correspondence_rejection_var_trimmed.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2012, Open Perception, Inc.
00006  *
00007  *  All rights reserved.
00008  *
00009  *  Redistribution and use in source and binary forms, with or without
00010  *  modification, are permitted provided that the following conditions
00011  *  are met:
00012  *
00013  *   * Redistributions of source code must retain the above copyright
00014  *     notice, this list of conditions and the following disclaimer.
00015  *   * Redistributions in binary form must reproduce the above
00016  *     copyright notice, this list of conditions and the following
00017  *     disclaimer in the documentation and/or other materials provided
00018  *     with the distribution.
00019  *   * Neither the name of Open Perception, Inc. nor the names of its
00020  *     contributors may be used to endorse or promote products derived
00021  *     from this software without specific prior written permission.
00022  *
00023  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  *  POSSIBILITY OF SUCH DAMAGE.
00035  *
00036  *
00037  */
00038 #ifndef PCL_REGISTRATION_IMPL_CORRESPONDENCE_REJECTION_VAR_TRIMMED_HPP_
00039 #define PCL_REGISTRATION_IMPL_CORRESPONDENCE_REJECTION_VAR_TRIMMED_HPP_
00040 
00041 #include <vector>
00042 #include <algorithm>
00043 
00045 void
00046 pcl::registration::CorrespondenceRejectorVarTrimmed::getRemainingCorrespondences (
00047     const pcl::Correspondences& original_correspondences, 
00048     pcl::Correspondences& remaining_correspondences)
00049 {
00050   std::vector <double> dists;
00051   dists.resize (original_correspondences.size ());
00052 
00053   for (size_t i = 0; i < original_correspondences.size (); ++i)
00054   {
00055     if (data_container_)
00056     {
00057       dists[i] = data_container_->getCorrespondenceScore (original_correspondences[i]);
00058     }
00059     else
00060     {
00061       dists[i] = original_correspondences[i].distance;
00062     }
00063   }
00064   factor_ = optimizeInlierRatio (dists);
00065   nth_element (dists.begin (), dists.begin () + int (dists.size () * factor_), dists.end ());
00066   trimmed_distance_ = dists [int (dists.size () * factor_)];
00067 
00068   unsigned int number_valid_correspondences = 0;
00069   remaining_correspondences.resize (original_correspondences.size ());
00070 
00071   for (size_t i = 0; i < original_correspondences.size (); ++i)
00072   {
00073     if ( dists[i] < trimmed_distance_)
00074     {
00075       remaining_correspondences[number_valid_correspondences] = original_correspondences[i];
00076       ++number_valid_correspondences;
00077     }
00078   }
00079   remaining_correspondences.resize (number_valid_correspondences);
00080 }
00081 
00083 float
00084 pcl::registration::CorrespondenceRejectorVarTrimmed::optimizeInlierRatio (std::vector <double>&  dists)
00085 {
00086   unsigned int points_nbr = dists.size ();
00087   std::sort (dists.begin (), dists.end ());
00088 
00089   const int min_el = int (floor (min_ratio_ * points_nbr));
00090   const int max_el = int (floor (max_ratio_ * points_nbr));
00091 
00092   typedef Eigen::Array <double, Eigen::Dynamic, 1> LineArray;
00093   Eigen::Map<LineArray> sorted_dist (&dists[0], points_nbr);
00094 
00095          const LineArray trunk_sorted_dist = sorted_dist.segment (min_el, max_el-min_el);
00096   const double lower_sum = sorted_dist.head (min_el).sum ();
00097   const LineArray ids = LineArray::LinSpaced (trunk_sorted_dist.rows (), min_el+1, max_el);
00098   const LineArray ratio = ids / points_nbr;
00099   const LineArray deno = ratio.pow (lambda_);
00100   const LineArray FRMS = deno.inverse ().square () * ids.inverse () * (lower_sum + trunk_sorted_dist);
00101   int min_index (0);
00102   FRMS.minCoeff (&min_index);
00103 
00104          const float opt_ratio = float (min_index + min_el) / float (points_nbr);
00105          return opt_ratio;
00106 }
00107 
00108 #endif /* PCL_REGISTRATION_IMPL_CORRESPONDENCE_REJECTION_VAR_TRIMMED_HPP_ */


pcl
Author(s): Open Perception
autogenerated on Mon Oct 6 2014 03:14:46