ReactiveLiftGoal.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-object_manipulation/doc_stacks/2014-10-06_02-51-20.607186/object_manipulation/object_manipulation_msgs/msg/ReactiveLiftGoal.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "manipulation_msgs/GraspableObject.h"
00018 #include "object_manipulation_msgs/GripperTranslation.h"
00019 #include "trajectory_msgs/JointTrajectory.h"
00020 
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ReactiveLiftGoal_ {
00025   typedef ReactiveLiftGoal_<ContainerAllocator> Type;
00026 
00027   ReactiveLiftGoal_()
00028   : arm_name()
00029   , target()
00030   , lift()
00031   , trajectory()
00032   , collision_support_surface_name()
00033   {
00034   }
00035 
00036   ReactiveLiftGoal_(const ContainerAllocator& _alloc)
00037   : arm_name(_alloc)
00038   , target(_alloc)
00039   , lift(_alloc)
00040   , trajectory(_alloc)
00041   , collision_support_surface_name(_alloc)
00042   {
00043   }
00044 
00045   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _arm_name_type;
00046   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  arm_name;
00047 
00048   typedef  ::manipulation_msgs::GraspableObject_<ContainerAllocator>  _target_type;
00049    ::manipulation_msgs::GraspableObject_<ContainerAllocator>  target;
00050 
00051   typedef  ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator>  _lift_type;
00052    ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator>  lift;
00053 
00054   typedef  ::trajectory_msgs::JointTrajectory_<ContainerAllocator>  _trajectory_type;
00055    ::trajectory_msgs::JointTrajectory_<ContainerAllocator>  trajectory;
00056 
00057   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _collision_support_surface_name_type;
00058   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  collision_support_surface_name;
00059 
00060 
00061   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > Ptr;
00062   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator>  const> ConstPtr;
00063   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00064 }; // struct ReactiveLiftGoal
00065 typedef  ::object_manipulation_msgs::ReactiveLiftGoal_<std::allocator<void> > ReactiveLiftGoal;
00066 
00067 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal> ReactiveLiftGoalPtr;
00068 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftGoal const> ReactiveLiftGoalConstPtr;
00069 
00070 
00071 template<typename ContainerAllocator>
00072 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> & v)
00073 {
00074   ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >::stream(s, "", v);
00075   return s;}
00076 
00077 } // namespace object_manipulation_msgs
00078 
00079 namespace ros
00080 {
00081 namespace message_traits
00082 {
00083 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > : public TrueType {};
00084 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator>  const> : public TrueType {};
00085 template<class ContainerAllocator>
00086 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > {
00087   static const char* value() 
00088   {
00089     return "685c6d6ff54bf8c69084f30b6a6d02ed";
00090   }
00091 
00092   static const char* value(const  ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); } 
00093   static const uint64_t static_value1 = 0x685c6d6ff54bf8c6ULL;
00094   static const uint64_t static_value2 = 0x9084f30b6a6d02edULL;
00095 };
00096 
00097 template<class ContainerAllocator>
00098 struct DataType< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > {
00099   static const char* value() 
00100   {
00101     return "object_manipulation_msgs/ReactiveLiftGoal";
00102   }
00103 
00104   static const char* value(const  ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); } 
00105 };
00106 
00107 template<class ContainerAllocator>
00108 struct Definition< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> > {
00109   static const char* value() 
00110   {
00111     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00112 \n\
00113 # the name of the arm being used\n\
00114 string arm_name\n\
00115 \n\
00116 # the object to be grasped\n\
00117 manipulation_msgs/GraspableObject target\n\
00118 \n\
00119 # How the object should be lifted \n\
00120 GripperTranslation lift\n\
00121 \n\
00122 # the joint trajectory to use for the approach (if available)\n\
00123 # this trajectory is expected to start at the current pose of the gripper\n\
00124 # and end at the desired grasp pose\n\
00125 trajectory_msgs/JointTrajectory trajectory\n\
00126 \n\
00127 # the name of the support surface in the collision environment, if any\n\
00128 string collision_support_surface_name\n\
00129 \n\
00130 \n\
00131 ================================================================================\n\
00132 MSG: manipulation_msgs/GraspableObject\n\
00133 # an object that the object_manipulator can work on\n\
00134 \n\
00135 # a graspable object can be represented in multiple ways. This message\n\
00136 # can contain all of them. Which one is actually used is up to the receiver\n\
00137 # of this message. When adding new representations, one must be careful that\n\
00138 # they have reasonable lightweight defaults indicating that that particular\n\
00139 # representation is not available.\n\
00140 \n\
00141 # the tf frame to be used as a reference frame when combining information from\n\
00142 # the different representations below\n\
00143 string reference_frame_id\n\
00144 \n\
00145 # potential recognition results from a database of models\n\
00146 # all poses are relative to the object reference pose\n\
00147 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00148 \n\
00149 # the point cloud itself\n\
00150 sensor_msgs/PointCloud cluster\n\
00151 \n\
00152 # a region of a PointCloud2 of interest\n\
00153 SceneRegion region\n\
00154 \n\
00155 # the name that this object has in the collision environment\n\
00156 string collision_name\n\
00157 ================================================================================\n\
00158 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00159 # Informs that a specific model from the Model Database has been \n\
00160 # identified at a certain location\n\
00161 \n\
00162 # the database id of the model\n\
00163 int32 model_id\n\
00164 \n\
00165 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00166 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00167 # leave this empty if providing an id in the model_id field\n\
00168 object_recognition_msgs/ObjectType type\n\
00169 \n\
00170 # the pose that it can be found in\n\
00171 geometry_msgs/PoseStamped pose\n\
00172 \n\
00173 # a measure of the confidence level in this detection result\n\
00174 float32 confidence\n\
00175 \n\
00176 # the name of the object detector that generated this detection result\n\
00177 string detector_name\n\
00178 \n\
00179 ================================================================================\n\
00180 MSG: object_recognition_msgs/ObjectType\n\
00181 ################################################## OBJECT ID #########################################################\n\
00182 \n\
00183 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00184 # object\n\
00185 \n\
00186 # The key of the found object: the unique identifier in the given db\n\
00187 string key\n\
00188 \n\
00189 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00190 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00191 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00192 # The object_recognition_core as a generic DB type that can read those fields\n\
00193 # Current examples:\n\
00194 # For CouchDB:\n\
00195 #   type: 'CouchDB'\n\
00196 #   root: 'http://localhost:5984'\n\
00197 #   collection: 'object_recognition'\n\
00198 # For SQL household database:\n\
00199 #   type: 'SqlHousehold'\n\
00200 #   host: 'wgs36'\n\
00201 #   port: 5432\n\
00202 #   user: 'willow'\n\
00203 #   password: 'willow'\n\
00204 #   name: 'household_objects'\n\
00205 #   module: 'tabletop'\n\
00206 string db\n\
00207 \n\
00208 ================================================================================\n\
00209 MSG: geometry_msgs/PoseStamped\n\
00210 # A Pose with reference coordinate frame and timestamp\n\
00211 Header header\n\
00212 Pose pose\n\
00213 \n\
00214 ================================================================================\n\
00215 MSG: std_msgs/Header\n\
00216 # Standard metadata for higher-level stamped data types.\n\
00217 # This is generally used to communicate timestamped data \n\
00218 # in a particular coordinate frame.\n\
00219 # \n\
00220 # sequence ID: consecutively increasing ID \n\
00221 uint32 seq\n\
00222 #Two-integer timestamp that is expressed as:\n\
00223 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00224 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00225 # time-handling sugar is provided by the client library\n\
00226 time stamp\n\
00227 #Frame this data is associated with\n\
00228 # 0: no frame\n\
00229 # 1: global frame\n\
00230 string frame_id\n\
00231 \n\
00232 ================================================================================\n\
00233 MSG: geometry_msgs/Pose\n\
00234 # A representation of pose in free space, composed of postion and orientation. \n\
00235 Point position\n\
00236 Quaternion orientation\n\
00237 \n\
00238 ================================================================================\n\
00239 MSG: geometry_msgs/Point\n\
00240 # This contains the position of a point in free space\n\
00241 float64 x\n\
00242 float64 y\n\
00243 float64 z\n\
00244 \n\
00245 ================================================================================\n\
00246 MSG: geometry_msgs/Quaternion\n\
00247 # This represents an orientation in free space in quaternion form.\n\
00248 \n\
00249 float64 x\n\
00250 float64 y\n\
00251 float64 z\n\
00252 float64 w\n\
00253 \n\
00254 ================================================================================\n\
00255 MSG: sensor_msgs/PointCloud\n\
00256 # This message holds a collection of 3d points, plus optional additional\n\
00257 # information about each point.\n\
00258 \n\
00259 # Time of sensor data acquisition, coordinate frame ID.\n\
00260 Header header\n\
00261 \n\
00262 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00263 # in the frame given in the header.\n\
00264 geometry_msgs/Point32[] points\n\
00265 \n\
00266 # Each channel should have the same number of elements as points array,\n\
00267 # and the data in each channel should correspond 1:1 with each point.\n\
00268 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00269 ChannelFloat32[] channels\n\
00270 \n\
00271 ================================================================================\n\
00272 MSG: geometry_msgs/Point32\n\
00273 # This contains the position of a point in free space(with 32 bits of precision).\n\
00274 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00275 # \n\
00276 # This recommendation is to promote interoperability.  \n\
00277 #\n\
00278 # This message is designed to take up less space when sending\n\
00279 # lots of points at once, as in the case of a PointCloud.  \n\
00280 \n\
00281 float32 x\n\
00282 float32 y\n\
00283 float32 z\n\
00284 ================================================================================\n\
00285 MSG: sensor_msgs/ChannelFloat32\n\
00286 # This message is used by the PointCloud message to hold optional data\n\
00287 # associated with each point in the cloud. The length of the values\n\
00288 # array should be the same as the length of the points array in the\n\
00289 # PointCloud, and each value should be associated with the corresponding\n\
00290 # point.\n\
00291 \n\
00292 # Channel names in existing practice include:\n\
00293 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00294 #              This is opposite to usual conventions but remains for\n\
00295 #              historical reasons. The newer PointCloud2 message has no\n\
00296 #              such problem.\n\
00297 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00298 #           (R,G,B) values packed into the least significant 24 bits,\n\
00299 #           in order.\n\
00300 #   \"intensity\" - laser or pixel intensity.\n\
00301 #   \"distance\"\n\
00302 \n\
00303 # The channel name should give semantics of the channel (e.g.\n\
00304 # \"intensity\" instead of \"value\").\n\
00305 string name\n\
00306 \n\
00307 # The values array should be 1-1 with the elements of the associated\n\
00308 # PointCloud.\n\
00309 float32[] values\n\
00310 \n\
00311 ================================================================================\n\
00312 MSG: manipulation_msgs/SceneRegion\n\
00313 # Point cloud\n\
00314 sensor_msgs/PointCloud2 cloud\n\
00315 \n\
00316 # Indices for the region of interest\n\
00317 int32[] mask\n\
00318 \n\
00319 # One of the corresponding 2D images, if applicable\n\
00320 sensor_msgs/Image image\n\
00321 \n\
00322 # The disparity image, if applicable\n\
00323 sensor_msgs/Image disparity_image\n\
00324 \n\
00325 # Camera info for the camera that took the image\n\
00326 sensor_msgs/CameraInfo cam_info\n\
00327 \n\
00328 # a 3D region of interest for grasp planning\n\
00329 geometry_msgs/PoseStamped  roi_box_pose\n\
00330 geometry_msgs/Vector3      roi_box_dims\n\
00331 \n\
00332 ================================================================================\n\
00333 MSG: sensor_msgs/PointCloud2\n\
00334 # This message holds a collection of N-dimensional points, which may\n\
00335 # contain additional information such as normals, intensity, etc. The\n\
00336 # point data is stored as a binary blob, its layout described by the\n\
00337 # contents of the \"fields\" array.\n\
00338 \n\
00339 # The point cloud data may be organized 2d (image-like) or 1d\n\
00340 # (unordered). Point clouds organized as 2d images may be produced by\n\
00341 # camera depth sensors such as stereo or time-of-flight.\n\
00342 \n\
00343 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00344 # points).\n\
00345 Header header\n\
00346 \n\
00347 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00348 # 1 and width is the length of the point cloud.\n\
00349 uint32 height\n\
00350 uint32 width\n\
00351 \n\
00352 # Describes the channels and their layout in the binary data blob.\n\
00353 PointField[] fields\n\
00354 \n\
00355 bool    is_bigendian # Is this data bigendian?\n\
00356 uint32  point_step   # Length of a point in bytes\n\
00357 uint32  row_step     # Length of a row in bytes\n\
00358 uint8[] data         # Actual point data, size is (row_step*height)\n\
00359 \n\
00360 bool is_dense        # True if there are no invalid points\n\
00361 \n\
00362 ================================================================================\n\
00363 MSG: sensor_msgs/PointField\n\
00364 # This message holds the description of one point entry in the\n\
00365 # PointCloud2 message format.\n\
00366 uint8 INT8    = 1\n\
00367 uint8 UINT8   = 2\n\
00368 uint8 INT16   = 3\n\
00369 uint8 UINT16  = 4\n\
00370 uint8 INT32   = 5\n\
00371 uint8 UINT32  = 6\n\
00372 uint8 FLOAT32 = 7\n\
00373 uint8 FLOAT64 = 8\n\
00374 \n\
00375 string name      # Name of field\n\
00376 uint32 offset    # Offset from start of point struct\n\
00377 uint8  datatype  # Datatype enumeration, see above\n\
00378 uint32 count     # How many elements in the field\n\
00379 \n\
00380 ================================================================================\n\
00381 MSG: sensor_msgs/Image\n\
00382 # This message contains an uncompressed image\n\
00383 # (0, 0) is at top-left corner of image\n\
00384 #\n\
00385 \n\
00386 Header header        # Header timestamp should be acquisition time of image\n\
00387                      # Header frame_id should be optical frame of camera\n\
00388                      # origin of frame should be optical center of cameara\n\
00389                      # +x should point to the right in the image\n\
00390                      # +y should point down in the image\n\
00391                      # +z should point into to plane of the image\n\
00392                      # If the frame_id here and the frame_id of the CameraInfo\n\
00393                      # message associated with the image conflict\n\
00394                      # the behavior is undefined\n\
00395 \n\
00396 uint32 height         # image height, that is, number of rows\n\
00397 uint32 width          # image width, that is, number of columns\n\
00398 \n\
00399 # The legal values for encoding are in file src/image_encodings.cpp\n\
00400 # If you want to standardize a new string format, join\n\
00401 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00402 \n\
00403 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00404                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00405 \n\
00406 uint8 is_bigendian    # is this data bigendian?\n\
00407 uint32 step           # Full row length in bytes\n\
00408 uint8[] data          # actual matrix data, size is (step * rows)\n\
00409 \n\
00410 ================================================================================\n\
00411 MSG: sensor_msgs/CameraInfo\n\
00412 # This message defines meta information for a camera. It should be in a\n\
00413 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00414 # image topics named:\n\
00415 #\n\
00416 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00417 #   image            - monochrome, distorted\n\
00418 #   image_color      - color, distorted\n\
00419 #   image_rect       - monochrome, rectified\n\
00420 #   image_rect_color - color, rectified\n\
00421 #\n\
00422 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00423 # for producing the four processed image topics from image_raw and\n\
00424 # camera_info. The meaning of the camera parameters are described in\n\
00425 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00426 #\n\
00427 # The image_geometry package provides a user-friendly interface to\n\
00428 # common operations using this meta information. If you want to, e.g.,\n\
00429 # project a 3d point into image coordinates, we strongly recommend\n\
00430 # using image_geometry.\n\
00431 #\n\
00432 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00433 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00434 # indicates an uncalibrated camera.\n\
00435 \n\
00436 #######################################################################\n\
00437 #                     Image acquisition info                          #\n\
00438 #######################################################################\n\
00439 \n\
00440 # Time of image acquisition, camera coordinate frame ID\n\
00441 Header header    # Header timestamp should be acquisition time of image\n\
00442                  # Header frame_id should be optical frame of camera\n\
00443                  # origin of frame should be optical center of camera\n\
00444                  # +x should point to the right in the image\n\
00445                  # +y should point down in the image\n\
00446                  # +z should point into the plane of the image\n\
00447 \n\
00448 \n\
00449 #######################################################################\n\
00450 #                      Calibration Parameters                         #\n\
00451 #######################################################################\n\
00452 # These are fixed during camera calibration. Their values will be the #\n\
00453 # same in all messages until the camera is recalibrated. Note that    #\n\
00454 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00455 #                                                                     #\n\
00456 # The internal parameters can be used to warp a raw (distorted) image #\n\
00457 # to:                                                                 #\n\
00458 #   1. An undistorted image (requires D and K)                        #\n\
00459 #   2. A rectified image (requires D, K, R)                           #\n\
00460 # The projection matrix P projects 3D points into the rectified image.#\n\
00461 #######################################################################\n\
00462 \n\
00463 # The image dimensions with which the camera was calibrated. Normally\n\
00464 # this will be the full camera resolution in pixels.\n\
00465 uint32 height\n\
00466 uint32 width\n\
00467 \n\
00468 # The distortion model used. Supported models are listed in\n\
00469 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00470 # simple model of radial and tangential distortion - is sufficent.\n\
00471 string distortion_model\n\
00472 \n\
00473 # The distortion parameters, size depending on the distortion model.\n\
00474 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00475 float64[] D\n\
00476 \n\
00477 # Intrinsic camera matrix for the raw (distorted) images.\n\
00478 #     [fx  0 cx]\n\
00479 # K = [ 0 fy cy]\n\
00480 #     [ 0  0  1]\n\
00481 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00482 # coordinates using the focal lengths (fx, fy) and principal point\n\
00483 # (cx, cy).\n\
00484 float64[9]  K # 3x3 row-major matrix\n\
00485 \n\
00486 # Rectification matrix (stereo cameras only)\n\
00487 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00488 # stereo image plane so that epipolar lines in both stereo images are\n\
00489 # parallel.\n\
00490 float64[9]  R # 3x3 row-major matrix\n\
00491 \n\
00492 # Projection/camera matrix\n\
00493 #     [fx'  0  cx' Tx]\n\
00494 # P = [ 0  fy' cy' Ty]\n\
00495 #     [ 0   0   1   0]\n\
00496 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00497 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00498 #  is the normal camera intrinsic matrix for the rectified image.\n\
00499 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00500 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00501 #  (cx', cy') - these may differ from the values in K.\n\
00502 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00503 #  also have R = the identity and P[1:3,1:3] = K.\n\
00504 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00505 #  position of the optical center of the second camera in the first\n\
00506 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00507 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00508 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00509 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00510 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00511 #  the rectified image is given by:\n\
00512 #  [u v w]' = P * [X Y Z 1]'\n\
00513 #         x = u / w\n\
00514 #         y = v / w\n\
00515 #  This holds for both images of a stereo pair.\n\
00516 float64[12] P # 3x4 row-major matrix\n\
00517 \n\
00518 \n\
00519 #######################################################################\n\
00520 #                      Operational Parameters                         #\n\
00521 #######################################################################\n\
00522 # These define the image region actually captured by the camera       #\n\
00523 # driver. Although they affect the geometry of the output image, they #\n\
00524 # may be changed freely without recalibrating the camera.             #\n\
00525 #######################################################################\n\
00526 \n\
00527 # Binning refers here to any camera setting which combines rectangular\n\
00528 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00529 #  resolution of the output image to\n\
00530 #  (width / binning_x) x (height / binning_y).\n\
00531 # The default values binning_x = binning_y = 0 is considered the same\n\
00532 #  as binning_x = binning_y = 1 (no subsampling).\n\
00533 uint32 binning_x\n\
00534 uint32 binning_y\n\
00535 \n\
00536 # Region of interest (subwindow of full camera resolution), given in\n\
00537 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00538 #  always denotes the same window of pixels on the camera sensor,\n\
00539 #  regardless of binning settings.\n\
00540 # The default setting of roi (all values 0) is considered the same as\n\
00541 #  full resolution (roi.width = width, roi.height = height).\n\
00542 RegionOfInterest roi\n\
00543 \n\
00544 ================================================================================\n\
00545 MSG: sensor_msgs/RegionOfInterest\n\
00546 # This message is used to specify a region of interest within an image.\n\
00547 #\n\
00548 # When used to specify the ROI setting of the camera when the image was\n\
00549 # taken, the height and width fields should either match the height and\n\
00550 # width fields for the associated image; or height = width = 0\n\
00551 # indicates that the full resolution image was captured.\n\
00552 \n\
00553 uint32 x_offset  # Leftmost pixel of the ROI\n\
00554                  # (0 if the ROI includes the left edge of the image)\n\
00555 uint32 y_offset  # Topmost pixel of the ROI\n\
00556                  # (0 if the ROI includes the top edge of the image)\n\
00557 uint32 height    # Height of ROI\n\
00558 uint32 width     # Width of ROI\n\
00559 \n\
00560 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00561 # ROI in this message. Typically this should be False if the full image\n\
00562 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00563 # used).\n\
00564 bool do_rectify\n\
00565 \n\
00566 ================================================================================\n\
00567 MSG: geometry_msgs/Vector3\n\
00568 # This represents a vector in free space. \n\
00569 \n\
00570 float64 x\n\
00571 float64 y\n\
00572 float64 z\n\
00573 ================================================================================\n\
00574 MSG: object_manipulation_msgs/GripperTranslation\n\
00575 # defines a translation for the gripper, used in pickup or place tasks\n\
00576 # for example for lifting an object off a table or approaching the table for placing\n\
00577 \n\
00578 # the direction of the translation\n\
00579 geometry_msgs/Vector3Stamped direction\n\
00580 \n\
00581 # the desired translation distance\n\
00582 float32 desired_distance\n\
00583 \n\
00584 # the min distance that must be considered feasible before the\n\
00585 # grasp is even attempted\n\
00586 float32 min_distance\n\
00587 ================================================================================\n\
00588 MSG: geometry_msgs/Vector3Stamped\n\
00589 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00590 Header header\n\
00591 Vector3 vector\n\
00592 \n\
00593 ================================================================================\n\
00594 MSG: trajectory_msgs/JointTrajectory\n\
00595 Header header\n\
00596 string[] joint_names\n\
00597 JointTrajectoryPoint[] points\n\
00598 ================================================================================\n\
00599 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00600 float64[] positions\n\
00601 float64[] velocities\n\
00602 float64[] accelerations\n\
00603 duration time_from_start\n\
00604 ";
00605   }
00606 
00607   static const char* value(const  ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> &) { return value(); } 
00608 };
00609 
00610 } // namespace message_traits
00611 } // namespace ros
00612 
00613 namespace ros
00614 {
00615 namespace serialization
00616 {
00617 
00618 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >
00619 {
00620   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00621   {
00622     stream.next(m.arm_name);
00623     stream.next(m.target);
00624     stream.next(m.lift);
00625     stream.next(m.trajectory);
00626     stream.next(m.collision_support_surface_name);
00627   }
00628 
00629   ROS_DECLARE_ALLINONE_SERIALIZER;
00630 }; // struct ReactiveLiftGoal_
00631 } // namespace serialization
00632 } // namespace ros
00633 
00634 namespace ros
00635 {
00636 namespace message_operations
00637 {
00638 
00639 template<class ContainerAllocator>
00640 struct Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >
00641 {
00642   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> & v) 
00643   {
00644     s << indent << "arm_name: ";
00645     Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + "  ", v.arm_name);
00646     s << indent << "target: ";
00647 s << std::endl;
00648     Printer< ::manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + "  ", v.target);
00649     s << indent << "lift: ";
00650 s << std::endl;
00651     Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + "  ", v.lift);
00652     s << indent << "trajectory: ";
00653 s << std::endl;
00654     Printer< ::trajectory_msgs::JointTrajectory_<ContainerAllocator> >::stream(s, indent + "  ", v.trajectory);
00655     s << indent << "collision_support_surface_name: ";
00656     Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + "  ", v.collision_support_surface_name);
00657   }
00658 };
00659 
00660 
00661 } // namespace message_operations
00662 } // namespace ros
00663 
00664 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTGOAL_H
00665 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Mon Oct 6 2014 02:58:12