00001
00002 #ifndef OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTION_H
00003 #define OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTION_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_segmentation_gui/ObjectSegmentationGuiActionGoal.h"
00018 #include "object_segmentation_gui/ObjectSegmentationGuiActionResult.h"
00019 #include "object_segmentation_gui/ObjectSegmentationGuiActionFeedback.h"
00020
00021 namespace object_segmentation_gui
00022 {
00023 template <class ContainerAllocator>
00024 struct ObjectSegmentationGuiAction_ {
00025 typedef ObjectSegmentationGuiAction_<ContainerAllocator> Type;
00026
00027 ObjectSegmentationGuiAction_()
00028 : action_goal()
00029 , action_result()
00030 , action_feedback()
00031 {
00032 }
00033
00034 ObjectSegmentationGuiAction_(const ContainerAllocator& _alloc)
00035 : action_goal(_alloc)
00036 , action_result(_alloc)
00037 , action_feedback(_alloc)
00038 {
00039 }
00040
00041 typedef ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> _action_goal_type;
00042 ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> action_goal;
00043
00044 typedef ::object_segmentation_gui::ObjectSegmentationGuiActionResult_<ContainerAllocator> _action_result_type;
00045 ::object_segmentation_gui::ObjectSegmentationGuiActionResult_<ContainerAllocator> action_result;
00046
00047 typedef ::object_segmentation_gui::ObjectSegmentationGuiActionFeedback_<ContainerAllocator> _action_feedback_type;
00048 ::object_segmentation_gui::ObjectSegmentationGuiActionFeedback_<ContainerAllocator> action_feedback;
00049
00050
00051 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > Ptr;
00052 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> const> ConstPtr;
00053 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 };
00055 typedef ::object_segmentation_gui::ObjectSegmentationGuiAction_<std::allocator<void> > ObjectSegmentationGuiAction;
00056
00057 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiAction> ObjectSegmentationGuiActionPtr;
00058 typedef boost::shared_ptr< ::object_segmentation_gui::ObjectSegmentationGuiAction const> ObjectSegmentationGuiActionConstPtr;
00059
00060
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> & v)
00063 {
00064 ros::message_operations::Printer< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> >::stream(s, "", v);
00065 return s;}
00066
00067 }
00068
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > {
00077 static const char* value()
00078 {
00079 return "ef7ff001f65c9b85b7778ccfa48cf741";
00080 }
00081
00082 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> &) { return value(); }
00083 static const uint64_t static_value1 = 0xef7ff001f65c9b85ULL;
00084 static const uint64_t static_value2 = 0xb7778ccfa48cf741ULL;
00085 };
00086
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > {
00089 static const char* value()
00090 {
00091 return "object_segmentation_gui/ObjectSegmentationGuiAction";
00092 }
00093
00094 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> &) { return value(); }
00095 };
00096
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> > {
00099 static const char* value()
00100 {
00101 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 ObjectSegmentationGuiActionGoal action_goal\n\
00104 ObjectSegmentationGuiActionResult action_result\n\
00105 ObjectSegmentationGuiActionFeedback action_feedback\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: object_segmentation_gui/ObjectSegmentationGuiActionGoal\n\
00109 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00110 \n\
00111 Header header\n\
00112 actionlib_msgs/GoalID goal_id\n\
00113 ObjectSegmentationGuiGoal goal\n\
00114 \n\
00115 ================================================================================\n\
00116 MSG: std_msgs/Header\n\
00117 # Standard metadata for higher-level stamped data types.\n\
00118 # This is generally used to communicate timestamped data \n\
00119 # in a particular coordinate frame.\n\
00120 # \n\
00121 # sequence ID: consecutively increasing ID \n\
00122 uint32 seq\n\
00123 #Two-integer timestamp that is expressed as:\n\
00124 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00125 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00126 # time-handling sugar is provided by the client library\n\
00127 time stamp\n\
00128 #Frame this data is associated with\n\
00129 # 0: no frame\n\
00130 # 1: global frame\n\
00131 string frame_id\n\
00132 \n\
00133 ================================================================================\n\
00134 MSG: actionlib_msgs/GoalID\n\
00135 # The stamp should store the time at which this goal was requested.\n\
00136 # It is used by an action server when it tries to preempt all\n\
00137 # goals that were requested before a certain time\n\
00138 time stamp\n\
00139 \n\
00140 # The id provides a way to associate feedback and\n\
00141 # result message with specific goal requests. The id\n\
00142 # specified must be unique.\n\
00143 string id\n\
00144 \n\
00145 \n\
00146 ================================================================================\n\
00147 MSG: object_segmentation_gui/ObjectSegmentationGuiGoal\n\
00148 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00149 sensor_msgs/Image image\n\
00150 sensor_msgs/CameraInfo camera_info\n\
00151 sensor_msgs/Image wide_field\n\
00152 sensor_msgs/CameraInfo wide_camera_info\n\
00153 \n\
00154 sensor_msgs/PointCloud2 point_cloud\n\
00155 stereo_msgs/DisparityImage disparity_image\n\
00156 \n\
00157 \n\
00158 ================================================================================\n\
00159 MSG: sensor_msgs/Image\n\
00160 # This message contains an uncompressed image\n\
00161 # (0, 0) is at top-left corner of image\n\
00162 #\n\
00163 \n\
00164 Header header # Header timestamp should be acquisition time of image\n\
00165 # Header frame_id should be optical frame of camera\n\
00166 # origin of frame should be optical center of cameara\n\
00167 # +x should point to the right in the image\n\
00168 # +y should point down in the image\n\
00169 # +z should point into to plane of the image\n\
00170 # If the frame_id here and the frame_id of the CameraInfo\n\
00171 # message associated with the image conflict\n\
00172 # the behavior is undefined\n\
00173 \n\
00174 uint32 height # image height, that is, number of rows\n\
00175 uint32 width # image width, that is, number of columns\n\
00176 \n\
00177 # The legal values for encoding are in file src/image_encodings.cpp\n\
00178 # If you want to standardize a new string format, join\n\
00179 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00180 \n\
00181 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00182 # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00183 \n\
00184 uint8 is_bigendian # is this data bigendian?\n\
00185 uint32 step # Full row length in bytes\n\
00186 uint8[] data # actual matrix data, size is (step * rows)\n\
00187 \n\
00188 ================================================================================\n\
00189 MSG: sensor_msgs/CameraInfo\n\
00190 # This message defines meta information for a camera. It should be in a\n\
00191 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00192 # image topics named:\n\
00193 #\n\
00194 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00195 # image - monochrome, distorted\n\
00196 # image_color - color, distorted\n\
00197 # image_rect - monochrome, rectified\n\
00198 # image_rect_color - color, rectified\n\
00199 #\n\
00200 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00201 # for producing the four processed image topics from image_raw and\n\
00202 # camera_info. The meaning of the camera parameters are described in\n\
00203 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00204 #\n\
00205 # The image_geometry package provides a user-friendly interface to\n\
00206 # common operations using this meta information. If you want to, e.g.,\n\
00207 # project a 3d point into image coordinates, we strongly recommend\n\
00208 # using image_geometry.\n\
00209 #\n\
00210 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00211 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00212 # indicates an uncalibrated camera.\n\
00213 \n\
00214 #######################################################################\n\
00215 # Image acquisition info #\n\
00216 #######################################################################\n\
00217 \n\
00218 # Time of image acquisition, camera coordinate frame ID\n\
00219 Header header # Header timestamp should be acquisition time of image\n\
00220 # Header frame_id should be optical frame of camera\n\
00221 # origin of frame should be optical center of camera\n\
00222 # +x should point to the right in the image\n\
00223 # +y should point down in the image\n\
00224 # +z should point into the plane of the image\n\
00225 \n\
00226 \n\
00227 #######################################################################\n\
00228 # Calibration Parameters #\n\
00229 #######################################################################\n\
00230 # These are fixed during camera calibration. Their values will be the #\n\
00231 # same in all messages until the camera is recalibrated. Note that #\n\
00232 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00233 # #\n\
00234 # The internal parameters can be used to warp a raw (distorted) image #\n\
00235 # to: #\n\
00236 # 1. An undistorted image (requires D and K) #\n\
00237 # 2. A rectified image (requires D, K, R) #\n\
00238 # The projection matrix P projects 3D points into the rectified image.#\n\
00239 #######################################################################\n\
00240 \n\
00241 # The image dimensions with which the camera was calibrated. Normally\n\
00242 # this will be the full camera resolution in pixels.\n\
00243 uint32 height\n\
00244 uint32 width\n\
00245 \n\
00246 # The distortion model used. Supported models are listed in\n\
00247 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00248 # simple model of radial and tangential distortion - is sufficent.\n\
00249 string distortion_model\n\
00250 \n\
00251 # The distortion parameters, size depending on the distortion model.\n\
00252 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00253 float64[] D\n\
00254 \n\
00255 # Intrinsic camera matrix for the raw (distorted) images.\n\
00256 # [fx 0 cx]\n\
00257 # K = [ 0 fy cy]\n\
00258 # [ 0 0 1]\n\
00259 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00260 # coordinates using the focal lengths (fx, fy) and principal point\n\
00261 # (cx, cy).\n\
00262 float64[9] K # 3x3 row-major matrix\n\
00263 \n\
00264 # Rectification matrix (stereo cameras only)\n\
00265 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00266 # stereo image plane so that epipolar lines in both stereo images are\n\
00267 # parallel.\n\
00268 float64[9] R # 3x3 row-major matrix\n\
00269 \n\
00270 # Projection/camera matrix\n\
00271 # [fx' 0 cx' Tx]\n\
00272 # P = [ 0 fy' cy' Ty]\n\
00273 # [ 0 0 1 0]\n\
00274 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00275 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00276 # is the normal camera intrinsic matrix for the rectified image.\n\
00277 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00278 # coordinates using the focal lengths (fx', fy') and principal point\n\
00279 # (cx', cy') - these may differ from the values in K.\n\
00280 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00281 # also have R = the identity and P[1:3,1:3] = K.\n\
00282 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00283 # position of the optical center of the second camera in the first\n\
00284 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00285 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00286 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00287 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00288 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00289 # the rectified image is given by:\n\
00290 # [u v w]' = P * [X Y Z 1]'\n\
00291 # x = u / w\n\
00292 # y = v / w\n\
00293 # This holds for both images of a stereo pair.\n\
00294 float64[12] P # 3x4 row-major matrix\n\
00295 \n\
00296 \n\
00297 #######################################################################\n\
00298 # Operational Parameters #\n\
00299 #######################################################################\n\
00300 # These define the image region actually captured by the camera #\n\
00301 # driver. Although they affect the geometry of the output image, they #\n\
00302 # may be changed freely without recalibrating the camera. #\n\
00303 #######################################################################\n\
00304 \n\
00305 # Binning refers here to any camera setting which combines rectangular\n\
00306 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00307 # resolution of the output image to\n\
00308 # (width / binning_x) x (height / binning_y).\n\
00309 # The default values binning_x = binning_y = 0 is considered the same\n\
00310 # as binning_x = binning_y = 1 (no subsampling).\n\
00311 uint32 binning_x\n\
00312 uint32 binning_y\n\
00313 \n\
00314 # Region of interest (subwindow of full camera resolution), given in\n\
00315 # full resolution (unbinned) image coordinates. A particular ROI\n\
00316 # always denotes the same window of pixels on the camera sensor,\n\
00317 # regardless of binning settings.\n\
00318 # The default setting of roi (all values 0) is considered the same as\n\
00319 # full resolution (roi.width = width, roi.height = height).\n\
00320 RegionOfInterest roi\n\
00321 \n\
00322 ================================================================================\n\
00323 MSG: sensor_msgs/RegionOfInterest\n\
00324 # This message is used to specify a region of interest within an image.\n\
00325 #\n\
00326 # When used to specify the ROI setting of the camera when the image was\n\
00327 # taken, the height and width fields should either match the height and\n\
00328 # width fields for the associated image; or height = width = 0\n\
00329 # indicates that the full resolution image was captured.\n\
00330 \n\
00331 uint32 x_offset # Leftmost pixel of the ROI\n\
00332 # (0 if the ROI includes the left edge of the image)\n\
00333 uint32 y_offset # Topmost pixel of the ROI\n\
00334 # (0 if the ROI includes the top edge of the image)\n\
00335 uint32 height # Height of ROI\n\
00336 uint32 width # Width of ROI\n\
00337 \n\
00338 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00339 # ROI in this message. Typically this should be False if the full image\n\
00340 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00341 # used).\n\
00342 bool do_rectify\n\
00343 \n\
00344 ================================================================================\n\
00345 MSG: sensor_msgs/PointCloud2\n\
00346 # This message holds a collection of N-dimensional points, which may\n\
00347 # contain additional information such as normals, intensity, etc. The\n\
00348 # point data is stored as a binary blob, its layout described by the\n\
00349 # contents of the \"fields\" array.\n\
00350 \n\
00351 # The point cloud data may be organized 2d (image-like) or 1d\n\
00352 # (unordered). Point clouds organized as 2d images may be produced by\n\
00353 # camera depth sensors such as stereo or time-of-flight.\n\
00354 \n\
00355 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00356 # points).\n\
00357 Header header\n\
00358 \n\
00359 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00360 # 1 and width is the length of the point cloud.\n\
00361 uint32 height\n\
00362 uint32 width\n\
00363 \n\
00364 # Describes the channels and their layout in the binary data blob.\n\
00365 PointField[] fields\n\
00366 \n\
00367 bool is_bigendian # Is this data bigendian?\n\
00368 uint32 point_step # Length of a point in bytes\n\
00369 uint32 row_step # Length of a row in bytes\n\
00370 uint8[] data # Actual point data, size is (row_step*height)\n\
00371 \n\
00372 bool is_dense # True if there are no invalid points\n\
00373 \n\
00374 ================================================================================\n\
00375 MSG: sensor_msgs/PointField\n\
00376 # This message holds the description of one point entry in the\n\
00377 # PointCloud2 message format.\n\
00378 uint8 INT8 = 1\n\
00379 uint8 UINT8 = 2\n\
00380 uint8 INT16 = 3\n\
00381 uint8 UINT16 = 4\n\
00382 uint8 INT32 = 5\n\
00383 uint8 UINT32 = 6\n\
00384 uint8 FLOAT32 = 7\n\
00385 uint8 FLOAT64 = 8\n\
00386 \n\
00387 string name # Name of field\n\
00388 uint32 offset # Offset from start of point struct\n\
00389 uint8 datatype # Datatype enumeration, see above\n\
00390 uint32 count # How many elements in the field\n\
00391 \n\
00392 ================================================================================\n\
00393 MSG: stereo_msgs/DisparityImage\n\
00394 # Separate header for compatibility with current TimeSynchronizer.\n\
00395 # Likely to be removed in a later release, use image.header instead.\n\
00396 Header header\n\
00397 \n\
00398 # Floating point disparity image. The disparities are pre-adjusted for any\n\
00399 # x-offset between the principal points of the two cameras (in the case\n\
00400 # that they are verged). That is: d = x_l - x_r - (cx_l - cx_r)\n\
00401 sensor_msgs/Image image\n\
00402 \n\
00403 # Stereo geometry. For disparity d, the depth from the camera is Z = fT/d.\n\
00404 float32 f # Focal length, pixels\n\
00405 float32 T # Baseline, world units\n\
00406 \n\
00407 # Subwindow of (potentially) valid disparity values.\n\
00408 sensor_msgs/RegionOfInterest valid_window\n\
00409 \n\
00410 # The range of disparities searched.\n\
00411 # In the disparity image, any disparity less than min_disparity is invalid.\n\
00412 # The disparity search range defines the horopter, or 3D volume that the\n\
00413 # stereo algorithm can \"see\". Points with Z outside of:\n\
00414 # Z_min = fT / max_disparity\n\
00415 # Z_max = fT / min_disparity\n\
00416 # could not be found.\n\
00417 float32 min_disparity\n\
00418 float32 max_disparity\n\
00419 \n\
00420 # Smallest allowed disparity increment. The smallest achievable depth range\n\
00421 # resolution is delta_Z = (Z^2/fT)*delta_d.\n\
00422 float32 delta_d\n\
00423 \n\
00424 ================================================================================\n\
00425 MSG: object_segmentation_gui/ObjectSegmentationGuiActionResult\n\
00426 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00427 \n\
00428 Header header\n\
00429 actionlib_msgs/GoalStatus status\n\
00430 ObjectSegmentationGuiResult result\n\
00431 \n\
00432 ================================================================================\n\
00433 MSG: actionlib_msgs/GoalStatus\n\
00434 GoalID goal_id\n\
00435 uint8 status\n\
00436 uint8 PENDING = 0 # The goal has yet to be processed by the action server\n\
00437 uint8 ACTIVE = 1 # The goal is currently being processed by the action server\n\
00438 uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing\n\
00439 # and has since completed its execution (Terminal State)\n\
00440 uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State)\n\
00441 uint8 ABORTED = 4 # The goal was aborted during execution by the action server due\n\
00442 # to some failure (Terminal State)\n\
00443 uint8 REJECTED = 5 # The goal was rejected by the action server without being processed,\n\
00444 # because the goal was unattainable or invalid (Terminal State)\n\
00445 uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing\n\
00446 # and has not yet completed execution\n\
00447 uint8 RECALLING = 7 # The goal received a cancel request before it started executing,\n\
00448 # but the action server has not yet confirmed that the goal is canceled\n\
00449 uint8 RECALLED = 8 # The goal received a cancel request before it started executing\n\
00450 # and was successfully cancelled (Terminal State)\n\
00451 uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be\n\
00452 # sent over the wire by an action server\n\
00453 \n\
00454 #Allow for the user to associate a string with GoalStatus for debugging\n\
00455 string text\n\
00456 \n\
00457 \n\
00458 ================================================================================\n\
00459 MSG: object_segmentation_gui/ObjectSegmentationGuiResult\n\
00460 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00461 # The information for the plane that has been detected\n\
00462 tabletop_object_detector/Table table\n\
00463 \n\
00464 # The raw clusters detected in the scan \n\
00465 sensor_msgs/PointCloud[] clusters\n\
00466 \n\
00467 # Whether the detection has succeeded or failed\n\
00468 int32 NO_CLOUD_RECEIVED = 1\n\
00469 int32 NO_TABLE = 2\n\
00470 int32 OTHER_ERROR = 3\n\
00471 int32 SUCCESS = 4\n\
00472 int32 result\n\
00473 \n\
00474 \n\
00475 ================================================================================\n\
00476 MSG: tabletop_object_detector/Table\n\
00477 # Informs that a planar table has been detected at a given location\n\
00478 \n\
00479 # The pose gives you the transform that take you to the coordinate system\n\
00480 # of the table, with the origin somewhere in the table plane and the \n\
00481 # z axis normal to the plane\n\
00482 geometry_msgs/PoseStamped pose\n\
00483 \n\
00484 # These values give you the observed extents of the table, along x and y,\n\
00485 # in the table's own coordinate system (above)\n\
00486 # there is no guarantee that the origin of the table coordinate system is\n\
00487 # inside the boundary defined by these values. \n\
00488 float32 x_min\n\
00489 float32 x_max\n\
00490 float32 y_min\n\
00491 float32 y_max\n\
00492 \n\
00493 # There is no guarantee that the table does NOT extend further than these \n\
00494 # values; this is just as far as we've observed it.\n\
00495 \n\
00496 \n\
00497 # Newer table definition as triangle mesh of convex hull (relative to pose)\n\
00498 arm_navigation_msgs/Shape convex_hull\n\
00499 \n\
00500 ================================================================================\n\
00501 MSG: geometry_msgs/PoseStamped\n\
00502 # A Pose with reference coordinate frame and timestamp\n\
00503 Header header\n\
00504 Pose pose\n\
00505 \n\
00506 ================================================================================\n\
00507 MSG: geometry_msgs/Pose\n\
00508 # A representation of pose in free space, composed of postion and orientation. \n\
00509 Point position\n\
00510 Quaternion orientation\n\
00511 \n\
00512 ================================================================================\n\
00513 MSG: geometry_msgs/Point\n\
00514 # This contains the position of a point in free space\n\
00515 float64 x\n\
00516 float64 y\n\
00517 float64 z\n\
00518 \n\
00519 ================================================================================\n\
00520 MSG: geometry_msgs/Quaternion\n\
00521 # This represents an orientation in free space in quaternion form.\n\
00522 \n\
00523 float64 x\n\
00524 float64 y\n\
00525 float64 z\n\
00526 float64 w\n\
00527 \n\
00528 ================================================================================\n\
00529 MSG: arm_navigation_msgs/Shape\n\
00530 byte SPHERE=0\n\
00531 byte BOX=1\n\
00532 byte CYLINDER=2\n\
00533 byte MESH=3\n\
00534 \n\
00535 byte type\n\
00536 \n\
00537 \n\
00538 #### define sphere, box, cylinder ####\n\
00539 # the origin of each shape is considered at the shape's center\n\
00540 \n\
00541 # for sphere\n\
00542 # radius := dimensions[0]\n\
00543 \n\
00544 # for cylinder\n\
00545 # radius := dimensions[0]\n\
00546 # length := dimensions[1]\n\
00547 # the length is along the Z axis\n\
00548 \n\
00549 # for box\n\
00550 # size_x := dimensions[0]\n\
00551 # size_y := dimensions[1]\n\
00552 # size_z := dimensions[2]\n\
00553 float64[] dimensions\n\
00554 \n\
00555 \n\
00556 #### define mesh ####\n\
00557 \n\
00558 # list of triangles; triangle k is defined by tre vertices located\n\
00559 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00560 int32[] triangles\n\
00561 geometry_msgs/Point[] vertices\n\
00562 \n\
00563 ================================================================================\n\
00564 MSG: sensor_msgs/PointCloud\n\
00565 # This message holds a collection of 3d points, plus optional additional\n\
00566 # information about each point.\n\
00567 \n\
00568 # Time of sensor data acquisition, coordinate frame ID.\n\
00569 Header header\n\
00570 \n\
00571 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00572 # in the frame given in the header.\n\
00573 geometry_msgs/Point32[] points\n\
00574 \n\
00575 # Each channel should have the same number of elements as points array,\n\
00576 # and the data in each channel should correspond 1:1 with each point.\n\
00577 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00578 ChannelFloat32[] channels\n\
00579 \n\
00580 ================================================================================\n\
00581 MSG: geometry_msgs/Point32\n\
00582 # This contains the position of a point in free space(with 32 bits of precision).\n\
00583 # It is recommeded to use Point wherever possible instead of Point32. \n\
00584 # \n\
00585 # This recommendation is to promote interoperability. \n\
00586 #\n\
00587 # This message is designed to take up less space when sending\n\
00588 # lots of points at once, as in the case of a PointCloud. \n\
00589 \n\
00590 float32 x\n\
00591 float32 y\n\
00592 float32 z\n\
00593 ================================================================================\n\
00594 MSG: sensor_msgs/ChannelFloat32\n\
00595 # This message is used by the PointCloud message to hold optional data\n\
00596 # associated with each point in the cloud. The length of the values\n\
00597 # array should be the same as the length of the points array in the\n\
00598 # PointCloud, and each value should be associated with the corresponding\n\
00599 # point.\n\
00600 \n\
00601 # Channel names in existing practice include:\n\
00602 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00603 # This is opposite to usual conventions but remains for\n\
00604 # historical reasons. The newer PointCloud2 message has no\n\
00605 # such problem.\n\
00606 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00607 # (R,G,B) values packed into the least significant 24 bits,\n\
00608 # in order.\n\
00609 # \"intensity\" - laser or pixel intensity.\n\
00610 # \"distance\"\n\
00611 \n\
00612 # The channel name should give semantics of the channel (e.g.\n\
00613 # \"intensity\" instead of \"value\").\n\
00614 string name\n\
00615 \n\
00616 # The values array should be 1-1 with the elements of the associated\n\
00617 # PointCloud.\n\
00618 float32[] values\n\
00619 \n\
00620 ================================================================================\n\
00621 MSG: object_segmentation_gui/ObjectSegmentationGuiActionFeedback\n\
00622 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00623 \n\
00624 Header header\n\
00625 actionlib_msgs/GoalStatus status\n\
00626 ObjectSegmentationGuiFeedback feedback\n\
00627 \n\
00628 ================================================================================\n\
00629 MSG: object_segmentation_gui/ObjectSegmentationGuiFeedback\n\
00630 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00631 \n\
00632 \n\
00633 ";
00634 }
00635
00636 static const char* value(const ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> &) { return value(); }
00637 };
00638
00639 }
00640 }
00641
00642 namespace ros
00643 {
00644 namespace serialization
00645 {
00646
00647 template<class ContainerAllocator> struct Serializer< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> >
00648 {
00649 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00650 {
00651 stream.next(m.action_goal);
00652 stream.next(m.action_result);
00653 stream.next(m.action_feedback);
00654 }
00655
00656 ROS_DECLARE_ALLINONE_SERIALIZER;
00657 };
00658 }
00659 }
00660
00661 namespace ros
00662 {
00663 namespace message_operations
00664 {
00665
00666 template<class ContainerAllocator>
00667 struct Printer< ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> >
00668 {
00669 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_segmentation_gui::ObjectSegmentationGuiAction_<ContainerAllocator> & v)
00670 {
00671 s << indent << "action_goal: ";
00672 s << std::endl;
00673 Printer< ::object_segmentation_gui::ObjectSegmentationGuiActionGoal_<ContainerAllocator> >::stream(s, indent + " ", v.action_goal);
00674 s << indent << "action_result: ";
00675 s << std::endl;
00676 Printer< ::object_segmentation_gui::ObjectSegmentationGuiActionResult_<ContainerAllocator> >::stream(s, indent + " ", v.action_result);
00677 s << indent << "action_feedback: ";
00678 s << std::endl;
00679 Printer< ::object_segmentation_gui::ObjectSegmentationGuiActionFeedback_<ContainerAllocator> >::stream(s, indent + " ", v.action_feedback);
00680 }
00681 };
00682
00683
00684 }
00685 }
00686
00687 #endif // OBJECT_SEGMENTATION_GUI_MESSAGE_OBJECTSEGMENTATIONGUIACTION_H
00688