00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043 namespace pcl
00044 {
00045 namespace poisson
00046 {
00047 template<int Degree, class Real>
00048 const int FunctionData<Degree, Real>::DOT_FLAG = 1;
00049 template<int Degree, class Real>
00050 const int FunctionData<Degree, Real>::D_DOT_FLAG = 2;
00051 template<int Degree, class Real>
00052 const int FunctionData<Degree, Real>::D2_DOT_FLAG = 4;
00053 template<int Degree, class Real>
00054 const int FunctionData<Degree, Real>::VALUE_FLAG = 1;
00055 template<int Degree, class Real>
00056 const int FunctionData<Degree, Real>::D_VALUE_FLAG = 2;
00057
00059 template<int Degree, class Real>
00060 FunctionData<Degree, Real>::FunctionData () :
00061 useDotRatios (), normalize (), depth (), res (0), res2 (),
00062 dotTable (NULL), dDotTable (NULL), d2DotTable (NULL),
00063 valueTables (NULL), dValueTables (NULL),
00064 baseFunction (), dBaseFunction (), baseFunctions ()
00065 {
00066 }
00067
00069 template<int Degree, class Real>
00070 FunctionData<Degree, Real>::~FunctionData()
00071 {
00072 if (res)
00073 {
00074 if (dotTable)
00075 delete[] dotTable;
00076 if (dDotTable)
00077 delete[] dDotTable;
00078 if (d2DotTable)
00079 delete[] d2DotTable;
00080 if (valueTables)
00081 delete[] valueTables;
00082 if (dValueTables)
00083 delete[] dValueTables;
00084 }
00085 dotTable = dDotTable = d2DotTable = NULL;
00086 valueTables = dValueTables = NULL;
00087 res = 0;
00088 }
00089
00090
00092 template<int Degree, class Real> void
00093 FunctionData<Degree, Real>::set (
00094 const int& maxDepth,
00095 const PPolynomial<Degree>& F,
00096 const int& normalize,
00097 const int& useDotRatios)
00098 {
00099 this->normalize = normalize;
00100 this->useDotRatios = useDotRatios;
00101
00102 depth = maxDepth;
00103 res = BinaryNode<double>::CumulativeCenterCount (depth);
00104 res2 = (1<<(depth+1))+1;
00105 baseFunctions = new PPolynomial<Degree+1>[res];
00106
00107
00108
00109
00110 switch(normalize)
00111 {
00112 case 2:
00113 baseFunction = F/sqrt((F*F).integral(F.polys[0].start,F.polys[F.polyCount-1].start));
00114 break;
00115 case 1:
00116 baseFunction = F/F.integral(F.polys[0].start,F.polys[F.polyCount-1].start);
00117 break;
00118 default:
00119 baseFunction = F/F(0);
00120 }
00121 dBaseFunction = baseFunction.derivative();
00122 double c1,w1;
00123 for(int i = 0; i < res; i++)
00124 {
00125 BinaryNode<double>::CenterAndWidth (i, c1, w1);
00126 baseFunctions[i] = baseFunction.scale (w1).shift (c1);
00127
00128 switch (normalize)
00129 {
00130 case 2:
00131 baseFunctions[i] /= sqrt(w1);
00132 break;
00133 case 1:
00134 baseFunctions[i] /= w1;
00135 break;
00136 }
00137 }
00138 }
00139
00140
00142 template<int Degree, class Real>
00143 void FunctionData<Degree, Real>::setDotTables(const int& flags)
00144 {
00145 clearDotTables (flags);
00146 int size;
00147 size = (res*res+res)>>1;
00148 if (flags & DOT_FLAG)
00149 {
00150 dotTable = new Real[size];
00151 memset(dotTable,0,sizeof(Real)*size);
00152 }
00153 if (flags & D_DOT_FLAG)
00154 {
00155 dDotTable = new Real[size];
00156 memset(dDotTable,0,sizeof(Real)*size);
00157 }
00158 if (flags & D2_DOT_FLAG)
00159 {
00160 d2DotTable = new Real[size];
00161 memset(d2DotTable,0,sizeof(Real)*size);
00162 }
00163 double t1,t2;
00164 t1 = baseFunction.polys[0].start;
00165 t2 = baseFunction.polys[baseFunction.polyCount-1].start;
00166 for(int i = 0; i < res; i++)
00167 {
00168 double c1, c2, w1, w2;
00169 BinaryNode<double>::CenterAndWidth (i, c1, w1);
00170 double start1 = t1*w1+c1;
00171 double end1 = t2*w1+c1;
00172 for(int j = 0; j <= i; j++)
00173 {
00174 BinaryNode<double>::CenterAndWidth (j, c2, w2);
00175 int idx = SymmetricIndex (i, j);
00176
00177 double start = t1*w2+c2;
00178 double end = t2*w2+c2;
00179
00180 if (start < start1)
00181 start = start1;
00182 if (end > end1)
00183 end = end1;
00184 if (start >= end)
00185 continue;
00186
00187 BinaryNode<double>::CenterAndWidth (j, c2, w2);
00188 Real dot = dotProduct (c1, w1, c2, w2);
00189 if (fabs(dot) < 1e-15)
00190 continue;
00191 if (flags & DOT_FLAG)
00192 dotTable[idx] = dot;
00193 if (useDotRatios)
00194 {
00195 if (flags & D_DOT_FLAG)
00196 dDotTable [idx] = -dDotProduct(c1,w1,c2,w2)/dot;
00197 if (flags & D2_DOT_FLAG)
00198 d2DotTable[idx] = d2DotProduct(c1,w1,c2,w2)/dot;
00199 }
00200 else
00201 {
00202 if (flags & D_DOT_FLAG)
00203 dDotTable[idx] = dDotProduct(c1,w1,c2,w2);
00204 if (flags & D2_DOT_FLAG)
00205 d2DotTable[idx] = d2DotProduct(c1,w1,c2,w2);
00206 }
00207 }
00208 }
00209 }
00210
00211
00213 template<int Degree, class Real>
00214 void FunctionData<Degree, Real>::clearDotTables(const int& flags)
00215 {
00216 if ((flags & DOT_FLAG) && dotTable)
00217 {
00218 delete[] dotTable;
00219 dotTable = NULL;
00220 }
00221 if ((flags & D_DOT_FLAG) && dDotTable)
00222 {
00223 delete[] dDotTable;
00224 dDotTable = NULL;
00225 }
00226 if ((flags & D2_DOT_FLAG) && d2DotTable)
00227 {
00228 delete[] d2DotTable;
00229 d2DotTable = NULL;
00230 }
00231 }
00232
00233
00235 template<int Degree, class Real>
00236 void FunctionData<Degree, Real>::setValueTables(const int& flags,const double& smooth)
00237 {
00238 clearValueTables ();
00239 if (flags & VALUE_FLAG)
00240 valueTables = new Real[res*res2];
00241 if (flags & D_VALUE_FLAG)
00242 dValueTables = new Real[res*res2];
00243
00244 PPolynomial<Degree+1> function;
00245 PPolynomial<Degree> dFunction;
00246 for (int i = 0; i < res; i++)
00247 {
00248 if (smooth > 0)
00249 {
00250 function = baseFunctions[i].MovingAverage(smooth);
00251 dFunction = baseFunctions[i].derivative().MovingAverage(smooth);
00252 }
00253 else
00254 {
00255 function = baseFunctions[i];
00256 dFunction = baseFunctions[i].derivative();
00257 }
00258 for (int j = 0; j < res2; j++)
00259 {
00260 double x = double(j)/(res2-1);
00261 if (flags & VALUE_FLAG)
00262 valueTables[j*res+i] = Real( function(x));
00263 if (flags & D_VALUE_FLAG)
00264 dValueTables[j*res+i] = Real(dFunction(x));
00265 }
00266 }
00267 }
00268
00269
00271 template<int Degree, class Real>
00272 void FunctionData<Degree, Real>::setValueTables(const int& flags,const double& valueSmooth,const double& normalSmooth)
00273 {
00274 clearValueTables();
00275 if (flags & VALUE_FLAG)
00276 valueTables = new Real[res*res2];
00277 if (flags & D_VALUE_FLAG)
00278 dValueTables = new Real[res*res2];
00279
00280 PPolynomial<Degree+1> function;
00281 PPolynomial<Degree> dFunction;
00282 for(int i = 0;i<res;i++)
00283 {
00284 if (valueSmooth>0)
00285 function = baseFunctions[i].MovingAverage(valueSmooth);
00286 else
00287 function = baseFunctions[i];
00288 if (normalSmooth>0)
00289 dFunction = baseFunctions[i].derivative().MovingAverage(normalSmooth);
00290 else
00291 dFunction = baseFunctions[i].derivative();
00292
00293 for(int j = 0; j < res2; j++)
00294 {
00295 double x = double(j)/(res2-1);
00296 if (flags & VALUE_FLAG)
00297 valueTables[j*res+i] = Real( function(x));
00298 if (flags & D_VALUE_FLAG)
00299 dValueTables[j*res+i] = Real(dFunction(x));
00300 }
00301 }
00302 }
00303
00304
00306 template<int Degree, class Real>
00307 void FunctionData<Degree, Real>::clearValueTables()
00308 {
00309 if (valueTables)
00310 delete[] valueTables;
00311 if (dValueTables)
00312 delete[] dValueTables;
00313 valueTables = dValueTables = NULL;
00314 }
00315
00316
00318 template<int Degree, class Real>
00319 Real FunctionData<Degree, Real>::dotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const
00320 {
00321 double r = fabs(baseFunction.polys[0].start);
00322 switch(normalize)
00323 {
00324 case 2:
00325 return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/sqrt(width1*width2));
00326 case 1:
00327 return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/(width1*width2));
00328 default:
00329 return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1);
00330 }
00331 }
00332
00333
00335 template<int Degree, class Real>
00336 Real FunctionData<Degree, Real>::dDotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const
00337 {
00338 double r = fabs(baseFunction.polys[0].start);
00339 switch(normalize)
00340 {
00341 case 2:
00342 return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/sqrt(width1*width2));
00343 case 1:
00344 return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/(width1*width2));
00345 default:
00346 return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r));
00347 }
00348 }
00349
00350
00352 template<int Degree, class Real>
00353 Real FunctionData<Degree, Real>::d2DotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const
00354 {
00355 double r = fabs(baseFunction.polys[0].start);
00356 switch(normalize)
00357 {
00358 case 2:
00359 return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/sqrt(width1*width2));
00360 case 1:
00361 return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/(width1*width2));
00362 default:
00363 return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2);
00364 }
00365 }
00366
00367
00369 template<int Degree, class Real>
00370 inline int FunctionData<Degree, Real>::SymmetricIndex(const int& i1,const int& i2)
00371 {
00372 if (i1>i2)
00373 return ((i1*i1+i1)>>1)+i2;
00374 else
00375 return ((i2*i2+i2)>>1)+i1;
00376 }
00377
00378
00380 template<int Degree, class Real>
00381 inline int FunctionData<Degree, Real>::SymmetricIndex(const int& i1,const int& i2,int& index)
00382 {
00383 if (i1<i2)
00384 {
00385 index = ((i2*i2+i2)>>1)+i1;
00386 return 1;
00387 }
00388 else
00389 {
00390 index = ((i1*i1+i1)>>1)+i2;
00391 return 0;
00392 }
00393 }
00394
00395 }
00396 }
00397