ReactiveLiftActionGoal.h
Go to the documentation of this file.
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-fuerte-object_manipulation/doc_stacks/2014-01-02_11-30-37.444899/object_manipulation/object_manipulation_msgs/msg/ReactiveLiftActionGoal.msg */
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTIONGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTIONGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012 
00013 #include "ros/macros.h"
00014 
00015 #include "ros/assert.h"
00016 
00017 #include "std_msgs/Header.h"
00018 #include "actionlib_msgs/GoalID.h"
00019 #include "object_manipulation_msgs/ReactiveLiftGoal.h"
00020 
00021 namespace object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct ReactiveLiftActionGoal_ {
00025   typedef ReactiveLiftActionGoal_<ContainerAllocator> Type;
00026 
00027   ReactiveLiftActionGoal_()
00028   : header()
00029   , goal_id()
00030   , goal()
00031   {
00032   }
00033 
00034   ReactiveLiftActionGoal_(const ContainerAllocator& _alloc)
00035   : header(_alloc)
00036   , goal_id(_alloc)
00037   , goal(_alloc)
00038   {
00039   }
00040 
00041   typedef  ::std_msgs::Header_<ContainerAllocator>  _header_type;
00042    ::std_msgs::Header_<ContainerAllocator>  header;
00043 
00044   typedef  ::actionlib_msgs::GoalID_<ContainerAllocator>  _goal_id_type;
00045    ::actionlib_msgs::GoalID_<ContainerAllocator>  goal_id;
00046 
00047   typedef  ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator>  _goal_type;
00048    ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator>  goal;
00049 
00050 
00051   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > Ptr;
00052   typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator>  const> ConstPtr;
00053   boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00054 }; // struct ReactiveLiftActionGoal
00055 typedef  ::object_manipulation_msgs::ReactiveLiftActionGoal_<std::allocator<void> > ReactiveLiftActionGoal;
00056 
00057 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal> ReactiveLiftActionGoalPtr;
00058 typedef boost::shared_ptr< ::object_manipulation_msgs::ReactiveLiftActionGoal const> ReactiveLiftActionGoalConstPtr;
00059 
00060 
00061 template<typename ContainerAllocator>
00062 std::ostream& operator<<(std::ostream& s, const  ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> & v)
00063 {
00064   ros::message_operations::Printer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >::stream(s, "", v);
00065   return s;}
00066 
00067 } // namespace object_manipulation_msgs
00068 
00069 namespace ros
00070 {
00071 namespace message_traits
00072 {
00073 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > : public TrueType {};
00074 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator>  const> : public TrueType {};
00075 template<class ContainerAllocator>
00076 struct MD5Sum< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > {
00077   static const char* value() 
00078   {
00079     return "a61549c00e5d14801c74498e3f7d5554";
00080   }
00081 
00082   static const char* value(const  ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> &) { return value(); } 
00083   static const uint64_t static_value1 = 0xa61549c00e5d1480ULL;
00084   static const uint64_t static_value2 = 0x1c74498e3f7d5554ULL;
00085 };
00086 
00087 template<class ContainerAllocator>
00088 struct DataType< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > {
00089   static const char* value() 
00090   {
00091     return "object_manipulation_msgs/ReactiveLiftActionGoal";
00092   }
00093 
00094   static const char* value(const  ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> &) { return value(); } 
00095 };
00096 
00097 template<class ContainerAllocator>
00098 struct Definition< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > {
00099   static const char* value() 
00100   {
00101     return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00102 \n\
00103 Header header\n\
00104 actionlib_msgs/GoalID goal_id\n\
00105 ReactiveLiftGoal goal\n\
00106 \n\
00107 ================================================================================\n\
00108 MSG: std_msgs/Header\n\
00109 # Standard metadata for higher-level stamped data types.\n\
00110 # This is generally used to communicate timestamped data \n\
00111 # in a particular coordinate frame.\n\
00112 # \n\
00113 # sequence ID: consecutively increasing ID \n\
00114 uint32 seq\n\
00115 #Two-integer timestamp that is expressed as:\n\
00116 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00117 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00118 # time-handling sugar is provided by the client library\n\
00119 time stamp\n\
00120 #Frame this data is associated with\n\
00121 # 0: no frame\n\
00122 # 1: global frame\n\
00123 string frame_id\n\
00124 \n\
00125 ================================================================================\n\
00126 MSG: actionlib_msgs/GoalID\n\
00127 # The stamp should store the time at which this goal was requested.\n\
00128 # It is used by an action server when it tries to preempt all\n\
00129 # goals that were requested before a certain time\n\
00130 time stamp\n\
00131 \n\
00132 # The id provides a way to associate feedback and\n\
00133 # result message with specific goal requests. The id\n\
00134 # specified must be unique.\n\
00135 string id\n\
00136 \n\
00137 \n\
00138 ================================================================================\n\
00139 MSG: object_manipulation_msgs/ReactiveLiftGoal\n\
00140 # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00141 \n\
00142 # the name of the arm being used\n\
00143 string arm_name\n\
00144 \n\
00145 # the object to be grasped\n\
00146 GraspableObject target\n\
00147 \n\
00148 # How the object should be lifted \n\
00149 GripperTranslation lift\n\
00150 \n\
00151 # the joint trajectory to use for the approach (if available)\n\
00152 # this trajectory is expected to start at the current pose of the gripper\n\
00153 # and end at the desired grasp pose\n\
00154 trajectory_msgs/JointTrajectory trajectory\n\
00155 \n\
00156 # the name of the support surface in the collision environment, if any\n\
00157 string collision_support_surface_name\n\
00158 \n\
00159 \n\
00160 ================================================================================\n\
00161 MSG: object_manipulation_msgs/GraspableObject\n\
00162 # an object that the object_manipulator can work on\n\
00163 \n\
00164 # a graspable object can be represented in multiple ways. This message\n\
00165 # can contain all of them. Which one is actually used is up to the receiver\n\
00166 # of this message. When adding new representations, one must be careful that\n\
00167 # they have reasonable lightweight defaults indicating that that particular\n\
00168 # representation is not available.\n\
00169 \n\
00170 # the tf frame to be used as a reference frame when combining information from\n\
00171 # the different representations below\n\
00172 string reference_frame_id\n\
00173 \n\
00174 # potential recognition results from a database of models\n\
00175 # all poses are relative to the object reference pose\n\
00176 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00177 \n\
00178 # the point cloud itself\n\
00179 sensor_msgs/PointCloud cluster\n\
00180 \n\
00181 # a region of a PointCloud2 of interest\n\
00182 object_manipulation_msgs/SceneRegion region\n\
00183 \n\
00184 # the name that this object has in the collision environment\n\
00185 string collision_name\n\
00186 ================================================================================\n\
00187 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00188 # Informs that a specific model from the Model Database has been \n\
00189 # identified at a certain location\n\
00190 \n\
00191 # the database id of the model\n\
00192 int32 model_id\n\
00193 \n\
00194 # the pose that it can be found in\n\
00195 geometry_msgs/PoseStamped pose\n\
00196 \n\
00197 # a measure of the confidence level in this detection result\n\
00198 float32 confidence\n\
00199 \n\
00200 # the name of the object detector that generated this detection result\n\
00201 string detector_name\n\
00202 \n\
00203 ================================================================================\n\
00204 MSG: geometry_msgs/PoseStamped\n\
00205 # A Pose with reference coordinate frame and timestamp\n\
00206 Header header\n\
00207 Pose pose\n\
00208 \n\
00209 ================================================================================\n\
00210 MSG: geometry_msgs/Pose\n\
00211 # A representation of pose in free space, composed of postion and orientation. \n\
00212 Point position\n\
00213 Quaternion orientation\n\
00214 \n\
00215 ================================================================================\n\
00216 MSG: geometry_msgs/Point\n\
00217 # This contains the position of a point in free space\n\
00218 float64 x\n\
00219 float64 y\n\
00220 float64 z\n\
00221 \n\
00222 ================================================================================\n\
00223 MSG: geometry_msgs/Quaternion\n\
00224 # This represents an orientation in free space in quaternion form.\n\
00225 \n\
00226 float64 x\n\
00227 float64 y\n\
00228 float64 z\n\
00229 float64 w\n\
00230 \n\
00231 ================================================================================\n\
00232 MSG: sensor_msgs/PointCloud\n\
00233 # This message holds a collection of 3d points, plus optional additional\n\
00234 # information about each point.\n\
00235 \n\
00236 # Time of sensor data acquisition, coordinate frame ID.\n\
00237 Header header\n\
00238 \n\
00239 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00240 # in the frame given in the header.\n\
00241 geometry_msgs/Point32[] points\n\
00242 \n\
00243 # Each channel should have the same number of elements as points array,\n\
00244 # and the data in each channel should correspond 1:1 with each point.\n\
00245 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00246 ChannelFloat32[] channels\n\
00247 \n\
00248 ================================================================================\n\
00249 MSG: geometry_msgs/Point32\n\
00250 # This contains the position of a point in free space(with 32 bits of precision).\n\
00251 # It is recommeded to use Point wherever possible instead of Point32.  \n\
00252 # \n\
00253 # This recommendation is to promote interoperability.  \n\
00254 #\n\
00255 # This message is designed to take up less space when sending\n\
00256 # lots of points at once, as in the case of a PointCloud.  \n\
00257 \n\
00258 float32 x\n\
00259 float32 y\n\
00260 float32 z\n\
00261 ================================================================================\n\
00262 MSG: sensor_msgs/ChannelFloat32\n\
00263 # This message is used by the PointCloud message to hold optional data\n\
00264 # associated with each point in the cloud. The length of the values\n\
00265 # array should be the same as the length of the points array in the\n\
00266 # PointCloud, and each value should be associated with the corresponding\n\
00267 # point.\n\
00268 \n\
00269 # Channel names in existing practice include:\n\
00270 #   \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00271 #              This is opposite to usual conventions but remains for\n\
00272 #              historical reasons. The newer PointCloud2 message has no\n\
00273 #              such problem.\n\
00274 #   \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00275 #           (R,G,B) values packed into the least significant 24 bits,\n\
00276 #           in order.\n\
00277 #   \"intensity\" - laser or pixel intensity.\n\
00278 #   \"distance\"\n\
00279 \n\
00280 # The channel name should give semantics of the channel (e.g.\n\
00281 # \"intensity\" instead of \"value\").\n\
00282 string name\n\
00283 \n\
00284 # The values array should be 1-1 with the elements of the associated\n\
00285 # PointCloud.\n\
00286 float32[] values\n\
00287 \n\
00288 ================================================================================\n\
00289 MSG: object_manipulation_msgs/SceneRegion\n\
00290 # Point cloud\n\
00291 sensor_msgs/PointCloud2 cloud\n\
00292 \n\
00293 # Indices for the region of interest\n\
00294 int32[] mask\n\
00295 \n\
00296 # One of the corresponding 2D images, if applicable\n\
00297 sensor_msgs/Image image\n\
00298 \n\
00299 # The disparity image, if applicable\n\
00300 sensor_msgs/Image disparity_image\n\
00301 \n\
00302 # Camera info for the camera that took the image\n\
00303 sensor_msgs/CameraInfo cam_info\n\
00304 \n\
00305 # a 3D region of interest for grasp planning\n\
00306 geometry_msgs/PoseStamped  roi_box_pose\n\
00307 geometry_msgs/Vector3      roi_box_dims\n\
00308 \n\
00309 ================================================================================\n\
00310 MSG: sensor_msgs/PointCloud2\n\
00311 # This message holds a collection of N-dimensional points, which may\n\
00312 # contain additional information such as normals, intensity, etc. The\n\
00313 # point data is stored as a binary blob, its layout described by the\n\
00314 # contents of the \"fields\" array.\n\
00315 \n\
00316 # The point cloud data may be organized 2d (image-like) or 1d\n\
00317 # (unordered). Point clouds organized as 2d images may be produced by\n\
00318 # camera depth sensors such as stereo or time-of-flight.\n\
00319 \n\
00320 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00321 # points).\n\
00322 Header header\n\
00323 \n\
00324 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00325 # 1 and width is the length of the point cloud.\n\
00326 uint32 height\n\
00327 uint32 width\n\
00328 \n\
00329 # Describes the channels and their layout in the binary data blob.\n\
00330 PointField[] fields\n\
00331 \n\
00332 bool    is_bigendian # Is this data bigendian?\n\
00333 uint32  point_step   # Length of a point in bytes\n\
00334 uint32  row_step     # Length of a row in bytes\n\
00335 uint8[] data         # Actual point data, size is (row_step*height)\n\
00336 \n\
00337 bool is_dense        # True if there are no invalid points\n\
00338 \n\
00339 ================================================================================\n\
00340 MSG: sensor_msgs/PointField\n\
00341 # This message holds the description of one point entry in the\n\
00342 # PointCloud2 message format.\n\
00343 uint8 INT8    = 1\n\
00344 uint8 UINT8   = 2\n\
00345 uint8 INT16   = 3\n\
00346 uint8 UINT16  = 4\n\
00347 uint8 INT32   = 5\n\
00348 uint8 UINT32  = 6\n\
00349 uint8 FLOAT32 = 7\n\
00350 uint8 FLOAT64 = 8\n\
00351 \n\
00352 string name      # Name of field\n\
00353 uint32 offset    # Offset from start of point struct\n\
00354 uint8  datatype  # Datatype enumeration, see above\n\
00355 uint32 count     # How many elements in the field\n\
00356 \n\
00357 ================================================================================\n\
00358 MSG: sensor_msgs/Image\n\
00359 # This message contains an uncompressed image\n\
00360 # (0, 0) is at top-left corner of image\n\
00361 #\n\
00362 \n\
00363 Header header        # Header timestamp should be acquisition time of image\n\
00364                      # Header frame_id should be optical frame of camera\n\
00365                      # origin of frame should be optical center of cameara\n\
00366                      # +x should point to the right in the image\n\
00367                      # +y should point down in the image\n\
00368                      # +z should point into to plane of the image\n\
00369                      # If the frame_id here and the frame_id of the CameraInfo\n\
00370                      # message associated with the image conflict\n\
00371                      # the behavior is undefined\n\
00372 \n\
00373 uint32 height         # image height, that is, number of rows\n\
00374 uint32 width          # image width, that is, number of columns\n\
00375 \n\
00376 # The legal values for encoding are in file src/image_encodings.cpp\n\
00377 # If you want to standardize a new string format, join\n\
00378 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00379 \n\
00380 string encoding       # Encoding of pixels -- channel meaning, ordering, size\n\
00381                       # taken from the list of strings in src/image_encodings.cpp\n\
00382 \n\
00383 uint8 is_bigendian    # is this data bigendian?\n\
00384 uint32 step           # Full row length in bytes\n\
00385 uint8[] data          # actual matrix data, size is (step * rows)\n\
00386 \n\
00387 ================================================================================\n\
00388 MSG: sensor_msgs/CameraInfo\n\
00389 # This message defines meta information for a camera. It should be in a\n\
00390 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00391 # image topics named:\n\
00392 #\n\
00393 #   image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00394 #   image            - monochrome, distorted\n\
00395 #   image_color      - color, distorted\n\
00396 #   image_rect       - monochrome, rectified\n\
00397 #   image_rect_color - color, rectified\n\
00398 #\n\
00399 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00400 # for producing the four processed image topics from image_raw and\n\
00401 # camera_info. The meaning of the camera parameters are described in\n\
00402 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00403 #\n\
00404 # The image_geometry package provides a user-friendly interface to\n\
00405 # common operations using this meta information. If you want to, e.g.,\n\
00406 # project a 3d point into image coordinates, we strongly recommend\n\
00407 # using image_geometry.\n\
00408 #\n\
00409 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00410 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00411 # indicates an uncalibrated camera.\n\
00412 \n\
00413 #######################################################################\n\
00414 #                     Image acquisition info                          #\n\
00415 #######################################################################\n\
00416 \n\
00417 # Time of image acquisition, camera coordinate frame ID\n\
00418 Header header    # Header timestamp should be acquisition time of image\n\
00419                  # Header frame_id should be optical frame of camera\n\
00420                  # origin of frame should be optical center of camera\n\
00421                  # +x should point to the right in the image\n\
00422                  # +y should point down in the image\n\
00423                  # +z should point into the plane of the image\n\
00424 \n\
00425 \n\
00426 #######################################################################\n\
00427 #                      Calibration Parameters                         #\n\
00428 #######################################################################\n\
00429 # These are fixed during camera calibration. Their values will be the #\n\
00430 # same in all messages until the camera is recalibrated. Note that    #\n\
00431 # self-calibrating systems may \"recalibrate\" frequently.              #\n\
00432 #                                                                     #\n\
00433 # The internal parameters can be used to warp a raw (distorted) image #\n\
00434 # to:                                                                 #\n\
00435 #   1. An undistorted image (requires D and K)                        #\n\
00436 #   2. A rectified image (requires D, K, R)                           #\n\
00437 # The projection matrix P projects 3D points into the rectified image.#\n\
00438 #######################################################################\n\
00439 \n\
00440 # The image dimensions with which the camera was calibrated. Normally\n\
00441 # this will be the full camera resolution in pixels.\n\
00442 uint32 height\n\
00443 uint32 width\n\
00444 \n\
00445 # The distortion model used. Supported models are listed in\n\
00446 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00447 # simple model of radial and tangential distortion - is sufficent.\n\
00448 string distortion_model\n\
00449 \n\
00450 # The distortion parameters, size depending on the distortion model.\n\
00451 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00452 float64[] D\n\
00453 \n\
00454 # Intrinsic camera matrix for the raw (distorted) images.\n\
00455 #     [fx  0 cx]\n\
00456 # K = [ 0 fy cy]\n\
00457 #     [ 0  0  1]\n\
00458 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00459 # coordinates using the focal lengths (fx, fy) and principal point\n\
00460 # (cx, cy).\n\
00461 float64[9]  K # 3x3 row-major matrix\n\
00462 \n\
00463 # Rectification matrix (stereo cameras only)\n\
00464 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00465 # stereo image plane so that epipolar lines in both stereo images are\n\
00466 # parallel.\n\
00467 float64[9]  R # 3x3 row-major matrix\n\
00468 \n\
00469 # Projection/camera matrix\n\
00470 #     [fx'  0  cx' Tx]\n\
00471 # P = [ 0  fy' cy' Ty]\n\
00472 #     [ 0   0   1   0]\n\
00473 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00474 #  of the processed (rectified) image. That is, the left 3x3 portion\n\
00475 #  is the normal camera intrinsic matrix for the rectified image.\n\
00476 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00477 #  coordinates using the focal lengths (fx', fy') and principal point\n\
00478 #  (cx', cy') - these may differ from the values in K.\n\
00479 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00480 #  also have R = the identity and P[1:3,1:3] = K.\n\
00481 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00482 #  position of the optical center of the second camera in the first\n\
00483 #  camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00484 #  stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00485 #  the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00486 #  Tx = -fx' * B, where B is the baseline between the cameras.\n\
00487 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00488 #  the rectified image is given by:\n\
00489 #  [u v w]' = P * [X Y Z 1]'\n\
00490 #         x = u / w\n\
00491 #         y = v / w\n\
00492 #  This holds for both images of a stereo pair.\n\
00493 float64[12] P # 3x4 row-major matrix\n\
00494 \n\
00495 \n\
00496 #######################################################################\n\
00497 #                      Operational Parameters                         #\n\
00498 #######################################################################\n\
00499 # These define the image region actually captured by the camera       #\n\
00500 # driver. Although they affect the geometry of the output image, they #\n\
00501 # may be changed freely without recalibrating the camera.             #\n\
00502 #######################################################################\n\
00503 \n\
00504 # Binning refers here to any camera setting which combines rectangular\n\
00505 #  neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00506 #  resolution of the output image to\n\
00507 #  (width / binning_x) x (height / binning_y).\n\
00508 # The default values binning_x = binning_y = 0 is considered the same\n\
00509 #  as binning_x = binning_y = 1 (no subsampling).\n\
00510 uint32 binning_x\n\
00511 uint32 binning_y\n\
00512 \n\
00513 # Region of interest (subwindow of full camera resolution), given in\n\
00514 #  full resolution (unbinned) image coordinates. A particular ROI\n\
00515 #  always denotes the same window of pixels on the camera sensor,\n\
00516 #  regardless of binning settings.\n\
00517 # The default setting of roi (all values 0) is considered the same as\n\
00518 #  full resolution (roi.width = width, roi.height = height).\n\
00519 RegionOfInterest roi\n\
00520 \n\
00521 ================================================================================\n\
00522 MSG: sensor_msgs/RegionOfInterest\n\
00523 # This message is used to specify a region of interest within an image.\n\
00524 #\n\
00525 # When used to specify the ROI setting of the camera when the image was\n\
00526 # taken, the height and width fields should either match the height and\n\
00527 # width fields for the associated image; or height = width = 0\n\
00528 # indicates that the full resolution image was captured.\n\
00529 \n\
00530 uint32 x_offset  # Leftmost pixel of the ROI\n\
00531                  # (0 if the ROI includes the left edge of the image)\n\
00532 uint32 y_offset  # Topmost pixel of the ROI\n\
00533                  # (0 if the ROI includes the top edge of the image)\n\
00534 uint32 height    # Height of ROI\n\
00535 uint32 width     # Width of ROI\n\
00536 \n\
00537 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00538 # ROI in this message. Typically this should be False if the full image\n\
00539 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00540 # used).\n\
00541 bool do_rectify\n\
00542 \n\
00543 ================================================================================\n\
00544 MSG: geometry_msgs/Vector3\n\
00545 # This represents a vector in free space. \n\
00546 \n\
00547 float64 x\n\
00548 float64 y\n\
00549 float64 z\n\
00550 ================================================================================\n\
00551 MSG: object_manipulation_msgs/GripperTranslation\n\
00552 # defines a translation for the gripper, used in pickup or place tasks\n\
00553 # for example for lifting an object off a table or approaching the table for placing\n\
00554 \n\
00555 # the direction of the translation\n\
00556 geometry_msgs/Vector3Stamped direction\n\
00557 \n\
00558 # the desired translation distance\n\
00559 float32 desired_distance\n\
00560 \n\
00561 # the min distance that must be considered feasible before the\n\
00562 # grasp is even attempted\n\
00563 float32 min_distance\n\
00564 ================================================================================\n\
00565 MSG: geometry_msgs/Vector3Stamped\n\
00566 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00567 Header header\n\
00568 Vector3 vector\n\
00569 \n\
00570 ================================================================================\n\
00571 MSG: trajectory_msgs/JointTrajectory\n\
00572 Header header\n\
00573 string[] joint_names\n\
00574 JointTrajectoryPoint[] points\n\
00575 ================================================================================\n\
00576 MSG: trajectory_msgs/JointTrajectoryPoint\n\
00577 float64[] positions\n\
00578 float64[] velocities\n\
00579 float64[] accelerations\n\
00580 duration time_from_start\n\
00581 ";
00582   }
00583 
00584   static const char* value(const  ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> &) { return value(); } 
00585 };
00586 
00587 template<class ContainerAllocator> struct HasHeader< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > : public TrueType {};
00588 template<class ContainerAllocator> struct HasHeader< const ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> > : public TrueType {};
00589 } // namespace message_traits
00590 } // namespace ros
00591 
00592 namespace ros
00593 {
00594 namespace serialization
00595 {
00596 
00597 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >
00598 {
00599   template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00600   {
00601     stream.next(m.header);
00602     stream.next(m.goal_id);
00603     stream.next(m.goal);
00604   }
00605 
00606   ROS_DECLARE_ALLINONE_SERIALIZER;
00607 }; // struct ReactiveLiftActionGoal_
00608 } // namespace serialization
00609 } // namespace ros
00610 
00611 namespace ros
00612 {
00613 namespace message_operations
00614 {
00615 
00616 template<class ContainerAllocator>
00617 struct Printer< ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> >
00618 {
00619   template<typename Stream> static void stream(Stream& s, const std::string& indent, const  ::object_manipulation_msgs::ReactiveLiftActionGoal_<ContainerAllocator> & v) 
00620   {
00621     s << indent << "header: ";
00622 s << std::endl;
00623     Printer< ::std_msgs::Header_<ContainerAllocator> >::stream(s, indent + "  ", v.header);
00624     s << indent << "goal_id: ";
00625 s << std::endl;
00626     Printer< ::actionlib_msgs::GoalID_<ContainerAllocator> >::stream(s, indent + "  ", v.goal_id);
00627     s << indent << "goal: ";
00628 s << std::endl;
00629     Printer< ::object_manipulation_msgs::ReactiveLiftGoal_<ContainerAllocator> >::stream(s, indent + "  ", v.goal);
00630   }
00631 };
00632 
00633 
00634 } // namespace message_operations
00635 } // namespace ros
00636 
00637 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_REACTIVELIFTACTIONGOAL_H
00638 


object_manipulation_msgs
Author(s): Matei Ciocarlie
autogenerated on Thu Jan 2 2014 11:38:12