Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_RRANSAC_H_
00039 #define PCL_SAMPLE_CONSENSUS_IMPL_RRANSAC_H_
00040
00041 #include <pcl/sample_consensus/rransac.h>
00042
00044 template <typename PointT> bool
00045 pcl::RandomizedRandomSampleConsensus<PointT>::computeModel (int debug_verbosity_level)
00046 {
00047
00048 if (threshold_ == std::numeric_limits<double>::max())
00049 {
00050 PCL_ERROR ("[pcl::RandomizedRandomSampleConsensus::computeModel] No threshold set!\n");
00051 return (false);
00052 }
00053
00054 iterations_ = 0;
00055 int n_best_inliers_count = -INT_MAX;
00056 double k = 1.0;
00057
00058 std::vector<int> selection;
00059 Eigen::VectorXf model_coefficients;
00060 std::set<int> indices_subset;
00061
00062 int n_inliers_count = 0;
00063 unsigned skipped_count = 0;
00064
00065 const unsigned max_skip = max_iterations_ * 10;
00066
00067
00068 size_t fraction_nr_points = pcl_lrint (static_cast<double>(sac_model_->getIndices ()->size ()) * fraction_nr_pretest_ / 100.0);
00069
00070
00071 while (iterations_ < k && skipped_count < max_skip)
00072 {
00073
00074 sac_model_->getSamples (iterations_, selection);
00075
00076 if (selection.empty ()) break;
00077
00078
00079 if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
00080 {
00081
00082 ++ skipped_count;
00083 continue;
00084 }
00085
00086
00087
00088 this->getRandomSamples (sac_model_->getIndices (), fraction_nr_points, indices_subset);
00089 if (!sac_model_->doSamplesVerifyModel (indices_subset, model_coefficients, threshold_))
00090 {
00091
00092 if (k > 1.0)
00093 {
00094 ++iterations_;
00095 continue;
00096 }
00097 }
00098
00099
00100 n_inliers_count = sac_model_->countWithinDistance (model_coefficients, threshold_);
00101
00102
00103 if (n_inliers_count > n_best_inliers_count)
00104 {
00105 n_best_inliers_count = n_inliers_count;
00106
00107
00108 model_ = selection;
00109 model_coefficients_ = model_coefficients;
00110
00111
00112 double w = static_cast<double> (n_inliers_count) / static_cast<double> (sac_model_->getIndices ()->size ());
00113 double p_no_outliers = 1 - pow (w, static_cast<double> (selection.size ()));
00114 p_no_outliers = (std::max) (std::numeric_limits<double>::epsilon (), p_no_outliers);
00115 p_no_outliers = (std::min) (1 - std::numeric_limits<double>::epsilon (), p_no_outliers);
00116 k = log (1 - probability_) / log (p_no_outliers);
00117 }
00118
00119 ++iterations_;
00120
00121 if (debug_verbosity_level > 1)
00122 PCL_DEBUG ("[pcl::RandomizedRandomSampleConsensus::computeModel] Trial %d out of %d: %d inliers (best is: %d so far).\n", iterations_, static_cast<int> (ceil (k)), n_inliers_count, n_best_inliers_count);
00123 if (iterations_ > max_iterations_)
00124 {
00125 if (debug_verbosity_level > 0)
00126 PCL_DEBUG ("[pcl::RandomizedRandomSampleConsensus::computeModel] RRANSAC reached the maximum number of trials.\n");
00127 break;
00128 }
00129 }
00130
00131 if (debug_verbosity_level > 0)
00132 PCL_DEBUG ("[pcl::RandomizedRandomSampleConsensus::computeModel] Model: %zu size, %d inliers.\n", model_.size (), n_best_inliers_count);
00133
00134 if (model_.empty ())
00135 {
00136 inliers_.clear ();
00137 return (false);
00138 }
00139
00140
00141 sac_model_->selectWithinDistance (model_coefficients_, threshold_, inliers_);
00142 return (true);
00143 }
00144
00145 #define PCL_INSTANTIATE_RandomizedRandomSampleConsensus(T) template class PCL_EXPORTS pcl::RandomizedRandomSampleConsensus<T>;
00146
00147 #endif // PCL_SAMPLE_CONSENSUS_IMPL_RRANSAC_H_
00148