Go to the documentation of this file.00001 #include <ros/ros.h>
00002 #include <std_msgs/Float32.h>
00003 #include <actionlib/server/simple_action_server.h>
00004 #include <learning_actionlib/AveragingAction.h>
00005
00006 class AveragingAction
00007 {
00008 public:
00009
00010 AveragingAction(std::string name) :
00011 as_(nh_, name, false),
00012 action_name_(name)
00013 {
00014
00015 as_.registerGoalCallback(boost::bind(&AveragingAction::goalCB, this));
00016 as_.registerPreemptCallback(boost::bind(&AveragingAction::preemptCB, this));
00017
00018
00019 sub_ = nh_.subscribe("/random_number", 1, &AveragingAction::analysisCB, this);
00020 as_.start();
00021 }
00022
00023 ~AveragingAction(void)
00024 {
00025 }
00026
00027 void goalCB()
00028 {
00029
00030 data_count_ = 0;
00031 sum_ = 0;
00032 sum_sq_ = 0;
00033
00034 goal_ = as_.acceptNewGoal()->samples;
00035 }
00036
00037 void preemptCB()
00038 {
00039 ROS_INFO("%s: Preempted", action_name_.c_str());
00040
00041 as_.setPreempted();
00042 }
00043
00044 void analysisCB(const std_msgs::Float32::ConstPtr& msg)
00045 {
00046
00047 if (!as_.isActive())
00048 return;
00049
00050 data_count_++;
00051 feedback_.sample = data_count_;
00052 feedback_.data = msg->data;
00053
00054 sum_ += msg->data;
00055 feedback_.mean = sum_ / data_count_;
00056 sum_sq_ += pow(msg->data, 2);
00057 feedback_.std_dev = sqrt(fabs((sum_sq_/data_count_) - pow(feedback_.mean, 2)));
00058 as_.publishFeedback(feedback_);
00059
00060 if(data_count_ > goal_)
00061 {
00062 result_.mean = feedback_.mean;
00063 result_.std_dev = feedback_.std_dev;
00064
00065 if(result_.mean < 5.0)
00066 {
00067 ROS_INFO("%s: Aborted", action_name_.c_str());
00068
00069 as_.setAborted(result_);
00070 }
00071 else
00072 {
00073 ROS_INFO("%s: Succeeded", action_name_.c_str());
00074
00075 as_.setSucceeded(result_);
00076 }
00077 }
00078 }
00079
00080 protected:
00081
00082 ros::NodeHandle nh_;
00083 actionlib::SimpleActionServer<learning_actionlib::AveragingAction> as_;
00084 std::string action_name_;
00085 int data_count_, goal_;
00086 float sum_, sum_sq_;
00087 learning_actionlib::AveragingFeedback feedback_;
00088 learning_actionlib::AveragingResult result_;
00089 ros::Subscriber sub_;
00090 };
00091
00092 int main(int argc, char** argv)
00093 {
00094 ros::init(argc, argv, "averaging");
00095
00096 AveragingAction averaging(ros::this_node::getName());
00097 ros::spin();
00098
00099 return 0;
00100 }