Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036 #ifndef PCL_SURFACE_IMPL_MARCHING_CUBES_HOPPE_H_
00037 #define PCL_SURFACE_IMPL_MARCHING_CUBES_HOPPE_H_
00038
00039 #include <pcl/surface/marching_cubes_hoppe.h>
00040 #include <pcl/common/common.h>
00041 #include <pcl/common/vector_average.h>
00042 #include <pcl/Vertices.h>
00043 #include <pcl/kdtree/kdtree_flann.h>
00044
00046 template <typename PointNT>
00047 pcl::MarchingCubesHoppe<PointNT>::MarchingCubesHoppe ()
00048 : MarchingCubes<PointNT> ()
00049 {
00050 }
00051
00053 template <typename PointNT>
00054 pcl::MarchingCubesHoppe<PointNT>::~MarchingCubesHoppe ()
00055 {
00056 }
00057
00058
00060 template <typename PointNT> void
00061 pcl::MarchingCubesHoppe<PointNT>::voxelizeData ()
00062 {
00063 for (int x = 0; x < res_x_; ++x)
00064 for (int y = 0; y < res_y_; ++y)
00065 for (int z = 0; z < res_z_; ++z)
00066 {
00067 std::vector<int> nn_indices;
00068 std::vector<float> nn_sqr_dists;
00069
00070 Eigen::Vector3f point;
00071 point[0] = min_p_[0] + (max_p_[0] - min_p_[0]) * x / res_x_;
00072 point[1] = min_p_[1] + (max_p_[1] - min_p_[1]) * y / res_y_;
00073 point[2] = min_p_[2] + (max_p_[2] - min_p_[2]) * z / res_z_;
00074
00075 PointNT p;
00076 p.getVector3fMap () = point;
00077
00078 tree_->nearestKSearch (p, 1, nn_indices, nn_sqr_dists);
00079
00080 grid_[x * res_y_*res_z_ + y * res_z_ + z] = input_->points[nn_indices[0]].getNormalVector3fMap ().dot (
00081 point - input_->points[nn_indices[0]].getVector3fMap ());
00082 }
00083 }
00084
00085
00086
00087 #define PCL_INSTANTIATE_MarchingCubesHoppe(T) template class PCL_EXPORTS pcl::MarchingCubesHoppe<T>;
00088
00089 #endif // PCL_SURFACE_IMPL_MARCHING_CUBES_HOPPE_H_
00090