ReactiveGraspGoal.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-groovy-object_manipulation/doc_stacks/2014-10-06_02-51-20.607186/object_manipulation/object_manipulation_msgs/msg/ReactiveGraspGoal.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "manipulation_msgs/GraspableObject.h"
00018 #include "geometry_msgs/PoseStamped.h"
00019 #include "trajectory_msgs/JointTrajectory.h"
00020 #include "sensor_msgs/JointState.h"
00021 #include "sensor_msgs/JointState.h"
00022 
00023 namespace object_manipulation_msgs
00024 {
00025 template <class ContainerAllocator>
00026 struct ReactiveGraspGoal_ {
00027   typedef ReactiveGraspGoal_<ContainerAllocator> Type;
00028 
00029   ReactiveGraspGoal_()
00030   : arm_name()
00031   , target()
00032   , final_grasp_pose()
00033   , trajectory()
00034   , collision_support_surface_name()
00035   , pre_grasp_posture()
00036   , grasp_posture()
00037   , max_contact_force(0.0)
00038   {
00039   }
00040 
00041   ReactiveGraspGoal_(const ContainerAllocator& _alloc)
00042   : arm_name(_alloc)
00043   , target(_alloc)
00044   , final_grasp_pose(_alloc)
00045   , trajectory(_alloc)
00046   , collision_support_surface_name(_alloc)
00047   , pre_grasp_posture(_alloc)
00048   , grasp_posture(_alloc)
00049   , max_contact_force(0.0)
00050   {
00051   }
00052 
00053   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _arm_name_type;
00054   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  arm_name;
00055 
00056   typedef  ::manipulation_msgs::GraspableObject_<ContainerAllocator>  _target_type;
00057    ::manipulation_msgs::GraspableObject_<ContainerAllocator>  target;
00058 
00059   typedef  ::geometry_msgs::PoseStamped_<ContainerAllocator>  _final_grasp_pose_type;
00060    ::geometry_msgs::PoseStamped_<ContainerAllocator>  final_grasp_pose;
00061 
00062   typedef  ::trajectory_msgs::JointTrajectory_<ContainerAllocator>  _trajectory_type;
00063    ::trajectory_msgs::JointTrajectory_<ContainerAllocator>  trajectory;
00064 
00065   typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  _collision_support_surface_name_type;
00066   std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other >  collision_support_surface_name;
00067 
00068   typedef  ::sensor_msgs::JointState_<ContainerAllocator>  _pre_grasp_posture_type;
00069    ::sensor_msgs::JointState_<ContainerAllocator>  pre_grasp_posture;
00070 
00071   typedef  ::sensor_msgs::JointState_<ContainerAllocator>  _grasp_posture_type;
00072    ::sensor_msgs::JointState_<ContainerAllocator>  grasp_posture;
00073 
00074   typedef float _max_contact_force_type;
00075   float max_contact_force;
00076 
00077 
00078   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > Ptr;
00079   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator>  const> ConstPtr;
00080   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00081 }; // struct ReactiveGraspGoal
00082 typedef  ::object_manipulation_msgs::ReactiveGraspGoal_<std::allocator<void> > ReactiveGraspGoal;
00083 
00084 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal> ReactiveGraspGoalPtr;
00085 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveGraspGoal const> ReactiveGraspGoalConstPtr;
00086 
00087 
00088 template<typename ContainerAllocator>
00089 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> & v)
00090 {
00091   ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >::stream(s, "", v);
00092   return s;}
00093 
00094 } // namespace object_manipulation_msgs
00095 
00096 namespace ros
00097 {
00098 namespace message_traits
00099 {
00100 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > : public TrueType {};
00101 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator>  const> : public TrueType {};
00102 template<class ContainerAllocator>
00103 struct MD5Sum< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00104   static const char* value() 
00105   {
00106     return "be370384d9b11e95390d098394d35f27";
00107   }
00108 
00109   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); } 
00110   static const uint64_t static_value1 = 0xbe370384d9b11e95ULL;
00111   static const uint64_t static_value2 = 0x390d098394d35f27ULL;
00112 };
00113 
00114 template<class ContainerAllocator>
00115 struct DataType< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00116   static const char* value() 
00117   {
00118     return "object_manipulation_msgs/ReactiveGraspGoal";
00119   }
00120 
00121   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); } 
00122 };
00123 
00124 template<class ContainerAllocator>
00125 struct Definition< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> > {
00126   static const char* value() 
00127   {
00128     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00129 # an action for reactive grasping\n\
00130 # a reactive grasp starts from the current pose of the gripper and ends\n\
00131 # at a desired grasp pose, presumably using the touch sensors along the way\n\
00132 \n\
00133 # the name of the arm being used\n\
00134 string arm_name\n\
00135 \n\
00136 # the object to be grasped\n\
00137 manipulation_msgs/GraspableObject target\n\
00138 \n\
00139 # the desired grasp pose for the hand\n\
00140 geometry_msgs/PoseStamped final_grasp_pose\n\
00141 \n\
00142 # the joint trajectory to use for the approach (if available)\n\
00143 # this trajectory is expected to start at the current pose of the gripper\n\
00144 # and end at the desired grasp pose\n\
00145 trajectory_msgs/JointTrajectory trajectory\n\
00146 \n\
00147 # the name of the support surface in the collision environment, if any\n\
00148 string collision_support_surface_name\n\
00149 \n\
00150 # The internal posture of the hand for the pre-grasp\n\
00151 # only positions are used\n\
00152 sensor_msgs/JointState pre_grasp_posture\n\
00153 \n\
00154 # The internal posture of the hand for the grasp\n\
00155 # positions and efforts are used\n\
00156 sensor_msgs/JointState grasp_posture\n\
00157 \n\
00158 # The max contact force to use while grasping (<=0 to disable)\n\
00159 float32 max_contact_force\n\
00160 \n\
00161 \n\
00162 ================================================================================\n\
00163 MSG: manipulation_msgs/GraspableObject\n\
00164 # an object that the object_manipulator can work on\n\
00165 \n\
00166 # a graspable object can be represented in multiple ways. This message\n\
00167 # can contain all of them. Which one is actually used is up to the receiver\n\
00168 # of this message. When adding new representations, one must be careful that\n\
00169 # they have reasonable lightweight defaults indicating that that particular\n\
00170 # representation is not available.\n\
00171 \n\
00172 # the tf frame to be used as a reference frame when combining information from\n\
00173 # the different representations below\n\
00174 string reference_frame_id\n\
00175 \n\
00176 # potential recognition results from a database of models\n\
00177 # all poses are relative to the object reference pose\n\
00178 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00179 \n\
00180 # the point cloud itself\n\
00181 sensor_msgs/PointCloud cluster\n\
00182 \n\
00183 # a region of a PointCloud2 of interest\n\
00184 SceneRegion region\n\
00185 \n\
00186 # the name that this object has in the collision environment\n\
00187 string collision_name\n\
00188 ================================================================================\n\
00189 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00190 # Informs that a specific model from the Model Database has been \n\
00191 # identified at a certain location\n\
00192 \n\
00193 # the database id of the model\n\
00194 int32 model_id\n\
00195 \n\
00196 # if the object was recognized by the ORK pipeline, its type will be in here\n\
00197 # if this is not empty, then the string in here will be converted to a household_objects_database id\n\
00198 # leave this empty if providing an id in the model_id field\n\
00199 object_recognition_msgs/ObjectType type\n\
00200 \n\
00201 # the pose that it can be found in\n\
00202 geometry_msgs/PoseStamped pose\n\
00203 \n\
00204 # a measure of the confidence level in this detection result\n\
00205 float32 confidence\n\
00206 \n\
00207 # the name of the object detector that generated this detection result\n\
00208 string detector_name\n\
00209 \n\
00210 ================================================================================\n\
00211 MSG: object_recognition_msgs/ObjectType\n\
00212 ################################################## OBJECT ID #########################################################\n\
00213 \n\
00214 # Contains information about the type of a found object. Those two sets of parameters together uniquely define an\n\
00215 # object\n\
00216 \n\
00217 # The key of the found object: the unique identifier in the given db\n\
00218 string key\n\
00219 \n\
00220 # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding\n\
00221 # database. E.g., in object_recognition, it can look like: \"{'type':'CouchDB', 'root':'http://localhost'}\"\n\
00222 # There is no conventional format for those parameters and it's nice to keep that flexibility.\n\
00223 # The object_recognition_core as a generic DB type that can read those fields\n\
00224 # Current examples:\n\
00225 # For CouchDB:\n\
00226 #   type: 'CouchDB'\n\
00227 #   root: 'http://localhost:5984'\n\
00228 #   collection: 'object_recognition'\n\
00229 # For SQL household database:\n\
00230 #   type: 'SqlHousehold'\n\
00231 #   host: 'wgs36'\n\
00232 #   port: 5432\n\
00233 #   user: 'willow'\n\
00234 #   password: 'willow'\n\
00235 #   name: 'household_objects'\n\
00236 #   module: 'tabletop'\n\
00237 string db\n\
00238 \n\
00239 ================================================================================\n\
00240 MSG: geometry_msgs/PoseStamped\n\
00241 # A Pose with reference coordinate frame and timestamp\n\
00242 Header header\n\
00243 Pose pose\n\
00244 \n\
00245 ================================================================================\n\
00246 MSG: std_msgs/Header\n\
00247 # Standard metadata for higher-level stamped data types.\n\
00248 # This is generally used to communicate timestamped data \n\
00249 # in a particular coordinate frame.\n\
00250 # \n\
00251 # sequence ID: consecutively increasing ID \n\
00252 uint32 seq\n\
00253 #Two-integer timestamp that is expressed as:\n\
00254 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00255 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00256 # time-handling sugar is provided by the client library\n\
00257 time stamp\n\
00258 #Frame this data is associated with\n\
00259 # 0: no frame\n\
00260 # 1: global frame\n\
00261 string frame_id\n\
00262 \n\
00263 ================================================================================\n\
00264 MSG: geometry_msgs/Pose\n\
00265 # A representation of pose in free space, composed of postion and orientation. \n\
00266 Point position\n\
00267 Quaternion orientation\n\
00268 \n\
00269 ================================================================================\n\
00270 MSG: geometry_msgs/Point\n\
00271 # This contains the position of a point in free space\n\
00272 float64 x\n\
00273 float64 y\n\
00274 float64 z\n\
00275 \n\
00276 ================================================================================\n\
00277 MSG: geometry_msgs/Quaternion\n\
00278 # This represents an orientation in free space in quaternion form.\n\
00279 \n\
00280 float64 x\n\
00281 float64 y\n\
00282 float64 z\n\
00283 float64 w\n\
00284 \n\
00285 ================================================================================\n\
00286 MSG: sensor_msgs/PointCloud\n\
00287 # This message holds a collection of 3d points, plus optional additional\n\
00288 # information about each point.\n\
00289 \n\
00290 # Time of sensor data acquisition, coordinate frame ID.\n\
00291 Header header\n\
00292 \n\
00293 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00294 # in the frame given in the header.\n\
00295 geometry_msgs/Point32[] points\n\
00296 \n\
00297 # Each channel should have the same number of elements as points array,\n\
00298 # and the data in each channel should correspond 1:1 with each point.\n\
00299 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00300 ChannelFloat32[] channels\n\
00301 \n\
00302 ================================================================================\n\
00303 MSG: geometry_msgs/Point32\n\
00304 # This contains the position of a point in free space(with 32 bits of precision).\n\
00305 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00306 # \n\
00307 # This recommendation is to promote interoperability.  \n\
00308 #\n\
00309 # This message is designed to take up less space when sending\n\
00310 # lots of points at once, as in the case of a PointCloud.  \n\
00311 \n\
00312 float32 x\n\
00313 float32 y\n\
00314 float32 z\n\
00315 ================================================================================\n\
00316 MSG: sensor_msgs/ChannelFloat32\n\
00317 # This message is used by the PointCloud message to hold optional data\n\
00318 # associated with each point in the cloud. The length of the values\n\
00319 # array should be the same as the length of the points array in the\n\
00320 # PointCloud, and each value should be associated with the corresponding\n\
00321 # point.\n\
00322 \n\
00323 # Channel names in existing practice include:\n\
00324 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00325 #              This is opposite to usual conventions but remains for\n\
00326 #              historical reasons. The newer PointCloud2 message has no\n\
00327 #              such problem.\n\
00328 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00329 #           (R,G,B) values packed into the least significant 24 bits,\n\
00330 #           in order.\n\
00331 #   \"intensity\" - laser or pixel intensity.\n\
00332 #   \"distance\"\n\
00333 \n\
00334 # The channel name should give semantics of the channel (e.g.\n\
00335 # \"intensity\" instead of \"value\").\n\
00336 string name\n\
00337 \n\
00338 # The values array should be 1-1 with the elements of the associated\n\
00339 # PointCloud.\n\
00340 float32[] values\n\
00341 \n\
00342 ================================================================================\n\
00343 MSG: manipulation_msgs/SceneRegion\n\
00344 # Point cloud\n\
00345 sensor_msgs/PointCloud2 cloud\n\
00346 \n\
00347 # Indices for the region of interest\n\
00348 int32[] mask\n\
00349 \n\
00350 # One of the corresponding 2D images, if applicable\n\
00351 sensor_msgs/Image image\n\
00352 \n\
00353 # The disparity image, if applicable\n\
00354 sensor_msgs/Image disparity_image\n\
00355 \n\
00356 # Camera info for the camera that took the image\n\
00357 sensor_msgs/CameraInfo cam_info\n\
00358 \n\
00359 # a 3D region of interest for grasp planning\n\
00360 geometry_msgs/PoseStamped  roi_box_pose\n\
00361 geometry_msgs/Vector3      roi_box_dims\n\
00362 \n\
00363 ================================================================================\n\
00364 MSG: sensor_msgs/PointCloud2\n\
00365 # This message holds a collection of N-dimensional points, which may\n\
00366 # contain additional information such as normals, intensity, etc. The\n\
00367 # point data is stored as a binary blob, its layout described by the\n\
00368 # contents of the \"fields\" array.\n\
00369 \n\
00370 # The point cloud data may be organized 2d (image-like) or 1d\n\
00371 # (unordered). Point clouds organized as 2d images may be produced by\n\
00372 # camera depth sensors such as stereo or time-of-flight.\n\
00373 \n\
00374 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00375 # points).\n\
00376 Header header\n\
00377 \n\
00378 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00379 # 1 and width is the length of the point cloud.\n\
00380 uint32 height\n\
00381 uint32 width\n\
00382 \n\
00383 # Describes the channels and their layout in the binary data blob.\n\
00384 PointField[] fields\n\
00385 \n\
00386 bool    is_bigendian # Is this data bigendian?\n\
00387 uint32  point_step   # Length of a point in bytes\n\
00388 uint32  row_step     # Length of a row in bytes\n\
00389 uint8[] data         # Actual point data, size is (row_step*height)\n\
00390 \n\
00391 bool is_dense        # True if there are no invalid points\n\
00392 \n\
00393 ================================================================================\n\
00394 MSG: sensor_msgs/PointField\n\
00395 # This message holds the description of one point entry in the\n\
00396 # PointCloud2 message format.\n\
00397 uint8 INT8    = 1\n\
00398 uint8 UINT8   = 2\n\
00399 uint8 INT16   = 3\n\
00400 uint8 UINT16  = 4\n\
00401 uint8 INT32   = 5\n\
00402 uint8 UINT32  = 6\n\
00403 uint8 FLOAT32 = 7\n\
00404 uint8 FLOAT64 = 8\n\
00405 \n\
00406 string name      # Name of field\n\
00407 uint32 offset    # Offset from start of point struct\n\
00408 uint8  datatype  # Datatype enumeration, see above\n\
00409 uint32 count     # How many elements in the field\n\
00410 \n\
00411 ================================================================================\n\
00412 MSG: sensor_msgs/Image\n\
00413 # This message contains an uncompressed image\n\
00414 # (0, 0) is at top-left corner of image\n\
00415 #\n\
00416 \n\
00417 Header header        # Header timestamp should be acquisition time of image\n\
00418                      # Header frame_id should be optical frame of camera\n\
00419                      # origin of frame should be optical center of cameara\n\
00420                      # +x should point to the right in the image\n\
00421                      # +y should point down in the image\n\
00422                      # +z should point into to plane of the image\n\
00423                      # If the frame_id here and the frame_id of the CameraInfo\n\
00424                      # message associated with the image conflict\n\
00425                      # the behavior is undefined\n\
00426 \n\
00427 uint32 height         # image height, that is, number of rows\n\
00428 uint32 width          # image width, that is, number of columns\n\
00429 \n\
00430 # The legal values for encoding are in file src/image_encodings.cpp\n\
00431 # If you want to standardize a new string format, join\n\
00432 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00433 \n\
00434 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00435                       # taken from the list of strings in include/sensor_msgs/image_encodings.h\n\
00436 \n\
00437 uint8 is_bigendian    # is this data bigendian?\n\
00438 uint32 step           # Full row length in bytes\n\
00439 uint8[] data          # actual matrix data, size is (step * rows)\n\
00440 \n\
00441 ================================================================================\n\
00442 MSG: sensor_msgs/CameraInfo\n\
00443 # This message defines meta information for a camera. It should be in a\n\
00444 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00445 # image topics named:\n\
00446 #\n\
00447 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00448 #   image            - monochrome, distorted\n\
00449 #   image_color      - color, distorted\n\
00450 #   image_rect       - monochrome, rectified\n\
00451 #   image_rect_color - color, rectified\n\
00452 #\n\
00453 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00454 # for producing the four processed image topics from image_raw and\n\
00455 # camera_info. The meaning of the camera parameters are described in\n\
00456 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00457 #\n\
00458 # The image_geometry package provides a user-friendly interface to\n\
00459 # common operations using this meta information. If you want to, e.g.,\n\
00460 # project a 3d point into image coordinates, we strongly recommend\n\
00461 # using image_geometry.\n\
00462 #\n\
00463 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00464 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00465 # indicates an uncalibrated camera.\n\
00466 \n\
00467 #######################################################################\n\
00468 #                     Image acquisition info                          #\n\
00469 #######################################################################\n\
00470 \n\
00471 # Time of image acquisition, camera coordinate frame ID\n\
00472 Header header    # Header timestamp should be acquisition time of image\n\
00473                  # Header frame_id should be optical frame of camera\n\
00474                  # origin of frame should be optical center of camera\n\
00475                  # +x should point to the right in the image\n\
00476                  # +y should point down in the image\n\
00477                  # +z should point into the plane of the image\n\
00478 \n\
00479 \n\
00480 #######################################################################\n\
00481 #                      Calibration Parameters                         #\n\
00482 #######################################################################\n\
00483 # These are fixed during camera calibration. Their values will be the #\n\
00484 # same in all messages until the camera is recalibrated. Note that    #\n\
00485 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00486 #                                                                     #\n\
00487 # The internal parameters can be used to warp a raw (distorted) image #\n\
00488 # to:                                                                 #\n\
00489 #   1. An undistorted image (requires D and K)                        #\n\
00490 #   2. A rectified image (requires D, K, R)                           #\n\
00491 # The projection matrix P projects 3D points into the rectified image.#\n\
00492 #######################################################################\n\
00493 \n\
00494 # The image dimensions with which the camera was calibrated. Normally\n\
00495 # this will be the full camera resolution in pixels.\n\
00496 uint32 height\n\
00497 uint32 width\n\
00498 \n\
00499 # The distortion model used. Supported models are listed in\n\
00500 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00501 # simple model of radial and tangential distortion - is sufficent.\n\
00502 string distortion_model\n\
00503 \n\
00504 # The distortion parameters, size depending on the distortion model.\n\
00505 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00506 float64[] D\n\
00507 \n\
00508 # Intrinsic camera matrix for the raw (distorted) images.\n\
00509 #     [fx  0 cx]\n\
00510 # K = [ 0 fy cy]\n\
00511 #     [ 0  0  1]\n\
00512 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00513 # coordinates using the focal lengths (fx, fy) and principal point\n\
00514 # (cx, cy).\n\
00515 float64[9]  K # 3x3 row-major matrix\n\
00516 \n\
00517 # Rectification matrix (stereo cameras only)\n\
00518 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00519 # stereo image plane so that epipolar lines in both stereo images are\n\
00520 # parallel.\n\
00521 float64[9]  R # 3x3 row-major matrix\n\
00522 \n\
00523 # Projection/camera matrix\n\
00524 #     [fx'  0  cx' Tx]\n\
00525 # P = [ 0  fy' cy' Ty]\n\
00526 #     [ 0   0   1   0]\n\
00527 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00528 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00529 #  is the normal camera intrinsic matrix for the rectified image.\n\
00530 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00531 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00532 #  (cx', cy') - these may differ from the values in K.\n\
00533 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00534 #  also have R = the identity and P[1:3,1:3] = K.\n\
00535 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00536 #  position of the optical center of the second camera in the first\n\
00537 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00538 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00539 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00540 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00541 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00542 #  the rectified image is given by:\n\
00543 #  [u v w]' = P * [X Y Z 1]'\n\
00544 #         x = u / w\n\
00545 #         y = v / w\n\
00546 #  This holds for both images of a stereo pair.\n\
00547 float64[12] P # 3x4 row-major matrix\n\
00548 \n\
00549 \n\
00550 #######################################################################\n\
00551 #                      Operational Parameters                         #\n\
00552 #######################################################################\n\
00553 # These define the image region actually captured by the camera       #\n\
00554 # driver. Although they affect the geometry of the output image, they #\n\
00555 # may be changed freely without recalibrating the camera.             #\n\
00556 #######################################################################\n\
00557 \n\
00558 # Binning refers here to any camera setting which combines rectangular\n\
00559 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00560 #  resolution of the output image to\n\
00561 #  (width / binning_x) x (height / binning_y).\n\
00562 # The default values binning_x = binning_y = 0 is considered the same\n\
00563 #  as binning_x = binning_y = 1 (no subsampling).\n\
00564 uint32 binning_x\n\
00565 uint32 binning_y\n\
00566 \n\
00567 # Region of interest (subwindow of full camera resolution), given in\n\
00568 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00569 #  always denotes the same window of pixels on the camera sensor,\n\
00570 #  regardless of binning settings.\n\
00571 # The default setting of roi (all values 0) is considered the same as\n\
00572 #  full resolution (roi.width = width, roi.height = height).\n\
00573 RegionOfInterest roi\n\
00574 \n\
00575 ================================================================================\n\
00576 MSG: sensor_msgs/RegionOfInterest\n\
00577 # This message is used to specify a region of interest within an image.\n\
00578 #\n\
00579 # When used to specify the ROI setting of the camera when the image was\n\
00580 # taken, the height and width fields should either match the height and\n\
00581 # width fields for the associated image; or height = width = 0\n\
00582 # indicates that the full resolution image was captured.\n\
00583 \n\
00584 uint32 x_offset  # Leftmost pixel of the ROI\n\
00585                  # (0 if the ROI includes the left edge of the image)\n\
00586 uint32 y_offset  # Topmost pixel of the ROI\n\
00587                  # (0 if the ROI includes the top edge of the image)\n\
00588 uint32 height    # Height of ROI\n\
00589 uint32 width     # Width of ROI\n\
00590 \n\
00591 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00592 # ROI in this message. Typically this should be False if the full image\n\
00593 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00594 # used).\n\
00595 bool do_rectify\n\
00596 \n\
00597 ================================================================================\n\
00598 MSG: geometry_msgs/Vector3\n\
00599 # This represents a vector in free space. \n\
00600 \n\
00601 float64 x\n\
00602 float64 y\n\
00603 float64 z\n\
00604 ================================================================================\n\
00605 MSG: trajectory_msgs/JointTrajectory\n\
00606 Header header\n\
00607 string[] joint_names\n\
00608 JointTrajectoryPoint[] points\n\
00609 ================================================================================\n\
00610 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00611 float64[] positions\n\
00612 float64[] velocities\n\
00613 float64[] accelerations\n\
00614 duration time_from_start\n\
00615 ================================================================================\n\
00616 MSG: sensor_msgs/JointState\n\
00617 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00618 #\n\
00619 # The state of each joint (revolute or prismatic) is defined by:\n\
00620 #  * the position of the joint (rad or m),\n\
00621 #  * the velocity of the joint (rad/s or m/s) and \n\
00622 #  * the effort that is applied in the joint (Nm or N).\n\
00623 #\n\
00624 # Each joint is uniquely identified by its name\n\
00625 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00626 # in one message have to be recorded at the same time.\n\
00627 #\n\
00628 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00629 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00630 # effort associated with them, you can leave the effort array empty. \n\
00631 #\n\
00632 # All arrays in this message should have the same size, or be empty.\n\
00633 # This is the only way to uniquely associate the joint name with the correct\n\
00634 # states.\n\
00635 \n\
00636 \n\
00637 Header header\n\
00638 \n\
00639 string[] name\n\
00640 float64[] position\n\
00641 float64[] velocity\n\
00642 float64[] effort\n\
00643 \n\
00644 ";
00645   }
00646 
00647   static const char* value(const  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> &) { return value(); } 
00648 };
00649 
00650 } // namespace message_traits
00651 } // namespace ros
00652 
00653 namespace ros
00654 {
00655 namespace serialization
00656 {
00657 
00658 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >
00659 {
00660   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00661   {
00662     stream.next(m.arm_name);
00663     stream.next(m.target);
00664     stream.next(m.final_grasp_pose);
00665     stream.next(m.trajectory);
00666     stream.next(m.collision_support_surface_name);
00667     stream.next(m.pre_grasp_posture);
00668     stream.next(m.grasp_posture);
00669     stream.next(m.max_contact_force);
00670   }
00671 
00672   ROS_DECLARE_ALLINONE_SERIALIZER;
00673 }; // struct ReactiveGraspGoal_
00674 } // namespace serialization
00675 } // namespace ros
00676 
00677 namespace ros
00678 {
00679 namespace message_operations
00680 {
00681 
00682 template<class ContainerAllocator>
00683 struct Printer< ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> >
00684 {
00685   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::ReactiveGraspGoal_<ContainerAllocator> & v) 
00686   {
00687     s << indent << "arm_name: ";
00688     Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + "  ", v.arm_name);
00689     s << indent << "target: ";
00690 s << std::endl;
00691     Printer< ::manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + "  ", v.target);
00692     s << indent << "final_grasp_pose: ";
00693 s << std::endl;
00694     Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + "  ", v.final_grasp_pose);
00695     s << indent << "trajectory: ";
00696 s << std::endl;
00697     Printer< ::trajectory_msgs::JointTrajectory_<ContainerAllocator> >::stream(s, indent + "  ", v.trajectory);
00698     s << indent << "collision_support_surface_name: ";
00699     Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + "  ", v.collision_support_surface_name);
00700     s << indent << "pre_grasp_posture: ";
00701 s << std::endl;
00702     Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + "  ", v.pre_grasp_posture);
00703     s << indent << "grasp_posture: ";
00704 s << std::endl;
00705     Printer< ::sensor_msgs::JointState_<ContainerAllocator> >::stream(s, indent + "  ", v.grasp_posture);
00706     s << indent << "max_contact_force: ";
00707     Printer<float>::stream(s, indent + "  ", v.max_contact_force);
00708   }
00709 };
00710 
00711 
00712 } // namespace message_operations
00713 } // namespace ros
00714 
00715 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVEGRASPGOAL_H
00716 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Mon Oct 6 2014 02:58:12