Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_RMSAC_H_
00039 #define PCL_SAMPLE_CONSENSUS_IMPL_RMSAC_H_
00040
00041 #include <pcl/sample_consensus/rmsac.h>
00042
00044 template <typename PointT> bool
00045 pcl::RandomizedMEstimatorSampleConsensus<PointT>::computeModel (int debug_verbosity_level)
00046 {
00047
00048 if (threshold_ == std::numeric_limits<double>::max())
00049 {
00050 PCL_ERROR ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] No threshold set!\n");
00051 return (false);
00052 }
00053
00054 iterations_ = 0;
00055 double d_best_penalty = std::numeric_limits<double>::max();
00056 double k = 1.0;
00057
00058 std::vector<int> best_model;
00059 std::vector<int> selection;
00060 Eigen::VectorXf model_coefficients;
00061 std::vector<double> distances;
00062 std::set<int> indices_subset;
00063
00064 int n_inliers_count = 0;
00065 unsigned skipped_count = 0;
00066
00067 const unsigned max_skip = max_iterations_ * 10;
00068
00069
00070 size_t fraction_nr_points = pcl_lrint (static_cast<double>(sac_model_->getIndices ()->size ()) * fraction_nr_pretest_ / 100.0);
00071
00072
00073 while (iterations_ < k && skipped_count < max_skip)
00074 {
00075
00076 sac_model_->getSamples (iterations_, selection);
00077
00078 if (selection.empty ()) break;
00079
00080
00081 if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
00082 {
00083
00084 ++ skipped_count;
00085 continue;
00086 }
00087
00088
00089
00090 this->getRandomSamples (sac_model_->getIndices (), fraction_nr_points, indices_subset);
00091
00092 if (!sac_model_->doSamplesVerifyModel (indices_subset, model_coefficients, threshold_))
00093 {
00094
00095 if (k != 1.0)
00096 {
00097 ++iterations_;
00098 continue;
00099 }
00100 }
00101
00102 double d_cur_penalty = 0;
00103
00104 sac_model_->getDistancesToModel (model_coefficients, distances);
00105
00106 if (distances.empty () && k > 1.0)
00107 continue;
00108
00109 for (size_t i = 0; i < distances.size (); ++i)
00110 d_cur_penalty += (std::min) (distances[i], threshold_);
00111
00112
00113 if (d_cur_penalty < d_best_penalty)
00114 {
00115 d_best_penalty = d_cur_penalty;
00116
00117
00118 model_ = selection;
00119 model_coefficients_ = model_coefficients;
00120
00121 n_inliers_count = 0;
00122
00123 for (size_t i = 0; i < distances.size (); ++i)
00124 if (distances[i] <= threshold_)
00125 n_inliers_count++;
00126
00127
00128 double w = static_cast<double> (n_inliers_count) / static_cast<double>(sac_model_->getIndices ()->size ());
00129 double p_no_outliers = 1 - pow (w, static_cast<double> (selection.size ()));
00130 p_no_outliers = (std::max) (std::numeric_limits<double>::epsilon (), p_no_outliers);
00131 p_no_outliers = (std::min) (1 - std::numeric_limits<double>::epsilon (), p_no_outliers);
00132 k = log (1 - probability_) / log (p_no_outliers);
00133 }
00134
00135 ++iterations_;
00136 if (debug_verbosity_level > 1)
00137 PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Trial %d out of %d. Best penalty is %f.\n", iterations_, static_cast<int> (ceil (k)), d_best_penalty);
00138 if (iterations_ > max_iterations_)
00139 {
00140 if (debug_verbosity_level > 0)
00141 PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] MSAC reached the maximum number of trials.\n");
00142 break;
00143 }
00144 }
00145
00146 if (model_.empty ())
00147 {
00148 if (debug_verbosity_level > 0)
00149 PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Unable to find a solution!\n");
00150 return (false);
00151 }
00152
00153
00154 sac_model_->getDistancesToModel (model_coefficients_, distances);
00155 std::vector<int> &indices = *sac_model_->getIndices ();
00156 if (distances.size () != indices.size ())
00157 {
00158 PCL_ERROR ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Estimated distances (%zu) differs than the normal of indices (%zu).\n", distances.size (), indices.size ());
00159 return (false);
00160 }
00161
00162 inliers_.resize (distances.size ());
00163
00164 n_inliers_count = 0;
00165 for (size_t i = 0; i < distances.size (); ++i)
00166 if (distances[i] <= threshold_)
00167 inliers_[n_inliers_count++] = indices[i];
00168
00169
00170 inliers_.resize (n_inliers_count);
00171
00172 if (debug_verbosity_level > 0)
00173 PCL_DEBUG ("[pcl::RandomizedMEstimatorSampleConsensus::computeModel] Model: %zu size, %d inliers.\n", model_.size (), n_inliers_count);
00174
00175 return (true);
00176 }
00177
00178 #define PCL_INSTANTIATE_RandomizedMEstimatorSampleConsensus(T) template class PCL_EXPORTS pcl::RandomizedMEstimatorSampleConsensus<T>;
00179
00180 #endif // PCL_SAMPLE_CONSENSUS_IMPL_RMSAC_H_
00181