Go to the documentation of this file.00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_FINDCONTAINERRESULT_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_FINDCONTAINERRESULT_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "geometry_msgs/PoseStamped.h"
00018 #include "geometry_msgs/Vector3.h"
00019 #include "sensor_msgs/PointCloud2.h"
00020 #include "sensor_msgs/PointCloud2.h"
00021 #include "sensor_msgs/PointCloud2.h"
00022
00023 namespace object_manipulation_msgs
00024 {
00025 template <class ContainerAllocator>
00026 struct FindContainerResult_ {
00027 typedef FindContainerResult_<ContainerAllocator> Type;
00028
00029 FindContainerResult_()
00030 : box_pose()
00031 , box_dims()
00032 , contents()
00033 , container()
00034 , clusters()
00035 {
00036 }
00037
00038 FindContainerResult_(const ContainerAllocator& _alloc)
00039 : box_pose(_alloc)
00040 , box_dims(_alloc)
00041 , contents(_alloc)
00042 , container(_alloc)
00043 , clusters(_alloc)
00044 {
00045 }
00046
00047 typedef ::geometry_msgs::PoseStamped_<ContainerAllocator> _box_pose_type;
00048 ::geometry_msgs::PoseStamped_<ContainerAllocator> box_pose;
00049
00050 typedef ::geometry_msgs::Vector3_<ContainerAllocator> _box_dims_type;
00051 ::geometry_msgs::Vector3_<ContainerAllocator> box_dims;
00052
00053 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _contents_type;
00054 ::sensor_msgs::PointCloud2_<ContainerAllocator> contents;
00055
00056 typedef ::sensor_msgs::PointCloud2_<ContainerAllocator> _container_type;
00057 ::sensor_msgs::PointCloud2_<ContainerAllocator> container;
00058
00059 typedef std::vector< ::sensor_msgs::PointCloud2_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::other > _clusters_type;
00060 std::vector< ::sensor_msgs::PointCloud2_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::other > clusters;
00061
00062
00063 typedef boost::shared_ptr< ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> > Ptr;
00064 typedef boost::shared_ptr< ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> const> ConstPtr;
00065 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00066 };
00067 typedef ::object_manipulation_msgs::FindContainerResult_<std::allocator<void> > FindContainerResult;
00068
00069 typedef boost::shared_ptr< ::object_manipulation_msgs::FindContainerResult> FindContainerResultPtr;
00070 typedef boost::shared_ptr< ::object_manipulation_msgs::FindContainerResult const> FindContainerResultConstPtr;
00071
00072
00073 template<typename ContainerAllocator>
00074 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> & v)
00075 {
00076 ros::message_operations::Printer< ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> >::stream(s, "", v);
00077 return s;}
00078
00079 }
00080
00081 namespace ros
00082 {
00083 namespace message_traits
00084 {
00085 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> > : public TrueType {};
00086 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> const> : public TrueType {};
00087 template<class ContainerAllocator>
00088 struct MD5Sum< ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> > {
00089 static const char* value()
00090 {
00091 return "9f205f80410192b4ceee2889befe1096";
00092 }
00093
00094 static const char* value(const ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> &) { return value(); }
00095 static const uint64_t static_value1 = 0x9f205f80410192b4ULL;
00096 static const uint64_t static_value2 = 0xceee2889befe1096ULL;
00097 };
00098
00099 template<class ContainerAllocator>
00100 struct DataType< ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> > {
00101 static const char* value()
00102 {
00103 return "object_manipulation_msgs/FindContainerResult";
00104 }
00105
00106 static const char* value(const ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> &) { return value(); }
00107 };
00108
00109 template<class ContainerAllocator>
00110 struct Definition< ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> > {
00111 static const char* value()
00112 {
00113 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00114 # refined pose and dimensions of bounding box for container\n\
00115 geometry_msgs/PoseStamped box_pose\n\
00116 geometry_msgs/Vector3 box_dims\n\
00117 \n\
00118 # cloud chunks of stuff in container, and container\n\
00119 sensor_msgs/PointCloud2 contents\n\
00120 sensor_msgs/PointCloud2 container\n\
00121 sensor_msgs/PointCloud2[] clusters\n\
00122 \n\
00123 \n\
00124 ================================================================================\n\
00125 MSG: geometry_msgs/PoseStamped\n\
00126 # A Pose with reference coordinate frame and timestamp\n\
00127 Header header\n\
00128 Pose pose\n\
00129 \n\
00130 ================================================================================\n\
00131 MSG: std_msgs/Header\n\
00132 # Standard metadata for higher-level stamped data types.\n\
00133 # This is generally used to communicate timestamped data \n\
00134 # in a particular coordinate frame.\n\
00135 # \n\
00136 # sequence ID: consecutively increasing ID \n\
00137 uint32 seq\n\
00138 #Two-integer timestamp that is expressed as:\n\
00139 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00140 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00141 # time-handling sugar is provided by the client library\n\
00142 time stamp\n\
00143 #Frame this data is associated with\n\
00144 # 0: no frame\n\
00145 # 1: global frame\n\
00146 string frame_id\n\
00147 \n\
00148 ================================================================================\n\
00149 MSG: geometry_msgs/Pose\n\
00150 # A representation of pose in free space, composed of postion and orientation. \n\
00151 Point position\n\
00152 Quaternion orientation\n\
00153 \n\
00154 ================================================================================\n\
00155 MSG: geometry_msgs/Point\n\
00156 # This contains the position of a point in free space\n\
00157 float64 x\n\
00158 float64 y\n\
00159 float64 z\n\
00160 \n\
00161 ================================================================================\n\
00162 MSG: geometry_msgs/Quaternion\n\
00163 # This represents an orientation in free space in quaternion form.\n\
00164 \n\
00165 float64 x\n\
00166 float64 y\n\
00167 float64 z\n\
00168 float64 w\n\
00169 \n\
00170 ================================================================================\n\
00171 MSG: geometry_msgs/Vector3\n\
00172 # This represents a vector in free space. \n\
00173 \n\
00174 float64 x\n\
00175 float64 y\n\
00176 float64 z\n\
00177 ================================================================================\n\
00178 MSG: sensor_msgs/PointCloud2\n\
00179 # This message holds a collection of N-dimensional points, which may\n\
00180 # contain additional information such as normals, intensity, etc. The\n\
00181 # point data is stored as a binary blob, its layout described by the\n\
00182 # contents of the \"fields\" array.\n\
00183 \n\
00184 # The point cloud data may be organized 2d (image-like) or 1d\n\
00185 # (unordered). Point clouds organized as 2d images may be produced by\n\
00186 # camera depth sensors such as stereo or time-of-flight.\n\
00187 \n\
00188 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00189 # points).\n\
00190 Header header\n\
00191 \n\
00192 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00193 # 1 and width is the length of the point cloud.\n\
00194 uint32 height\n\
00195 uint32 width\n\
00196 \n\
00197 # Describes the channels and their layout in the binary data blob.\n\
00198 PointField[] fields\n\
00199 \n\
00200 bool is_bigendian # Is this data bigendian?\n\
00201 uint32 point_step # Length of a point in bytes\n\
00202 uint32 row_step # Length of a row in bytes\n\
00203 uint8[] data # Actual point data, size is (row_step*height)\n\
00204 \n\
00205 bool is_dense # True if there are no invalid points\n\
00206 \n\
00207 ================================================================================\n\
00208 MSG: sensor_msgs/PointField\n\
00209 # This message holds the description of one point entry in the\n\
00210 # PointCloud2 message format.\n\
00211 uint8 INT8 = 1\n\
00212 uint8 UINT8 = 2\n\
00213 uint8 INT16 = 3\n\
00214 uint8 UINT16 = 4\n\
00215 uint8 INT32 = 5\n\
00216 uint8 UINT32 = 6\n\
00217 uint8 FLOAT32 = 7\n\
00218 uint8 FLOAT64 = 8\n\
00219 \n\
00220 string name # Name of field\n\
00221 uint32 offset # Offset from start of point struct\n\
00222 uint8 datatype # Datatype enumeration, see above\n\
00223 uint32 count # How many elements in the field\n\
00224 \n\
00225 ";
00226 }
00227
00228 static const char* value(const ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> &) { return value(); }
00229 };
00230
00231 }
00232 }
00233
00234 namespace ros
00235 {
00236 namespace serialization
00237 {
00238
00239 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> >
00240 {
00241 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00242 {
00243 stream.next(m.box_pose);
00244 stream.next(m.box_dims);
00245 stream.next(m.contents);
00246 stream.next(m.container);
00247 stream.next(m.clusters);
00248 }
00249
00250 ROS_DECLARE_ALLINONE_SERIALIZER;
00251 };
00252 }
00253 }
00254
00255 namespace ros
00256 {
00257 namespace message_operations
00258 {
00259
00260 template<class ContainerAllocator>
00261 struct Printer< ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> >
00262 {
00263 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::FindContainerResult_<ContainerAllocator> & v)
00264 {
00265 s << indent << "box_pose: ";
00266 s << std::endl;
00267 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.box_pose);
00268 s << indent << "box_dims: ";
00269 s << std::endl;
00270 Printer< ::geometry_msgs::Vector3_<ContainerAllocator> >::stream(s, indent + " ", v.box_dims);
00271 s << indent << "contents: ";
00272 s << std::endl;
00273 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.contents);
00274 s << indent << "container: ";
00275 s << std::endl;
00276 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.container);
00277 s << indent << "clusters[]" << std::endl;
00278 for (size_t i = 0; i < v.clusters.size(); ++i)
00279 {
00280 s << indent << " clusters[" << i << "]: ";
00281 s << std::endl;
00282 s << indent;
00283 Printer< ::sensor_msgs::PointCloud2_<ContainerAllocator> >::stream(s, indent + " ", v.clusters[i]);
00284 }
00285 }
00286 };
00287
00288
00289 }
00290 }
00291
00292 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_FINDCONTAINERRESULT_H
00293