(Parametrizable::get<T>("maxDensity"))
00369 {
00370 }
00371
00372
00373 template<typename T>
00374 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::MaxDensityDataPointsFilter::filter(
00375 const DataPoints& input)
00376 {
00377 DataPoints output(input);
00378 inPlaceFilter(output);
00379 return output;
00380 }
00381
00382
00383 template<typename T>
00384 void DataPointsFiltersImpl<T>::MaxDensityDataPointsFilter::inPlaceFilter(
00385 DataPoints& cloud)
00386 {
00387 typedef typename DataPoints::View View;
00388 typedef typename DataPoints::ConstView ConstView;
00389
00390
00391 if (!cloud.descriptorExists("densities"))
00392 {
00393 throw InvalidField("MaxDensityDataPointsFilter: Error, no densities found in descriptors.");
00394 }
00395
00396 const int nbPointsIn = cloud.features.cols();
00397 View densities = cloud.getDescriptorViewByName("densities");
00398 const T lastDensity = densities.maxCoeff();
00399 const int nbSaturatedPts = (densities.cwise() == lastDensity).count();
00400
00401
00402 int j = 0;
00403 for (int i = 0; i < nbPointsIn; i++)
00404 {
00405 const T density(densities(0,i));
00406 if (density > maxDensity)
00407 {
00408 const float r = (float)std::rand()/(float)RAND_MAX;
00409 float acceptRatio = maxDensity/density;
00410
00411
00412 if (density == lastDensity)
00413 {
00414 acceptRatio = acceptRatio * (1-nbSaturatedPts/nbPointsIn);
00415 }
00416
00417 if (r < acceptRatio)
00418 {
00419 cloud.setColFrom(j, cloud, i);
00420 j++;
00421 }
00422 }
00423 else
00424 {
00425 cloud.setColFrom(j, cloud, i);
00426 j++;
00427 }
00428 }
00429
00430 cloud.conservativeResize(j);
00431 }
00432
00433 template struct DataPointsFiltersImpl<float>::MaxDensityDataPointsFilter;
00434 template struct DataPointsFiltersImpl<double>::MaxDensityDataPointsFilter;
00435
00436
00437
00438
00439 template<typename T>
00440 DataPointsFiltersImpl<T>::SurfaceNormalDataPointsFilter::SurfaceNormalDataPointsFilter(const Parameters& params):
00441 DataPointsFilter("SurfaceNormalDataPointsFilter", SurfaceNormalDataPointsFilter::availableParameters(), params),
00442 knn(Parametrizable::get<int>("knn")),
00443 epsilon(Parametrizable::get<T>("epsilon")),
00444 keepNormals(Parametrizable::get<bool>("keepNormals")),
00445 keepDensities(Parametrizable::get<bool>("keepDensities")),
00446 keepEigenValues(Parametrizable::get<bool>("keepEigenValues")),
00447 keepEigenVectors(Parametrizable::get<bool>("keepEigenVectors")),
00448 keepMatchedIds(Parametrizable::get<bool>("keepMatchedIds"))
00449 {
00450 }
00451
00452
00453 template<typename T>
00454 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::SurfaceNormalDataPointsFilter::filter(
00455 const DataPoints& input)
00456 {
00457 DataPoints output(input);
00458 inPlaceFilter(output);
00459 return output;
00460 }
00461
00462
00463 template<typename T>
00464 void DataPointsFiltersImpl<T>::SurfaceNormalDataPointsFilter::inPlaceFilter(
00465 DataPoints& cloud)
00466 {
00467 typedef typename DataPoints::View View;
00468 typedef typename DataPoints::Label Label;
00469 typedef typename DataPoints::Labels Labels;
00470 typedef typename MatchersImpl<T>::KDTreeMatcher KDTreeMatcher;
00471 typedef typename PointMatcher<T>::Matches Matches;
00472
00473 const int pointsCount(cloud.features.cols());
00474 const int featDim(cloud.features.rows());
00475 const int descDim(cloud.descriptors.rows());
00476
00477
00478 int insertDim(0);
00479 for(unsigned int i = 0; i < cloud.descriptorLabels.size(); i++)
00480 insertDim += cloud.descriptorLabels[i].span;
00481 if (insertDim != descDim)
00482 throw InvalidField("SurfaceNormalDataPointsFilter: Error, descriptor labels do not match descriptor data");
00483
00484
00485 const int dimNormals(featDim-1);
00486 const int dimDensities(1);
00487 const int dimEigValues(featDim-1);
00488 const int dimEigVectors((featDim-1)*(featDim-1));
00489
00490
00491 boost::optional<View> normals;
00492 boost::optional<View> densities;
00493 boost::optional<View> eigenValues;
00494 boost::optional<View> eigenVectors;
00495 boost::optional<View> matchedValues;
00496
00497 Labels cloudLabels;
00498 if (keepNormals)
00499 cloudLabels.push_back(Label("normals", dimNormals));
00500 if (keepDensities)
00501 cloudLabels.push_back(Label("densities", dimDensities));
00502 if (keepEigenValues)
00503 cloudLabels.push_back(Label("eigValues", dimEigValues));
00504 if (keepEigenVectors)
00505 cloudLabels.push_back(Label("eigVectors", dimEigVectors));
00506 cloud.allocateDescriptors(cloudLabels);
00507
00508 if (keepNormals)
00509 normals = cloud.getDescriptorViewByName("normals");
00510 if (keepDensities)
00511 densities = cloud.getDescriptorViewByName("densities");
00512 if (keepEigenValues)
00513 eigenValues = cloud.getDescriptorViewByName("eigValues");
00514 if (keepEigenVectors)
00515 eigenVectors = cloud.getDescriptorViewByName("eigVectors");
00516
00517
00518
00519
00520
00521
00522
00523
00524 Parametrizable::Parameters param;
00525 boost::assign::insert(param) ( "knn", toParam(knn) );
00526 boost::assign::insert(param) ( "epsilon", toParam(epsilon) );
00527 KDTreeMatcher matcher(param);
00528 matcher.init(cloud);
00529
00530 Matches matches(typename Matches::Dists(knn, pointsCount), typename Matches::Ids(knn, pointsCount));
00531 matches = matcher.findClosests(cloud);
00532
00533
00534 int degenerateCount(0);
00535 for (int i = 0; i < pointsCount; ++i)
00536 {
00537
00538 Matrix d(featDim-1, knn);
00539 for(int j = 0; j < int(knn); j++)
00540 {
00541 const int refIndex(matches.ids(j,i));
00542 d.col(j) = cloud.features.block(0, refIndex, featDim-1, 1);
00543 }
00544
00545 const Vector mean = d.rowwise().sum() / T(knn);
00546 const Matrix NN = d.colwise() - mean;
00547
00548 const Matrix C(NN * NN.transpose());
00549 Vector eigenVa = Vector::Identity(featDim-1, 1);
00550 Matrix eigenVe = Matrix::Identity(featDim-1, featDim-1);
00551
00552 if(keepNormals || keepEigenValues || keepEigenVectors)
00553 {
00554 if(C.fullPivHouseholderQr().rank()+1 >= featDim-1)
00555 {
00556 const Eigen::EigenSolver<Matrix> solver(C);
00557 eigenVa = solver.eigenvalues().real();
00558 eigenVe = solver.eigenvectors().real();
00559 }
00560 else
00561 {
00562
00563 ++degenerateCount;
00564 }
00565 }
00566
00567 if(keepNormals)
00568 normals->col(i) = computeNormal(eigenVa, eigenVe);
00569 if(keepDensities)
00570 (*densities)(0, i) = computeDensity(NN);
00571 if(keepEigenValues)
00572 eigenValues->col(i) = eigenVa;
00573 if(keepEigenVectors)
00574 eigenVectors->col(i) = serializeEigVec(eigenVe);
00575 }
00576 if (degenerateCount)
00577 {
00578 LOG_WARNING_STREAM("WARNING: Matrix C needed for eigen decomposition was degenerated in " << degenerateCount << " points over " << pointsCount << " (" << float(degenerateCount)*100.f/float(pointsCount) << " %)");
00579 }
00580
00581 }
00582
00583 template<typename T>
00584 typename PointMatcher<T>::Vector DataPointsFiltersImpl<T>::SurfaceNormalDataPointsFilter::computeNormal(const Vector eigenVa, const Matrix eigenVe)
00585 {
00586
00587 int smallestId(0);
00588 T smallestValue(numeric_limits<T>::max());
00589 for(int j = 0; j < eigenVe.cols(); j++)
00590 {
00591 if (eigenVa(j) < smallestValue)
00592 {
00593 smallestId = j;
00594 smallestValue = eigenVa(j);
00595 }
00596 }
00597
00598 return eigenVe.col(smallestId);
00599 }
00600
00601 template<typename T>
00602 typename PointMatcher<T>::Vector DataPointsFiltersImpl<T>::SurfaceNormalDataPointsFilter::serializeEigVec(const Matrix eigenVe)
00603 {
00604
00605 const int eigenVeDim = eigenVe.cols();
00606 Vector output(eigenVeDim*eigenVeDim);
00607 for(int k=0; k < eigenVe.cols(); k++)
00608 {
00609 output.segment(k*eigenVeDim, eigenVeDim) =
00610 eigenVe.row(k).transpose();
00611 }
00612
00613 return output;
00614 }
00615
00616 template<typename T>
00617 T DataPointsFiltersImpl<T>::SurfaceNormalDataPointsFilter::computeDensity(const Matrix NN)
00618 {
00619
00620 T volume = (4./3.)*M_PI*std::pow(NN.colwise().norm().maxCoeff(), 3);
00621
00622
00623
00624
00625
00626
00627
00628
00629
00630 return T(NN.cols())/(volume);
00631 }
00632
00633 template struct DataPointsFiltersImpl<float>::SurfaceNormalDataPointsFilter;
00634 template struct DataPointsFiltersImpl<double>::SurfaceNormalDataPointsFilter;
00635
00636
00637
00638
00639
00640 template<typename T>
00641 DataPointsFiltersImpl<T>::SamplingSurfaceNormalDataPointsFilter::SamplingSurfaceNormalDataPointsFilter(const Parameters& params):
00642 DataPointsFilter("SamplingSurfaceNormalDataPointsFilter", SamplingSurfaceNormalDataPointsFilter::availableParameters(), params),
00643 ratio(Parametrizable::get<T>("ratio")),
00644 knn(Parametrizable::get<int>("knn")),
00645 samplingMethod(Parametrizable::get<int>("samplingMethod")),
00646 maxBoxDim(Parametrizable::get<T>("maxBoxDim")),
00647 averageExistingDescriptors(Parametrizable::get<bool>("averageExistingDescriptors")),
00648 keepNormals(Parametrizable::get<bool>("keepNormals")),
00649 keepDensities(Parametrizable::get<bool>("keepDensities")),
00650 keepEigenValues(Parametrizable::get<bool>("keepEigenValues")),
00651 keepEigenVectors(Parametrizable::get<bool>("keepEigenVectors"))
00652 {
00653 }
00654
00655
00656 template<typename T>
00657 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::SamplingSurfaceNormalDataPointsFilter::filter(
00658 const DataPoints& input)
00659 {
00660 DataPoints output(input);
00661 inPlaceFilter(output);
00662 return output;
00663 }
00664
00665
00666 template<typename T>
00667 void DataPointsFiltersImpl<T>::SamplingSurfaceNormalDataPointsFilter::inPlaceFilter(
00668 DataPoints& cloud)
00669 {
00670 typedef Matrix Features;
00671 typedef typename DataPoints::View View;
00672 typedef typename DataPoints::Label Label;
00673 typedef typename DataPoints::Labels Labels;
00674
00675 const int pointsCount(cloud.features.cols());
00676 const int featDim(cloud.features.rows());
00677 const int descDim(cloud.descriptors.rows());
00678
00679 int insertDim(0);
00680 if (averageExistingDescriptors)
00681 {
00682
00683
00684 for(unsigned int i = 0; i < cloud.descriptorLabels.size(); i++)
00685 insertDim += cloud.descriptorLabels[i].span;
00686 if (insertDim != descDim)
00687 throw InvalidField("SamplingSurfaceNormalDataPointsFilter: Error, descriptor labels do not match descriptor data");
00688 }
00689
00690
00691 const int dimNormals(featDim-1);
00692 const int dimDensities(1);
00693 const int dimEigValues(featDim-1);
00694 const int dimEigVectors((featDim-1)*(featDim-1));
00695
00696
00697 Labels cloudLabels;
00698 if (keepNormals)
00699 cloudLabels.push_back(Label("normals", dimNormals));
00700 if (keepDensities)
00701 cloudLabels.push_back(Label("densities", dimDensities));
00702 if (keepEigenValues)
00703 cloudLabels.push_back(Label("eigValues", dimEigValues));
00704 if (keepEigenVectors)
00705 cloudLabels.push_back(Label("eigVectors", dimEigVectors));
00706 cloud.allocateDescriptors(cloudLabels);
00707
00708
00709 View cloudExistingDescriptors(cloud.descriptors.block(0,0,cloud.descriptors.rows(),cloud.descriptors.cols()));
00710 BuildData buildData(cloud.features, cloud.descriptors);
00711
00712
00713 if (keepNormals)
00714 buildData.normals = cloud.getDescriptorViewByName("normals");
00715 if (keepDensities)
00716 buildData.densities = cloud.getDescriptorViewByName("densities");
00717 if (keepEigenValues)
00718 buildData.eigenValues = cloud.getDescriptorViewByName("eigValues");
00719 if (keepEigenVectors)
00720 buildData.eigenVectors = cloud.getDescriptorViewByName("eigVectors");
00721
00722 buildNew(
00723 buildData,
00724 0,
00725 pointsCount,
00726 cloud.features.rowwise().minCoeff(),
00727 cloud.features.rowwise().maxCoeff()
00728 );
00729
00730
00731
00732 std::sort(buildData.indicesToKeep.begin(), buildData.indicesToKeep.end());
00733 int ptsOut = buildData.indicesToKeep.size();
00734 for (int i = 0; i < ptsOut; i++){
00735 int k = buildData.indicesToKeep[i];
00736 assert(i <= k);
00737 cloud.features.col(i) = cloud.features.col(k);
00738 if (cloud.descriptors.rows() != 0)
00739 cloud.descriptors.col(i) = cloud.descriptors.col(k);
00740 if(keepNormals)
00741 buildData.normals->col(i) = buildData.normals->col(k);
00742 if(keepDensities)
00743 (*buildData.densities)(0,i) = (*buildData.densities)(0,k);
00744 if(keepEigenValues)
00745 buildData.eigenValues->col(i) = buildData.eigenValues->col(k);
00746 if(keepEigenVectors)
00747 buildData.eigenVectors->col(i) = buildData.eigenVectors->col(k);
00748 }
00749 cloud.features.conservativeResize(Eigen::NoChange, ptsOut);
00750 cloud.descriptors.conservativeResize(Eigen::NoChange, ptsOut);
00751
00752
00753 if(buildData.unfitPointsCount != 0)
00754 LOG_INFO_STREAM(" SamplingSurfaceNormalDataPointsFilter - Could not compute normal for " << buildData.unfitPointsCount << " pts.");
00755 }
00756
00757 template<typename T>
00758 size_t argMax(const typename PointMatcher<T>::Vector& v)
00759 {
00760 T maxVal(0);
00761 size_t maxIdx(0);
00762 for (int i = 0; i < v.size(); ++i)
00763 {
00764 if (v[i] > maxVal)
00765 {
00766 maxVal = v[i];
00767 maxIdx = i;
00768 }
00769 }
00770 return maxIdx;
00771 }
00772
00773 template<typename T>
00774 void DataPointsFiltersImpl<T>::SamplingSurfaceNormalDataPointsFilter::buildNew(BuildData& data, const int first, const int last, const Vector minValues, const Vector maxValues) const
00775 {
00776 const int count(last - first);
00777 if (count <= int(knn))
00778 {
00779
00780 fuseRange(data, first, last);
00781
00782
00783
00784 return;
00785 }
00786
00787
00788 const int cutDim = argMax<T>(maxValues - minValues);
00789
00790
00791 const int rightCount(count/2);
00792 const int leftCount(count - rightCount);
00793 assert(last - rightCount == first + leftCount);
00794
00795
00796 std::nth_element(
00797 data.indices.begin() + first,
00798 data.indices.begin() + first + leftCount,
00799 data.indices.begin() + last,
00800 CompareDim(cutDim, data)
00801 );
00802
00803
00804 const int cutIndex(data.indices[first+leftCount]);
00805 const T cutVal(data.features(cutDim, cutIndex));
00806
00807
00808 Vector leftMaxValues(maxValues);
00809 leftMaxValues[cutDim] = cutVal;
00810
00811 Vector rightMinValues(minValues);
00812 rightMinValues[cutDim] = cutVal;
00813
00814
00815 buildNew(data, first, first + leftCount, minValues, leftMaxValues);
00816 buildNew(data, first + leftCount, last, rightMinValues, maxValues);
00817 }
00818
00819 template<typename T>
00820 void DataPointsFiltersImpl<T>::SamplingSurfaceNormalDataPointsFilter::fuseRange(BuildData& data, const int first, const int last) const
00821 {
00822 const int colCount(last-first);
00823 const int featDim(data.features.rows());
00824
00825
00826 Matrix d(featDim-1, colCount);
00827 for (int i = 0; i < colCount; ++i)
00828 d.col(i) = data.features.block(0,data.indices[first+i],featDim-1, 1);
00829 const Vector box = d.rowwise().maxCoeff() - d.rowwise().minCoeff();
00830 const T boxDim(box.maxCoeff());
00831
00832 if (boxDim > maxBoxDim)
00833 {
00834 data.unfitPointsCount += colCount;
00835 return;
00836 }
00837 const Vector mean = d.rowwise().sum() / T(colCount);
00838 const Matrix NN = (d.colwise() - mean);
00839
00840
00841 const Matrix C(NN * NN.transpose());
00842 Vector eigenVa = Vector::Identity(featDim-1, 1);
00843 Matrix eigenVe = Matrix::Identity(featDim-1, featDim-1);
00844
00845 if(keepNormals || keepEigenValues || keepEigenVectors)
00846 {
00847 if(C.fullPivHouseholderQr().rank()+1 >= featDim-1)
00848 {
00849 const Eigen::EigenSolver<Matrix> solver(C);
00850 eigenVa = solver.eigenvalues().real();
00851 eigenVe = solver.eigenvectors().real();
00852 }
00853 else
00854 {
00855 data.unfitPointsCount += colCount;
00856 return;
00857 }
00858 }
00859
00860 Vector normal;
00861 if(keepNormals)
00862 normal = SurfaceNormalDataPointsFilter::computeNormal(eigenVa, eigenVe);
00863
00864 T densitie = 0;
00865 if(keepDensities)
00866 densitie = SurfaceNormalDataPointsFilter::computeDensity(NN);
00867
00868
00869
00870 Vector serialEigVector;
00871 if(keepEigenVectors)
00872 serialEigVector = SurfaceNormalDataPointsFilter::serializeEigVec(eigenVe);
00873
00874
00875 if(data.descriptors.rows() != 0)
00876 assert(data.descriptors.cols() != 0);
00877
00878
00879 if(samplingMethod == 0)
00880 {
00881 for(int i=0; i<colCount; i++)
00882 {
00883 const float r = (float)std::rand()/(float)RAND_MAX;
00884 if(r < ratio)
00885 {
00886
00887 int k = data.indices[first+i];
00888
00889 data.indicesToKeep.push_back(k);
00890
00891
00892 if(keepNormals)
00893 data.normals->col(k) = normal;
00894 if(keepDensities)
00895 (*data.densities)(0,k) = densitie;
00896 if(keepEigenValues)
00897 data.eigenValues->col(k) = eigenVa;
00898 if(keepEigenVectors)
00899 data.eigenVectors->col(k) = serialEigVector;
00900
00901 }
00902 }
00903 }
00904 else
00905 {
00906
00907 int k = data.indices[first];
00908
00909 data.indicesToKeep.push_back(k);
00910 data.features.col(k).topRows(featDim-1) = mean;
00911 data.features(featDim-1, k) = 1;
00912
00913 if(data.descriptors.rows() != 0)
00914 {
00915
00916 if (averageExistingDescriptors)
00917 {
00918 Vector mergedDesc(Vector::Zero(data.descriptors.rows()));
00919 for (int i = 0; i < colCount; ++i)
00920 mergedDesc += data.descriptors.col(data.indices[first+i]);
00921 mergedDesc /= T(colCount);
00922 data.descriptors.col(k) = mergedDesc;
00923 }
00924
00925 }
00926
00927
00928 if(keepNormals)
00929 data.normals->col(k) = normal;
00930 if(keepDensities)
00931 (*data.densities)(0,k) = densitie;
00932 if(keepEigenValues)
00933 data.eigenValues->col(k) = eigenVa;
00934 if(keepEigenVectors)
00935 data.eigenVectors->col(k) = serialEigVector;
00936
00937 }
00938
00939 }
00940
00941 template struct DataPointsFiltersImpl<float>::SamplingSurfaceNormalDataPointsFilter;
00942 template struct DataPointsFiltersImpl<double>::SamplingSurfaceNormalDataPointsFilter;
00943
00944
00945
00946 template<typename T>
00947 DataPointsFiltersImpl<T>::OrientNormalsDataPointsFilter::OrientNormalsDataPointsFilter(const Parameters& params):
00948 DataPointsFilter("OrientNormalsDataPointsFilter", OrientNormalsDataPointsFilter::availableParameters(), params),
00949 towardCenter(Parametrizable::get<bool>("towardCenter"))
00950 {
00951 }
00952
00953
00954
00955 template<typename T>
00956 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::OrientNormalsDataPointsFilter::filter(
00957 const DataPoints& input)
00958 {
00959 DataPoints output(input);
00960 inPlaceFilter(output);
00961 return output;
00962 }
00963
00964
00965 template<typename T>
00966 void DataPointsFiltersImpl<T>::OrientNormalsDataPointsFilter::inPlaceFilter(
00967 DataPoints& cloud)
00968 {
00969 if (!cloud.descriptorExists("normals"))
00970 throw InvalidField("OrientNormalsDataPointsFilter: Error, cannot find normals in descriptors.");
00971 if (!cloud.descriptorExists("observationDirections"))
00972 throw InvalidField("OrientNormalsDataPointsFilter: Error, cannot find observation directions in descriptors.");
00973
00974 BOOST_AUTO(normals, cloud.getDescriptorViewByName("normals"));
00975 const BOOST_AUTO(observationDirections, cloud.getDescriptorViewByName("observationDirections"));
00976 assert(normals.rows() == observationDirections.rows());
00977 for (int i = 0; i < cloud.features.cols(); i++)
00978 {
00979
00980 const Vector vecP = observationDirections.col(i);
00981 const Vector vecN = normals.col(i);
00982 const double scalar = vecP.dot(vecN);
00983
00984
00985 if(towardCenter)
00986 {
00987 if (scalar < 0)
00988 normals.col(i) = -vecN;
00989 }
00990 else
00991 {
00992 if (scalar > 0)
00993 normals.col(i) = -vecN;
00994 }
00995 }
00996
00997 }
00998
00999 template struct DataPointsFiltersImpl<float>::OrientNormalsDataPointsFilter;
01000 template struct DataPointsFiltersImpl<double>::OrientNormalsDataPointsFilter;
01001
01002
01003
01004
01005 template<typename T>
01006 DataPointsFiltersImpl<T>::RandomSamplingDataPointsFilter::RandomSamplingDataPointsFilter(const Parameters& params):
01007 DataPointsFilter("RandomSamplingDataPointsFilter", RandomSamplingDataPointsFilter::availableParameters(), params),
01008 prob(Parametrizable::get<double>("prob"))
01009 {
01010 }
01011
01012
01013 template<typename T>
01014 DataPointsFiltersImpl<T>::RandomSamplingDataPointsFilter::RandomSamplingDataPointsFilter(const std::string& className, const ParametersDoc paramsDoc, const Parameters& params):
01015 DataPointsFilter(className, paramsDoc, params),
01016 prob(Parametrizable::get<double>("prob"))
01017 {
01018 }
01019
01020
01021 template<typename T>
01022 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::RandomSamplingDataPointsFilter::filter(
01023 const DataPoints& input)
01024 {
01025 DataPoints output(input);
01026 inPlaceFilter(output);
01027 return output;
01028 }
01029
01030
01031 template<typename T>
01032 void DataPointsFiltersImpl<T>::RandomSamplingDataPointsFilter::inPlaceFilter(
01033 DataPoints& cloud)
01034 {
01035 const int nbPointsIn = cloud.features.cols();
01036
01037 int j = 0;
01038 for (int i = 0; i < nbPointsIn; i++)
01039 {
01040 const float r = (float)std::rand()/(float)RAND_MAX;
01041 if (r < prob)
01042 {
01043 cloud.setColFrom(j, cloud, i);
01044 j++;
01045 }
01046 }
01047
01048 cloud.conservativeResize(j);
01049 }
01050
01051 template struct DataPointsFiltersImpl<float>::RandomSamplingDataPointsFilter;
01052 template struct DataPointsFiltersImpl<double>::RandomSamplingDataPointsFilter;
01053
01054
01055
01056
01057 template<typename T>
01058 DataPointsFiltersImpl<T>::MaxPointCountDataPointsFilter::MaxPointCountDataPointsFilter(const Parameters& params):
01059 RandomSamplingDataPointsFilter("MaxPointCountDataPointsFilter", MaxPointCountDataPointsFilter::availableParameters(), params),
01060 maxCount(Parametrizable::get<unsigned>("maxCount"))
01061 {
01062 }
01063
01064
01065 template<typename T>
01066 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::MaxPointCountDataPointsFilter::filter(
01067 const DataPoints& input)
01068 {
01069 DataPoints output(input);
01070 inPlaceFilter(output);
01071 return output;
01072 }
01073
01074
01075 template<typename T>
01076 void DataPointsFiltersImpl<T>::MaxPointCountDataPointsFilter::inPlaceFilter(
01077 DataPoints& cloud)
01078 {
01079 if (unsigned(cloud.features.cols()) <= maxCount)
01080 return;
01081 RandomSamplingDataPointsFilter::inPlaceFilter(cloud);
01082 }
01083
01084 template struct DataPointsFiltersImpl<float>::MaxPointCountDataPointsFilter;
01085 template struct DataPointsFiltersImpl<double>::MaxPointCountDataPointsFilter;
01086
01087
01088
01089
01090 template<typename T>
01091 DataPointsFiltersImpl<T>::FixStepSamplingDataPointsFilter::FixStepSamplingDataPointsFilter(const Parameters& params):
01092 DataPointsFilter("FixStepSamplingDataPointsFilter", FixStepSamplingDataPointsFilter::availableParameters(), params),
01093 startStep(Parametrizable::get<unsigned>("startStep")),
01094 endStep(Parametrizable::get<unsigned>("endStep")),
01095 stepMult(Parametrizable::get<double>("stepMult")),
01096 step(startStep)
01097 {
01098 LOG_INFO_STREAM("Using FixStepSamplingDataPointsFilter with startStep=" << startStep << ", endStep=" << endStep << ", stepMult=" << stepMult);
01099 }
01100
01101
01102 template<typename T>
01103 void DataPointsFiltersImpl<T>::FixStepSamplingDataPointsFilter::init()
01104 {
01105 step = startStep;
01106 }
01107
01108
01109 template<typename T>
01110 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::FixStepSamplingDataPointsFilter::filter(
01111 const DataPoints& input)
01112 {
01113 DataPoints output(input);
01114 inPlaceFilter(output);
01115 return output;
01116 }
01117
01118
01119 template<typename T>
01120 void DataPointsFiltersImpl<T>::FixStepSamplingDataPointsFilter::inPlaceFilter(
01121 DataPoints& cloud)
01122 {
01123 const int iStep(step);
01124 const int nbPointsIn = cloud.features.cols();
01125 const int phase(rand() % iStep);
01126
01127 int j = 0;
01128 for (int i = phase; i < nbPointsIn; i += iStep)
01129 {
01130 cloud.setColFrom(j, cloud, i);
01131 j++;
01132 }
01133
01134 cloud.conservativeResize(j);
01135
01136 const double deltaStep(startStep * stepMult - startStep);
01137 step *= stepMult;
01138 if (deltaStep < 0 && step < endStep)
01139 step = endStep;
01140 if (deltaStep > 0 && step > endStep)
01141 step = endStep;
01142
01143 }
01144
01145 template struct DataPointsFiltersImpl<float>::FixStepSamplingDataPointsFilter;
01146 template struct DataPointsFiltersImpl<double>::FixStepSamplingDataPointsFilter;
01147
01148
01149
01150
01151 template<typename T>
01152 DataPointsFiltersImpl<T>::ShadowDataPointsFilter::ShadowDataPointsFilter(const Parameters& params):
01153 DataPointsFilter("ShadowDataPointsFilter", ShadowDataPointsFilter::availableParameters(), params),
01154 eps(sin(Parametrizable::get<T>("eps")))
01155 {
01156
01157 }
01158
01159
01160
01161 template<typename T>
01162 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::ShadowDataPointsFilter::filter(
01163 const DataPoints& input)
01164 {
01165 DataPoints output(input);
01166 inPlaceFilter(output);
01167 return output;
01168 }
01169
01170
01171 template<typename T>
01172 void DataPointsFiltersImpl<T>::ShadowDataPointsFilter::inPlaceFilter(
01173 DataPoints& cloud)
01174 {
01175
01176 if (!cloud.descriptorExists("normals"))
01177 {
01178 throw InvalidField("ShadowDataPointsFilter, Error: cannot find normals in descriptors");
01179 }
01180
01181 const int dim = cloud.features.rows();
01182
01183 const BOOST_AUTO(normals, cloud.getDescriptorViewByName("normals"));
01184 int j = 0;
01185
01186 for(int i=0; i < cloud.features.cols(); i++)
01187 {
01188 const Vector normal = normals.col(i).normalized();
01189 const Vector point = cloud.features.block(0, i, dim-1, 1).normalized();
01190
01191 const T value = anyabs(normal.dot(point));
01192
01193 if(value > eps)
01194 {
01195 cloud.features.col(j) = cloud.features.col(i);
01196 cloud.descriptors.col(j) = cloud.descriptors.col(i);
01197 j++;
01198 }
01199 }
01200
01201 cloud.conservativeResize(j);
01202 }
01203
01204 template struct DataPointsFiltersImpl<float>::ShadowDataPointsFilter;
01205 template struct DataPointsFiltersImpl<double>::ShadowDataPointsFilter;
01206
01207
01208
01209
01210 template<typename T>
01211 DataPointsFiltersImpl<T>::SimpleSensorNoiseDataPointsFilter::SimpleSensorNoiseDataPointsFilter(const Parameters& params):
01212 DataPointsFilter("SimpleSensorNoiseDataPointsFilter", SimpleSensorNoiseDataPointsFilter::availableParameters(), params),
01213 sensorType(Parametrizable::get<unsigned>("sensorType")),
01214 gain(Parametrizable::get<T>("gain"))
01215 {
01216 std::vector<string> sensorNames = boost::assign::list_of ("Sick LMS-1xx")("Hokuyo URG-04LX")("Hokuyo UTM-30LX")("Kinect / Xtion");
01217 if (sensorType >= sensorNames.size())
01218 {
01219 throw InvalidParameter(
01220 (boost::format("SimpleSensorNoiseDataPointsFilter: Error, sensorType id %1% does not exist.") % sensorType).str());
01221 }
01222
01223 LOG_INFO_STREAM("SimpleSensorNoiseDataPointsFilter - using sensor noise model: " << sensorNames[sensorType]);
01224 }
01225
01226
01227
01228
01229 template<typename T>
01230 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::SimpleSensorNoiseDataPointsFilter::filter(
01231 const DataPoints& input)
01232 {
01233 DataPoints output(input);
01234 inPlaceFilter(output);
01235 return output;
01236 }
01237
01238
01239 template<typename T>
01240 void DataPointsFiltersImpl<T>::SimpleSensorNoiseDataPointsFilter::inPlaceFilter(
01241 DataPoints& cloud)
01242 {
01243 cloud.allocateDescriptor("simpleSensorNoise", 1);
01244 BOOST_AUTO(noise, cloud.getDescriptorViewByName("simpleSensorNoise"));
01245
01246 switch(sensorType)
01247 {
01248 case 0:
01249 {
01250 noise = computeLaserNoise(0.012, 0.0068, 0.0008, cloud.features);
01251 break;
01252 }
01253 case 1:
01254 {
01255 noise = computeLaserNoise(0.028, 0.0013, 0.0001, cloud.features);
01256 break;
01257 }
01258 case 2:
01259 {
01260 noise = computeLaserNoise(0.018, 0.0006, 0.0015, cloud.features);
01261 break;
01262 }
01263 case 3:
01264 {
01265 const int dim = cloud.features.rows();
01266 const Matrix squaredValues(cloud.features.topRows(dim-1).colwise().norm().array().square());
01267 noise = squaredValues*(0.5*0.00285);
01268 break;
01269 }
01270 default:
01271 throw InvalidParameter(
01272 (boost::format("SimpleSensorNoiseDataPointsFilter: Error, cannot compute noise for sensorType id %1% .") % sensorType).str());
01273 }
01274
01275 }
01276
01277 template<typename T>
01278 typename PointMatcher<T>::Matrix DataPointsFiltersImpl<T>::SimpleSensorNoiseDataPointsFilter::computeLaserNoise(const T minRadius, const T beamAngle, const T beamConst, const Matrix features)
01279 {
01280 typedef typename Eigen::Array<T, 2, Eigen::Dynamic> Array2rows;
01281
01282 const int nbPoints = features.cols();
01283 const int dim = features.rows();
01284
01285 Array2rows evalNoise = Array2rows::Constant(2, nbPoints, minRadius);
01286 evalNoise.row(0) = beamAngle * features.topRows(dim-1).colwise().norm();
01287 evalNoise.row(0) += beamConst;
01288
01289 return evalNoise.colwise().maxCoeff();
01290
01291 }
01292
01293
01294 template struct DataPointsFiltersImpl<float>::SimpleSensorNoiseDataPointsFilter;
01295 template struct DataPointsFiltersImpl<double>::SimpleSensorNoiseDataPointsFilter;
01296
01297
01298
01299
01300 template<typename T>
01301 DataPointsFiltersImpl<T>::ObservationDirectionDataPointsFilter::ObservationDirectionDataPointsFilter(const Parameters& params):
01302 DataPointsFilter("ObservationDirectionDataPointsFilter", ObservationDirectionDataPointsFilter::availableParameters(), params),
01303 centerX(Parametrizable::get<T>("x")),
01304 centerY(Parametrizable::get<T>("y")),
01305 centerZ(Parametrizable::get<T>("z"))
01306 {
01307 }
01308
01309
01310 template<typename T>
01311 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::ObservationDirectionDataPointsFilter::filter(
01312 const DataPoints& input)
01313 {
01314 DataPoints output(input);
01315 inPlaceFilter(output);
01316 return output;
01317 }
01318
01319
01320 template<typename T>
01321 void DataPointsFiltersImpl<T>::ObservationDirectionDataPointsFilter::inPlaceFilter(
01322 DataPoints& cloud)
01323 {
01324 const int dim(cloud.features.rows() - 1);
01325 if (dim != 2 && dim != 3)
01326 {
01327 throw InvalidField(
01328 (boost::format("ObservationDirectionDataPointsFilter: Error, works only in 2 or 3 dimensions, cloud has %1% dimensions.") % dim).str()
01329 );
01330 }
01331
01332 Vector center(dim);
01333 center[0] = centerX;
01334 center[1] = centerY;
01335 if (dim == 3)
01336 center[2] = centerZ;
01337
01338 cloud.allocateDescriptor("observationDirections", dim);
01339 BOOST_AUTO(observationDirections, cloud.getDescriptorViewByName("observationDirections"));
01340
01341 for (int i = 0; i < cloud.features.cols(); i++)
01342 {
01343
01344 const Vector p(cloud.features.block(0, i, dim, 1));
01345 observationDirections.col(i) = center - p;
01346 }
01347
01348 }
01349
01350 template struct DataPointsFiltersImpl<float>::ObservationDirectionDataPointsFilter;
01351 template struct DataPointsFiltersImpl<double>::ObservationDirectionDataPointsFilter;
01352
01353
01354 template <typename T>
01355 DataPointsFiltersImpl<T>::VoxelGridDataPointsFilter::VoxelGridDataPointsFilter() :
01356 vSizeX(1),
01357 vSizeY(1),
01358 vSizeZ(1),
01359 useCentroid(true),
01360 averageExistingDescriptors(true) {}
01361
01362 template <typename T>
01363 DataPointsFiltersImpl<T>::VoxelGridDataPointsFilter::VoxelGridDataPointsFilter(const Parameters& params) :
01364 DataPointsFilter("VoxelGridDataPointsFilter", VoxelGridDataPointsFilter::availableParameters(), params),
01365 vSizeX(Parametrizable::get<T>("vSizeX")),
01366 vSizeY(Parametrizable::get<T>("vSizeY")),
01367 vSizeZ(Parametrizable::get<T>("vSizeZ")),
01368 useCentroid(Parametrizable::get<bool>("useCentroid")),
01369 averageExistingDescriptors(Parametrizable::get<bool>("averageExistingDescriptors"))
01370 {
01371
01372 }
01373
01374 template <typename T>
01375 typename PointMatcher<T>::DataPoints DataPointsFiltersImpl<T>::VoxelGridDataPointsFilter::filter(const DataPoints& input)
01376 {
01377 DataPoints output(input);
01378 inPlaceFilter(output);
01379 return output;
01380 }
01381
01382 template <typename T>
01383 void DataPointsFiltersImpl<T>::VoxelGridDataPointsFilter::inPlaceFilter(DataPoints& cloud)
01384 {
01385 const int numPoints(cloud.features.cols());
01386 const int featDim(cloud.features.rows());
01387 const int descDim(cloud.descriptors.rows());
01388
01389 assert (featDim == 3 || featDim == 4);
01390
01391 int insertDim(0);
01392 if (averageExistingDescriptors)
01393 {
01394
01395
01396 for(unsigned int i = 0; i < cloud.descriptorLabels.size(); i++)
01397 insertDim += cloud.descriptorLabels[i].span;
01398 if (insertDim != descDim)
01399 throw InvalidField("VoxelGridDataPointsFilter: Error, descriptor labels do not match descriptor data");
01400 }
01401
01402
01403
01404
01405 Vector minValues = cloud.features.rowwise().minCoeff();
01406 Vector maxValues = cloud.features.rowwise().maxCoeff();
01407
01408 T minBoundX = minValues.x() / vSizeX;
01409 T maxBoundX = maxValues.x() / vSizeX;
01410 T minBoundY = minValues.y() / vSizeY;
01411 T maxBoundY = maxValues.y() / vSizeY;
01412 T minBoundZ = 0;
01413 T maxBoundZ = 0;
01414
01415 if (featDim == 4)
01416 {
01417 minBoundZ = minValues.z() / vSizeZ;
01418 maxBoundZ = maxValues.z() / vSizeZ;
01419 }
01420
01421
01422
01423 unsigned int numDivX = 1 + maxBoundX - minBoundX;
01424 unsigned int numDivY = 1 + maxBoundY - minBoundY;;
01425 unsigned int numDivZ = 0;
01426
01427
01428 if (featDim == 4 )
01429 numDivZ = 1 + maxBoundZ - minBoundZ;
01430
01431 unsigned int numVox = numDivX * numDivY;
01432 if ( featDim == 4)
01433 numVox *= numDivZ;
01434
01435
01436
01437
01438
01439
01440 std::vector<unsigned int> indices(numPoints);
01441
01442
01443
01444
01445
01446 std::vector<Voxel>* voxels;
01447
01448
01449 try {
01450 voxels = new std::vector<Voxel>(numVox);
01451 } catch (std::bad_alloc&) {
01452 throw InvalidParameter((boost::format("VoxelGridDataPointsFilter: Memory allocation error with %1% voxels. Try increasing the voxel dimensions.") % numVox).str());
01453 }
01454
01455
01456 for (int p = 0; p < numPoints; p++ )
01457 {
01458 unsigned int i = floor(cloud.features(0,p)/vSizeX - minBoundX);
01459 unsigned int j = floor(cloud.features(1,p)/vSizeY- minBoundY);
01460 unsigned int k = 0;
01461 unsigned int idx;
01462 if ( featDim == 4 )
01463 {
01464 k = floor(cloud.features(2,p)/vSizeZ - minBoundZ);
01465 idx = i + j * numDivX + k * numDivX * numDivY;
01466 }
01467 else
01468 {
01469 idx = i + j * numDivX;
01470 }
01471
01472 unsigned int pointsInVox = (*voxels)[idx].numPoints + 1;
01473
01474 if (pointsInVox == 1)
01475 {
01476 (*voxels)[idx].firstPoint = p;
01477 }
01478
01479 (*voxels)[idx].numPoints = pointsInVox;
01480
01481 indices[p] = idx;
01482
01483 }
01484
01485
01486 std::vector<unsigned int> pointsToKeep;
01487
01488
01489 if (useCentroid)
01490 {
01491
01492 for (int p = 0; p < numPoints ; p++)
01493 {
01494 unsigned int idx = indices[p];
01495 unsigned int firstPoint = (*voxels)[idx].firstPoint;
01496
01497
01498
01499 if (firstPoint != p)
01500 {
01501
01502
01503 for (int f = 0; f < (featDim - 1); f++ )
01504 {
01505 cloud.features(f,firstPoint) += cloud.features(f,p);
01506 }
01507
01508 if (averageExistingDescriptors) {
01509 for (int d = 0; d < descDim; d++)
01510 {
01511 cloud.descriptors(d,firstPoint) += cloud.descriptors(d,p);
01512 }
01513 }
01514 }
01515 }
01516
01517
01518
01519
01520 for( int idx = 0; idx < numVox; idx++)
01521 {
01522 unsigned int numPoints = (*voxels)[idx].numPoints;
01523 unsigned int firstPoint = (*voxels)[idx].firstPoint;
01524 if(numPoints > 0)
01525 {
01526 for ( int f = 0; f < (featDim - 1); f++ )
01527 cloud.features(f,firstPoint) /= numPoints;
01528
01529 if (averageExistingDescriptors) {
01530 for ( int d = 0; d < descDim; d++ )
01531 cloud.descriptors(d,firstPoint) /= numPoints;
01532 }
01533
01534 pointsToKeep.push_back(firstPoint);
01535 }
01536 }
01537 }
01538 else
01539 {
01540
01541 if (averageExistingDescriptors)
01542 {
01543
01544 for (int p = 0; p < numPoints ; p++)
01545 {
01546 unsigned int idx = indices[p];
01547 unsigned int firstPoint = (*voxels)[idx].firstPoint;
01548
01549
01550
01551 if (firstPoint != p)
01552 {
01553 for (int d = 0; d < descDim; d++ )
01554 {
01555 cloud.descriptors(d,firstPoint) += cloud.descriptors(d,p);
01556 }
01557 }
01558 }
01559 }
01560
01561 for (int idx = 0; idx < numVox; idx++)
01562 {
01563 unsigned int numPoints = (*voxels)[idx].numPoints;
01564 unsigned int firstPoint = (*voxels)[idx].firstPoint;
01565
01566 if (numPoints > 0)
01567 {
01568
01569
01570
01571 unsigned int i = 0;
01572 unsigned int j = 0;
01573 unsigned int k = 0;
01574 if (featDim == 4)
01575 {
01576 k = idx / (numDivX * numDivY);
01577 if (k == numDivZ)
01578 cloud.features(3,firstPoint) = maxValues.z() - (k-1) * vSizeZ/2;
01579 else
01580 cloud.features(3,firstPoint) = k * vSizeZ + vSizeZ/2;
01581 }
01582
01583 j = (idx - k * numDivX * numDivY) / numDivX;
01584 if (j == numDivY)
01585 cloud.features(2,firstPoint) = maxValues.y() - (j-1) * vSizeY/2;
01586 else
01587 cloud.features(2,firstPoint) = j * vSizeY + vSizeY / 2;
01588
01589 i = idx - k * numDivX * numDivY - j * numDivX;
01590 if (i == numDivX)
01591 cloud.features(1,firstPoint) = maxValues.x() - (i-1) * vSizeX/2;
01592 else
01593 cloud.features(1,firstPoint) = i * vSizeX + vSizeX / 2;
01594
01595
01596 if (averageExistingDescriptors) {
01597 for ( int d = 0; d < descDim; d++ )
01598 cloud.descriptors(d,firstPoint) /= numPoints;
01599 }
01600
01601 pointsToKeep.push_back(firstPoint);
01602 }
01603 }
01604
01605 }
01606
01607
01608 delete voxels;
01609
01610
01611
01612
01613 std::sort(pointsToKeep.begin(), pointsToKeep.end());
01614 int numPtsOut = pointsToKeep.size();
01615 for (int i = 0; i < numPtsOut; i++){
01616 int k = pointsToKeep[i];
01617 assert(i <= k);
01618 cloud.features.col(i) = cloud.features.col(k);
01619 if (cloud.descriptors.rows() != 0)
01620 cloud.descriptors.col(i) = cloud.descriptors.col(k);
01621 }
01622 cloud.features.conservativeResize(Eigen::NoChange, numPtsOut);
01623
01624 if (cloud.descriptors.rows() != 0)
01625 cloud.descriptors.conservativeResize(Eigen::NoChange, numPtsOut);
01626 }
01627
01628 template struct DataPointsFiltersImpl<float>::VoxelGridDataPointsFilter;
01629 template struct DataPointsFiltersImpl<double>::VoxelGridDataPointsFilter;