marching_cubes_rbf.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Copyright (c) 2010, Willow Garage, Inc.
00005  *  All rights reserved.
00006  *
00007  *  Redistribution and use in source and binary forms, with or without
00008  *  modification, are permitted provided that the following conditions
00009  *  are met:
00010  *
00011  *   * Redistributions of source code must retain the above copyright
00012  *     notice, this list of conditions and the following disclaimer.
00013  *   * Redistributions in binary form must reproduce the above
00014  *     copyright notice, this list of conditions and the following
00015  *     disclaimer in the documentation and/or other materials provided
00016  *     with the distribution.
00017  *   * Neither the name of Willow Garage, Inc. nor the names of its
00018  *     contributors may be used to endorse or promote products derived
00019  *     from this software without specific prior written permission.
00020  *
00021  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00022  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00023  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00024  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00025  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00026  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00027  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00028  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00029  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00030  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00031  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032  *  POSSIBILITY OF SUCH DAMAGE.
00033  *
00034  */
00035 
00036 #ifndef PCL_SURFACE_IMPL_MARCHING_CUBES_RBF_H_
00037 #define PCL_SURFACE_IMPL_MARCHING_CUBES_RBF_H_
00038 
00039 #include <pcl/surface/marching_cubes_rbf.h>
00040 #include <pcl/common/common.h>
00041 #include <pcl/common/vector_average.h>
00042 #include <pcl/Vertices.h>
00043 #include <pcl/kdtree/kdtree_flann.h>
00044 
00046 template <typename PointNT>
00047 pcl::MarchingCubesRBF<PointNT>::MarchingCubesRBF ()
00048   : MarchingCubes<PointNT> (),
00049     off_surface_epsilon_ (0.1f)
00050 {
00051 }
00052 
00054 template <typename PointNT>
00055 pcl::MarchingCubesRBF<PointNT>::~MarchingCubesRBF ()
00056 {
00057 }
00058 
00059 
00061 template <typename PointNT> void
00062 pcl::MarchingCubesRBF<PointNT>::voxelizeData ()
00063 {
00064   // Initialize data structures
00065   unsigned int N = static_cast<unsigned int> (input_->size ());
00066   Eigen::MatrixXd M (2*N, 2*N),
00067                   d (2*N, 1);
00068 
00069 
00070   for (unsigned int row_i = 0; row_i < 2*N; ++row_i)
00071   {
00072     // boolean variable to determine whether we are in the off_surface domain for the rows
00073     bool row_off = (row_i >= N) ? 1 : 0;
00074     for (unsigned int col_i = 0; col_i < 2*N; ++col_i)
00075     {
00076       // boolean variable to determine whether we are in the off_surface domain for the columns
00077       bool col_off = (col_i >= N) ? 1 : 0;
00078       M (row_i, col_i) = kernel (Eigen::Vector3f (input_->points[col_i%N].getVector3fMap ()).cast<double> () + Eigen::Vector3f (input_->points[col_i%N].getNormalVector3fMap ()).cast<double> () * col_off * off_surface_epsilon_,
00079                                  Eigen::Vector3f (input_->points[row_i%N].getVector3fMap ()).cast<double> () + Eigen::Vector3f (input_->points[row_i%N].getNormalVector3fMap ()).cast<double> () * row_off * off_surface_epsilon_);
00080     }
00081 
00082     d (row_i, 0) = row_off * off_surface_epsilon_;
00083   }
00084 
00085   // Solve for the weights
00086   Eigen::MatrixXd w (2*N, 1);
00087 
00088   // Solve_linear_system (M, d, w);
00089   w = M.fullPivLu ().solve (d);
00090 
00091   std::vector<double> weights (2*N);
00092   std::vector<Eigen::Vector3d> centers (2*N);
00093   for (unsigned int i = 0; i < N; ++i)
00094   {
00095     centers[i] = Eigen::Vector3f (input_->points[i].getVector3fMap ()).cast<double> ();
00096     centers[i + N] = Eigen::Vector3f (input_->points[i].getVector3fMap ()).cast<double> () + Eigen::Vector3f (input_->points[i].getNormalVector3fMap ()).cast<double> () * off_surface_epsilon_;
00097     weights[i] = w (i, 0);
00098     weights[i + N] = w (i + N, 0);
00099   }
00100 
00101 
00102 
00103   for (int x = 0; x < res_x_; ++x)
00104     for (int y = 0; y < res_y_; ++y)
00105       for (int z = 0; z < res_z_; ++z)
00106       {
00107         Eigen::Vector3d point;
00108         point[0] = min_p_[0] + (max_p_[0] - min_p_[0]) * x / res_x_;
00109         point[1] = min_p_[1] + (max_p_[1] - min_p_[1]) * y / res_y_;
00110         point[2] = min_p_[2] + (max_p_[2] - min_p_[2]) * z / res_z_;
00111 
00112         double f = 0.0f;
00113         std::vector<double>::const_iterator w_it (weights.begin());
00114         for (std::vector<Eigen::Vector3d>::const_iterator c_it = centers.begin ();
00115              c_it != centers.end (); ++c_it, ++w_it)
00116           f += *w_it * kernel (*c_it, point);
00117 
00118         grid_[x * res_y_*res_z_ + y * res_z_ + z] = f;
00119       }
00120 }
00121 
00123 template <typename PointNT> double
00124 pcl::MarchingCubesRBF<PointNT>::kernel (Eigen::Vector3d c, Eigen::Vector3d x)
00125 {
00126   double r = (x - c).norm();
00127   return r*r*r;
00128 }
00129 
00130 
00131 
00132 #define PCL_INSTANTIATE_MarchingCubesRBF(T) template class PCL_EXPORTS pcl::MarchingCubesRBF<T>;
00133 
00134 #endif    // PCL_SURFACE_IMPL_MARCHING_CUBES_HOPPE_H_
00135 


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:15:39