lmeds.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Copyright (c) 2009, Willow Garage, Inc.
00005  *  All rights reserved.
00006  *
00007  *  Redistribution and use in source and binary forms, with or without
00008  *  modification, are permitted provided that the following conditions
00009  *  are met:
00010  *
00011  *   * Redistributions of source code must retain the above copyright
00012  *     notice, this list of conditions and the following disclaimer.
00013  *   * Redistributions in binary form must reproduce the above
00014  *     copyright notice, this list of conditions and the following
00015  *     disclaimer in the documentation and/or other materials provided
00016  *     with the distribution.
00017  *   * Neither the name of Willow Garage, Inc. nor the names of its
00018  *     contributors may be used to endorse or promote products derived
00019  *     from this software without specific prior written permission.
00020  *
00021  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00022  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00023  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00024  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00025  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00026  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00027  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00028  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00029  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00030  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00031  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00032  *  POSSIBILITY OF SUCH DAMAGE.
00033  *
00034  * $Id: lmeds.hpp 6144 2012-07-04 22:06:28Z rusu $
00035  *
00036  */
00037 
00038 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_LMEDS_H_
00039 #define PCL_SAMPLE_CONSENSUS_IMPL_LMEDS_H_
00040 
00041 #include <pcl/sample_consensus/lmeds.h>
00042 
00044 template <typename PointT> bool
00045 pcl::LeastMedianSquares<PointT>::computeModel (int debug_verbosity_level)
00046 {
00047   // Warn and exit if no threshold was set
00048   if (threshold_ == std::numeric_limits<double>::max())
00049   {
00050     PCL_ERROR ("[pcl::LeastMedianSquares::computeModel] No threshold set!\n");
00051     return (false);
00052   }
00053 
00054   iterations_ = 0;
00055   double d_best_penalty = std::numeric_limits<double>::max();
00056 
00057   std::vector<int> best_model;
00058   std::vector<int> selection;
00059   Eigen::VectorXf model_coefficients;
00060   std::vector<double> distances;
00061 
00062   int n_inliers_count = 0;
00063 
00064   unsigned skipped_count = 0;
00065   // supress infinite loops by just allowing 10 x maximum allowed iterations for invalid model parameters!
00066   const unsigned max_skip = max_iterations_ * 10;
00067   
00068   // Iterate
00069   while (iterations_ < max_iterations_ && skipped_count < max_skip)
00070   {
00071     // Get X samples which satisfy the model criteria
00072     sac_model_->getSamples (iterations_, selection);
00073 
00074     if (selection.empty ()) break;
00075 
00076     // Search for inliers in the point cloud for the current plane model M
00077     if (!sac_model_->computeModelCoefficients (selection, model_coefficients))
00078     {
00079       //iterations_++;
00080       ++skipped_count;
00081       continue;
00082     }
00083 
00084     double d_cur_penalty = 0;
00085     // d_cur_penalty = sum (min (dist, threshold))
00086 
00087     // Iterate through the 3d points and calculate the distances from them to the model
00088     sac_model_->getDistancesToModel (model_coefficients, distances);
00089     
00090     // No distances? The model must not respect the user given constraints
00091     if (distances.empty ())
00092     {
00093       //iterations_++;
00094       ++skipped_count;
00095       continue;
00096     }
00097 
00098     std::sort (distances.begin (), distances.end ());
00099     // d_cur_penalty = median (distances)
00100     size_t mid = sac_model_->getIndices ()->size () / 2;
00101     if (mid >= distances.size ())
00102     {
00103       //iterations_++;
00104       ++skipped_count;
00105       continue;
00106     }
00107 
00108     // Do we have a "middle" point or should we "estimate" one ?
00109     if (sac_model_->getIndices ()->size () % 2 == 0)
00110       d_cur_penalty = (sqrt (distances[mid-1]) + sqrt (distances[mid])) / 2;
00111     else
00112       d_cur_penalty = sqrt (distances[mid]);
00113 
00114     // Better match ?
00115     if (d_cur_penalty < d_best_penalty)
00116     {
00117       d_best_penalty = d_cur_penalty;
00118 
00119       // Save the current model/coefficients selection as being the best so far
00120       model_              = selection;
00121       model_coefficients_ = model_coefficients;
00122     }
00123 
00124     ++iterations_;
00125     if (debug_verbosity_level > 1)
00126       PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] Trial %d out of %d. Best penalty is %f.\n", iterations_, max_iterations_, d_best_penalty);
00127   }
00128 
00129   if (model_.empty ())
00130   {
00131     if (debug_verbosity_level > 0)
00132       PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] Unable to find a solution!\n");
00133     return (false);
00134   }
00135 
00136   // Classify the data points into inliers and outliers
00137   // Sigma = 1.4826 * (1 + 5 / (n-d)) * sqrt (M)
00138   // @note: See "Robust Regression Methods for Computer Vision: A Review"
00139   //double sigma = 1.4826 * (1 + 5 / (sac_model_->getIndices ()->size () - best_model.size ())) * sqrt (d_best_penalty);
00140   //double threshold = 2.5 * sigma;
00141 
00142   // Iterate through the 3d points and calculate the distances from them to the model again
00143   sac_model_->getDistancesToModel (model_coefficients_, distances);
00144   // No distances? The model must not respect the user given constraints
00145   if (distances.empty ())
00146   {
00147     PCL_ERROR ("[pcl::LeastMedianSquares::computeModel] The model found failed to verify against the given constraints!\n");
00148     return (false);
00149   }
00150 
00151   std::vector<int> &indices = *sac_model_->getIndices ();
00152 
00153   if (distances.size () != indices.size ())
00154   {
00155     PCL_ERROR ("[pcl::LeastMedianSquares::computeModel] Estimated distances (%zu) differs than the normal of indices (%zu).\n", distances.size (), indices.size ());
00156     return (false);
00157   }
00158 
00159   inliers_.resize (distances.size ());
00160   // Get the inliers for the best model found
00161   n_inliers_count = 0;
00162   for (size_t i = 0; i < distances.size (); ++i)
00163     if (distances[i] <= threshold_)
00164       inliers_[n_inliers_count++] = indices[i];
00165 
00166   // Resize the inliers vector
00167   inliers_.resize (n_inliers_count);
00168 
00169   if (debug_verbosity_level > 0)
00170     PCL_DEBUG ("[pcl::LeastMedianSquares::computeModel] Model: %zu size, %d inliers.\n", model_.size (), n_inliers_count);
00171 
00172   return (true);
00173 }
00174 
00175 #define PCL_INSTANTIATE_LeastMedianSquares(T) template class PCL_EXPORTS pcl::LeastMedianSquares<T>;
00176 
00177 #endif    // PCL_SAMPLE_CONSENSUS_IMPL_LMEDS_H_
00178 


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:15:38