00001
00002 #ifndef OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEGOAL_H
00003 #define OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "geometry_msgs/PoseStamped.h"
00018 #include "object_manipulation_msgs/Grasp.h"
00019 #include "object_manipulation_msgs/GripperTranslation.h"
00020 #include "arm_navigation_msgs/Constraints.h"
00021 #include "arm_navigation_msgs/OrderedCollisionOperations.h"
00022 #include "arm_navigation_msgs/LinkPadding.h"
00023
00024 namespace object_manipulation_msgs
00025 {
00026 template <class ContainerAllocator>
00027 struct PlaceGoal_ {
00028 typedef PlaceGoal_<ContainerAllocator> Type;
00029
00030 PlaceGoal_()
00031 : arm_name()
00032 , place_locations()
00033 , grasp()
00034 , desired_retreat_distance(0.0)
00035 , min_retreat_distance(0.0)
00036 , approach()
00037 , collision_object_name()
00038 , collision_support_surface_name()
00039 , allow_gripper_support_collision(false)
00040 , use_reactive_place(false)
00041 , place_padding(0.0)
00042 , only_perform_feasibility_test(false)
00043 , path_constraints()
00044 , additional_collision_operations()
00045 , additional_link_padding()
00046 {
00047 }
00048
00049 PlaceGoal_(const ContainerAllocator& _alloc)
00050 : arm_name(_alloc)
00051 , place_locations(_alloc)
00052 , grasp(_alloc)
00053 , desired_retreat_distance(0.0)
00054 , min_retreat_distance(0.0)
00055 , approach(_alloc)
00056 , collision_object_name(_alloc)
00057 , collision_support_surface_name(_alloc)
00058 , allow_gripper_support_collision(false)
00059 , use_reactive_place(false)
00060 , place_padding(0.0)
00061 , only_perform_feasibility_test(false)
00062 , path_constraints(_alloc)
00063 , additional_collision_operations(_alloc)
00064 , additional_link_padding(_alloc)
00065 {
00066 }
00067
00068 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00069 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00070
00071 typedef std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > _place_locations_type;
00072 std::vector< ::geometry_msgs::PoseStamped_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::other > place_locations;
00073
00074 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type;
00075 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp;
00076
00077 typedef float _desired_retreat_distance_type;
00078 float desired_retreat_distance;
00079
00080 typedef float _min_retreat_distance_type;
00081 float min_retreat_distance;
00082
00083 typedef ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> _approach_type;
00084 ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> approach;
00085
00086 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_object_name_type;
00087 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_object_name;
00088
00089 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _collision_support_surface_name_type;
00090 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > collision_support_surface_name;
00091
00092 typedef uint8_t _allow_gripper_support_collision_type;
00093 uint8_t allow_gripper_support_collision;
00094
00095 typedef uint8_t _use_reactive_place_type;
00096 uint8_t use_reactive_place;
00097
00098 typedef double _place_padding_type;
00099 double place_padding;
00100
00101 typedef uint8_t _only_perform_feasibility_test_type;
00102 uint8_t only_perform_feasibility_test;
00103
00104 typedef ::arm_navigation_msgs::Constraints_<ContainerAllocator> _path_constraints_type;
00105 ::arm_navigation_msgs::Constraints_<ContainerAllocator> path_constraints;
00106
00107 typedef ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> _additional_collision_operations_type;
00108 ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> additional_collision_operations;
00109
00110 typedef std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > _additional_link_padding_type;
00111 std::vector< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::other > additional_link_padding;
00112
00113
00114 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > Ptr;
00115 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> const> ConstPtr;
00116 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00117 };
00118 typedef ::object_manipulation_msgs::PlaceGoal_<std::allocator<void> > PlaceGoal;
00119
00120 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal> PlaceGoalPtr;
00121 typedef boost::shared_ptr< ::object_manipulation_msgs::PlaceGoal const> PlaceGoalConstPtr;
00122
00123
00124 template<typename ContainerAllocator>
00125 std::ostream& operator<<(std::ostream& s, const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> & v)
00126 {
00127 ros::message_operations::Printer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> >::stream(s, "", v);
00128 return s;}
00129
00130 }
00131
00132 namespace ros
00133 {
00134 namespace message_traits
00135 {
00136 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > : public TrueType {};
00137 template<class ContainerAllocator> struct IsMessage< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> const> : public TrueType {};
00138 template<class ContainerAllocator>
00139 struct MD5Sum< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > {
00140 static const char* value()
00141 {
00142 return "6313a88996ba81ffc91a8fc15ca327b6";
00143 }
00144
00145 static const char* value(const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> &) { return value(); }
00146 static const uint64_t static_value1 = 0x6313a88996ba81ffULL;
00147 static const uint64_t static_value2 = 0xc91a8fc15ca327b6ULL;
00148 };
00149
00150 template<class ContainerAllocator>
00151 struct DataType< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > {
00152 static const char* value()
00153 {
00154 return "object_manipulation_msgs/PlaceGoal";
00155 }
00156
00157 static const char* value(const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> &) { return value(); }
00158 };
00159
00160 template<class ContainerAllocator>
00161 struct Definition< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> > {
00162 static const char* value()
00163 {
00164 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00165 # An action for placing an object\n\
00166 \n\
00167 # which arm to be used for grasping\n\
00168 string arm_name\n\
00169 \n\
00170 # a list of possible transformations for placing the object\n\
00171 geometry_msgs/PoseStamped[] place_locations\n\
00172 \n\
00173 # the grasp that has been executed on this object\n\
00174 Grasp grasp\n\
00175 \n\
00176 # Note that, in general place_location is intended to show where you want the object\n\
00177 # to go in the world, while grasp is meant to show how the object is grasped\n\
00178 # (where the hand is relative to the object).\n\
00179 \n\
00180 # Ultimately, what matters is where the hand goes when you place the object; this\n\
00181 # is computed internally by simply multiplying the two transforms above.\n\
00182 \n\
00183 # If you already know where you want the hand to go in the world when placing, feel\n\
00184 # free to put that in the place_location, and make the transform in grasp equal to\n\
00185 # identity.\n\
00186 \n\
00187 # how far the retreat should ideally be away from the place location\n\
00188 float32 desired_retreat_distance\n\
00189 \n\
00190 # the min distance between the retreat and the place location that must actually be feasible \n\
00191 # for the place not to be rejected\n\
00192 float32 min_retreat_distance\n\
00193 \n\
00194 # how the place location should be approached\n\
00195 # the frame_id that this lift is specified in MUST be either the robot_frame \n\
00196 # or the gripper_frame specified in your hand description file\n\
00197 GripperTranslation approach\n\
00198 \n\
00199 # the name that the target object has in the collision map\n\
00200 # can be left empty if no name is available\n\
00201 string collision_object_name\n\
00202 \n\
00203 # the name that the support surface (e.g. table) has in the collision map\n\
00204 # can be left empty if no name is available\n\
00205 string collision_support_surface_name\n\
00206 \n\
00207 # whether collisions between the gripper and the support surface should be acceptable\n\
00208 # during move from pre-place to place and during retreat. Collisions when moving to the\n\
00209 # pre-place location are still not allowed even if this is set to true.\n\
00210 bool allow_gripper_support_collision\n\
00211 \n\
00212 # whether reactive placing based on tactile sensors should be used\n\
00213 bool use_reactive_place\n\
00214 \n\
00215 # how much the object should be padded by when deciding if the grasp\n\
00216 # location is freasible or not\n\
00217 float64 place_padding\n\
00218 \n\
00219 # set this to true if you only want to query the manipulation pipeline as to what \n\
00220 # place locations it thinks are feasible, without actually executing them. If this is set to \n\
00221 # true, the atempted_location_results field of the result will be populated, but no arm \n\
00222 # movement will be attempted\n\
00223 bool only_perform_feasibility_test\n\
00224 \n\
00225 # OPTIONAL (These will not have to be filled out most of the time)\n\
00226 # constraints to be imposed on every point in the motion of the arm\n\
00227 arm_navigation_msgs/Constraints path_constraints\n\
00228 \n\
00229 # OPTIONAL (These will not have to be filled out most of the time)\n\
00230 # additional collision operations to be used for every arm movement performed\n\
00231 # during placing. Note that these will be added on top of (and thus overide) other \n\
00232 # collision operations that the grasping pipeline deems necessary. Should be used\n\
00233 # with care and only if special behaviors are desired.\n\
00234 arm_navigation_msgs/OrderedCollisionOperations additional_collision_operations\n\
00235 \n\
00236 # OPTIONAL (These will not have to be filled out most of the time)\n\
00237 # additional link paddings to be used for every arm movement performed\n\
00238 # during placing. Note that these will be added on top of (and thus overide) other \n\
00239 # link paddings that the grasping pipeline deems necessary. Should be used\n\
00240 # with care and only if special behaviors are desired.\n\
00241 arm_navigation_msgs/LinkPadding[] additional_link_padding\n\
00242 \n\
00243 \n\
00244 ================================================================================\n\
00245 MSG: geometry_msgs/PoseStamped\n\
00246 # A Pose with reference coordinate frame and timestamp\n\
00247 Header header\n\
00248 Pose pose\n\
00249 \n\
00250 ================================================================================\n\
00251 MSG: std_msgs/Header\n\
00252 # Standard metadata for higher-level stamped data types.\n\
00253 # This is generally used to communicate timestamped data \n\
00254 # in a particular coordinate frame.\n\
00255 # \n\
00256 # sequence ID: consecutively increasing ID \n\
00257 uint32 seq\n\
00258 #Two-integer timestamp that is expressed as:\n\
00259 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00260 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00261 # time-handling sugar is provided by the client library\n\
00262 time stamp\n\
00263 #Frame this data is associated with\n\
00264 # 0: no frame\n\
00265 # 1: global frame\n\
00266 string frame_id\n\
00267 \n\
00268 ================================================================================\n\
00269 MSG: geometry_msgs/Pose\n\
00270 # A representation of pose in free space, composed of postion and orientation. \n\
00271 Point position\n\
00272 Quaternion orientation\n\
00273 \n\
00274 ================================================================================\n\
00275 MSG: geometry_msgs/Point\n\
00276 # This contains the position of a point in free space\n\
00277 float64 x\n\
00278 float64 y\n\
00279 float64 z\n\
00280 \n\
00281 ================================================================================\n\
00282 MSG: geometry_msgs/Quaternion\n\
00283 # This represents an orientation in free space in quaternion form.\n\
00284 \n\
00285 float64 x\n\
00286 float64 y\n\
00287 float64 z\n\
00288 float64 w\n\
00289 \n\
00290 ================================================================================\n\
00291 MSG: object_manipulation_msgs/Grasp\n\
00292 \n\
00293 # The internal posture of the hand for the pre-grasp\n\
00294 # only positions are used\n\
00295 sensor_msgs/JointState pre_grasp_posture\n\
00296 \n\
00297 # The internal posture of the hand for the grasp\n\
00298 # positions and efforts are used\n\
00299 sensor_msgs/JointState grasp_posture\n\
00300 \n\
00301 # The position of the end-effector for the grasp relative to a reference frame \n\
00302 # (that is always specified elsewhere, not in this message)\n\
00303 geometry_msgs/Pose grasp_pose\n\
00304 \n\
00305 # The estimated probability of success for this grasp\n\
00306 float64 success_probability\n\
00307 \n\
00308 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00309 bool cluster_rep\n\
00310 \n\
00311 # how far the pre-grasp should ideally be away from the grasp\n\
00312 float32 desired_approach_distance\n\
00313 \n\
00314 # how much distance between pre-grasp and grasp must actually be feasible \n\
00315 # for the grasp not to be rejected\n\
00316 float32 min_approach_distance\n\
00317 \n\
00318 # an optional list of obstacles that we have semantic information about\n\
00319 # and that we expect might move in the course of executing this grasp\n\
00320 # the grasp planner is expected to make sure they move in an OK way; during\n\
00321 # execution, grasp executors will not check for collisions against these objects\n\
00322 GraspableObject[] moved_obstacles\n\
00323 \n\
00324 ================================================================================\n\
00325 MSG: sensor_msgs/JointState\n\
00326 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00327 #\n\
00328 # The state of each joint (revolute or prismatic) is defined by:\n\
00329 # * the position of the joint (rad or m),\n\
00330 # * the velocity of the joint (rad/s or m/s) and \n\
00331 # * the effort that is applied in the joint (Nm or N).\n\
00332 #\n\
00333 # Each joint is uniquely identified by its name\n\
00334 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00335 # in one message have to be recorded at the same time.\n\
00336 #\n\
00337 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00338 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00339 # effort associated with them, you can leave the effort array empty. \n\
00340 #\n\
00341 # All arrays in this message should have the same size, or be empty.\n\
00342 # This is the only way to uniquely associate the joint name with the correct\n\
00343 # states.\n\
00344 \n\
00345 \n\
00346 Header header\n\
00347 \n\
00348 string[] name\n\
00349 float64[] position\n\
00350 float64[] velocity\n\
00351 float64[] effort\n\
00352 \n\
00353 ================================================================================\n\
00354 MSG: object_manipulation_msgs/GraspableObject\n\
00355 # an object that the object_manipulator can work on\n\
00356 \n\
00357 # a graspable object can be represented in multiple ways. This message\n\
00358 # can contain all of them. Which one is actually used is up to the receiver\n\
00359 # of this message. When adding new representations, one must be careful that\n\
00360 # they have reasonable lightweight defaults indicating that that particular\n\
00361 # representation is not available.\n\
00362 \n\
00363 # the tf frame to be used as a reference frame when combining information from\n\
00364 # the different representations below\n\
00365 string reference_frame_id\n\
00366 \n\
00367 # potential recognition results from a database of models\n\
00368 # all poses are relative to the object reference pose\n\
00369 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00370 \n\
00371 # the point cloud itself\n\
00372 sensor_msgs/PointCloud cluster\n\
00373 \n\
00374 # a region of a PointCloud2 of interest\n\
00375 object_manipulation_msgs/SceneRegion region\n\
00376 \n\
00377 # the name that this object has in the collision environment\n\
00378 string collision_name\n\
00379 ================================================================================\n\
00380 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00381 # Informs that a specific model from the Model Database has been \n\
00382 # identified at a certain location\n\
00383 \n\
00384 # the database id of the model\n\
00385 int32 model_id\n\
00386 \n\
00387 # the pose that it can be found in\n\
00388 geometry_msgs/PoseStamped pose\n\
00389 \n\
00390 # a measure of the confidence level in this detection result\n\
00391 float32 confidence\n\
00392 \n\
00393 # the name of the object detector that generated this detection result\n\
00394 string detector_name\n\
00395 \n\
00396 ================================================================================\n\
00397 MSG: sensor_msgs/PointCloud\n\
00398 # This message holds a collection of 3d points, plus optional additional\n\
00399 # information about each point.\n\
00400 \n\
00401 # Time of sensor data acquisition, coordinate frame ID.\n\
00402 Header header\n\
00403 \n\
00404 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00405 # in the frame given in the header.\n\
00406 geometry_msgs/Point32[] points\n\
00407 \n\
00408 # Each channel should have the same number of elements as points array,\n\
00409 # and the data in each channel should correspond 1:1 with each point.\n\
00410 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00411 ChannelFloat32[] channels\n\
00412 \n\
00413 ================================================================================\n\
00414 MSG: geometry_msgs/Point32\n\
00415 # This contains the position of a point in free space(with 32 bits of precision).\n\
00416 # It is recommeded to use Point wherever possible instead of Point32. \n\
00417 # \n\
00418 # This recommendation is to promote interoperability. \n\
00419 #\n\
00420 # This message is designed to take up less space when sending\n\
00421 # lots of points at once, as in the case of a PointCloud. \n\
00422 \n\
00423 float32 x\n\
00424 float32 y\n\
00425 float32 z\n\
00426 ================================================================================\n\
00427 MSG: sensor_msgs/ChannelFloat32\n\
00428 # This message is used by the PointCloud message to hold optional data\n\
00429 # associated with each point in the cloud. The length of the values\n\
00430 # array should be the same as the length of the points array in the\n\
00431 # PointCloud, and each value should be associated with the corresponding\n\
00432 # point.\n\
00433 \n\
00434 # Channel names in existing practice include:\n\
00435 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00436 # This is opposite to usual conventions but remains for\n\
00437 # historical reasons. The newer PointCloud2 message has no\n\
00438 # such problem.\n\
00439 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00440 # (R,G,B) values packed into the least significant 24 bits,\n\
00441 # in order.\n\
00442 # \"intensity\" - laser or pixel intensity.\n\
00443 # \"distance\"\n\
00444 \n\
00445 # The channel name should give semantics of the channel (e.g.\n\
00446 # \"intensity\" instead of \"value\").\n\
00447 string name\n\
00448 \n\
00449 # The values array should be 1-1 with the elements of the associated\n\
00450 # PointCloud.\n\
00451 float32[] values\n\
00452 \n\
00453 ================================================================================\n\
00454 MSG: object_manipulation_msgs/SceneRegion\n\
00455 # Point cloud\n\
00456 sensor_msgs/PointCloud2 cloud\n\
00457 \n\
00458 # Indices for the region of interest\n\
00459 int32[] mask\n\
00460 \n\
00461 # One of the corresponding 2D images, if applicable\n\
00462 sensor_msgs/Image image\n\
00463 \n\
00464 # The disparity image, if applicable\n\
00465 sensor_msgs/Image disparity_image\n\
00466 \n\
00467 # Camera info for the camera that took the image\n\
00468 sensor_msgs/CameraInfo cam_info\n\
00469 \n\
00470 # a 3D region of interest for grasp planning\n\
00471 geometry_msgs/PoseStamped roi_box_pose\n\
00472 geometry_msgs/Vector3 roi_box_dims\n\
00473 \n\
00474 ================================================================================\n\
00475 MSG: sensor_msgs/PointCloud2\n\
00476 # This message holds a collection of N-dimensional points, which may\n\
00477 # contain additional information such as normals, intensity, etc. The\n\
00478 # point data is stored as a binary blob, its layout described by the\n\
00479 # contents of the \"fields\" array.\n\
00480 \n\
00481 # The point cloud data may be organized 2d (image-like) or 1d\n\
00482 # (unordered). Point clouds organized as 2d images may be produced by\n\
00483 # camera depth sensors such as stereo or time-of-flight.\n\
00484 \n\
00485 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00486 # points).\n\
00487 Header header\n\
00488 \n\
00489 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00490 # 1 and width is the length of the point cloud.\n\
00491 uint32 height\n\
00492 uint32 width\n\
00493 \n\
00494 # Describes the channels and their layout in the binary data blob.\n\
00495 PointField[] fields\n\
00496 \n\
00497 bool is_bigendian # Is this data bigendian?\n\
00498 uint32 point_step # Length of a point in bytes\n\
00499 uint32 row_step # Length of a row in bytes\n\
00500 uint8[] data # Actual point data, size is (row_step*height)\n\
00501 \n\
00502 bool is_dense # True if there are no invalid points\n\
00503 \n\
00504 ================================================================================\n\
00505 MSG: sensor_msgs/PointField\n\
00506 # This message holds the description of one point entry in the\n\
00507 # PointCloud2 message format.\n\
00508 uint8 INT8 = 1\n\
00509 uint8 UINT8 = 2\n\
00510 uint8 INT16 = 3\n\
00511 uint8 UINT16 = 4\n\
00512 uint8 INT32 = 5\n\
00513 uint8 UINT32 = 6\n\
00514 uint8 FLOAT32 = 7\n\
00515 uint8 FLOAT64 = 8\n\
00516 \n\
00517 string name # Name of field\n\
00518 uint32 offset # Offset from start of point struct\n\
00519 uint8 datatype # Datatype enumeration, see above\n\
00520 uint32 count # How many elements in the field\n\
00521 \n\
00522 ================================================================================\n\
00523 MSG: sensor_msgs/Image\n\
00524 # This message contains an uncompressed image\n\
00525 # (0, 0) is at top-left corner of image\n\
00526 #\n\
00527 \n\
00528 Header header # Header timestamp should be acquisition time of image\n\
00529 # Header frame_id should be optical frame of camera\n\
00530 # origin of frame should be optical center of cameara\n\
00531 # +x should point to the right in the image\n\
00532 # +y should point down in the image\n\
00533 # +z should point into to plane of the image\n\
00534 # If the frame_id here and the frame_id of the CameraInfo\n\
00535 # message associated with the image conflict\n\
00536 # the behavior is undefined\n\
00537 \n\
00538 uint32 height # image height, that is, number of rows\n\
00539 uint32 width # image width, that is, number of columns\n\
00540 \n\
00541 # The legal values for encoding are in file src/image_encodings.cpp\n\
00542 # If you want to standardize a new string format, join\n\
00543 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00544 \n\
00545 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00546 # taken from the list of strings in src/image_encodings.cpp\n\
00547 \n\
00548 uint8 is_bigendian # is this data bigendian?\n\
00549 uint32 step # Full row length in bytes\n\
00550 uint8[] data # actual matrix data, size is (step * rows)\n\
00551 \n\
00552 ================================================================================\n\
00553 MSG: sensor_msgs/CameraInfo\n\
00554 # This message defines meta information for a camera. It should be in a\n\
00555 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00556 # image topics named:\n\
00557 #\n\
00558 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00559 # image - monochrome, distorted\n\
00560 # image_color - color, distorted\n\
00561 # image_rect - monochrome, rectified\n\
00562 # image_rect_color - color, rectified\n\
00563 #\n\
00564 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00565 # for producing the four processed image topics from image_raw and\n\
00566 # camera_info. The meaning of the camera parameters are described in\n\
00567 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00568 #\n\
00569 # The image_geometry package provides a user-friendly interface to\n\
00570 # common operations using this meta information. If you want to, e.g.,\n\
00571 # project a 3d point into image coordinates, we strongly recommend\n\
00572 # using image_geometry.\n\
00573 #\n\
00574 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00575 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00576 # indicates an uncalibrated camera.\n\
00577 \n\
00578 #######################################################################\n\
00579 # Image acquisition info #\n\
00580 #######################################################################\n\
00581 \n\
00582 # Time of image acquisition, camera coordinate frame ID\n\
00583 Header header # Header timestamp should be acquisition time of image\n\
00584 # Header frame_id should be optical frame of camera\n\
00585 # origin of frame should be optical center of camera\n\
00586 # +x should point to the right in the image\n\
00587 # +y should point down in the image\n\
00588 # +z should point into the plane of the image\n\
00589 \n\
00590 \n\
00591 #######################################################################\n\
00592 # Calibration Parameters #\n\
00593 #######################################################################\n\
00594 # These are fixed during camera calibration. Their values will be the #\n\
00595 # same in all messages until the camera is recalibrated. Note that #\n\
00596 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00597 # #\n\
00598 # The internal parameters can be used to warp a raw (distorted) image #\n\
00599 # to: #\n\
00600 # 1. An undistorted image (requires D and K) #\n\
00601 # 2. A rectified image (requires D, K, R) #\n\
00602 # The projection matrix P projects 3D points into the rectified image.#\n\
00603 #######################################################################\n\
00604 \n\
00605 # The image dimensions with which the camera was calibrated. Normally\n\
00606 # this will be the full camera resolution in pixels.\n\
00607 uint32 height\n\
00608 uint32 width\n\
00609 \n\
00610 # The distortion model used. Supported models are listed in\n\
00611 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00612 # simple model of radial and tangential distortion - is sufficent.\n\
00613 string distortion_model\n\
00614 \n\
00615 # The distortion parameters, size depending on the distortion model.\n\
00616 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00617 float64[] D\n\
00618 \n\
00619 # Intrinsic camera matrix for the raw (distorted) images.\n\
00620 # [fx 0 cx]\n\
00621 # K = [ 0 fy cy]\n\
00622 # [ 0 0 1]\n\
00623 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00624 # coordinates using the focal lengths (fx, fy) and principal point\n\
00625 # (cx, cy).\n\
00626 float64[9] K # 3x3 row-major matrix\n\
00627 \n\
00628 # Rectification matrix (stereo cameras only)\n\
00629 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00630 # stereo image plane so that epipolar lines in both stereo images are\n\
00631 # parallel.\n\
00632 float64[9] R # 3x3 row-major matrix\n\
00633 \n\
00634 # Projection/camera matrix\n\
00635 # [fx' 0 cx' Tx]\n\
00636 # P = [ 0 fy' cy' Ty]\n\
00637 # [ 0 0 1 0]\n\
00638 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00639 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00640 # is the normal camera intrinsic matrix for the rectified image.\n\
00641 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00642 # coordinates using the focal lengths (fx', fy') and principal point\n\
00643 # (cx', cy') - these may differ from the values in K.\n\
00644 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00645 # also have R = the identity and P[1:3,1:3] = K.\n\
00646 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00647 # position of the optical center of the second camera in the first\n\
00648 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00649 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00650 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00651 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00652 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00653 # the rectified image is given by:\n\
00654 # [u v w]' = P * [X Y Z 1]'\n\
00655 # x = u / w\n\
00656 # y = v / w\n\
00657 # This holds for both images of a stereo pair.\n\
00658 float64[12] P # 3x4 row-major matrix\n\
00659 \n\
00660 \n\
00661 #######################################################################\n\
00662 # Operational Parameters #\n\
00663 #######################################################################\n\
00664 # These define the image region actually captured by the camera #\n\
00665 # driver. Although they affect the geometry of the output image, they #\n\
00666 # may be changed freely without recalibrating the camera. #\n\
00667 #######################################################################\n\
00668 \n\
00669 # Binning refers here to any camera setting which combines rectangular\n\
00670 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00671 # resolution of the output image to\n\
00672 # (width / binning_x) x (height / binning_y).\n\
00673 # The default values binning_x = binning_y = 0 is considered the same\n\
00674 # as binning_x = binning_y = 1 (no subsampling).\n\
00675 uint32 binning_x\n\
00676 uint32 binning_y\n\
00677 \n\
00678 # Region of interest (subwindow of full camera resolution), given in\n\
00679 # full resolution (unbinned) image coordinates. A particular ROI\n\
00680 # always denotes the same window of pixels on the camera sensor,\n\
00681 # regardless of binning settings.\n\
00682 # The default setting of roi (all values 0) is considered the same as\n\
00683 # full resolution (roi.width = width, roi.height = height).\n\
00684 RegionOfInterest roi\n\
00685 \n\
00686 ================================================================================\n\
00687 MSG: sensor_msgs/RegionOfInterest\n\
00688 # This message is used to specify a region of interest within an image.\n\
00689 #\n\
00690 # When used to specify the ROI setting of the camera when the image was\n\
00691 # taken, the height and width fields should either match the height and\n\
00692 # width fields for the associated image; or height = width = 0\n\
00693 # indicates that the full resolution image was captured.\n\
00694 \n\
00695 uint32 x_offset # Leftmost pixel of the ROI\n\
00696 # (0 if the ROI includes the left edge of the image)\n\
00697 uint32 y_offset # Topmost pixel of the ROI\n\
00698 # (0 if the ROI includes the top edge of the image)\n\
00699 uint32 height # Height of ROI\n\
00700 uint32 width # Width of ROI\n\
00701 \n\
00702 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00703 # ROI in this message. Typically this should be False if the full image\n\
00704 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00705 # used).\n\
00706 bool do_rectify\n\
00707 \n\
00708 ================================================================================\n\
00709 MSG: geometry_msgs/Vector3\n\
00710 # This represents a vector in free space. \n\
00711 \n\
00712 float64 x\n\
00713 float64 y\n\
00714 float64 z\n\
00715 ================================================================================\n\
00716 MSG: object_manipulation_msgs/GripperTranslation\n\
00717 # defines a translation for the gripper, used in pickup or place tasks\n\
00718 # for example for lifting an object off a table or approaching the table for placing\n\
00719 \n\
00720 # the direction of the translation\n\
00721 geometry_msgs/Vector3Stamped direction\n\
00722 \n\
00723 # the desired translation distance\n\
00724 float32 desired_distance\n\
00725 \n\
00726 # the min distance that must be considered feasible before the\n\
00727 # grasp is even attempted\n\
00728 float32 min_distance\n\
00729 ================================================================================\n\
00730 MSG: geometry_msgs/Vector3Stamped\n\
00731 # This represents a Vector3 with reference coordinate frame and timestamp\n\
00732 Header header\n\
00733 Vector3 vector\n\
00734 \n\
00735 ================================================================================\n\
00736 MSG: arm_navigation_msgs/Constraints\n\
00737 # This message contains a list of motion planning constraints.\n\
00738 \n\
00739 arm_navigation_msgs/JointConstraint[] joint_constraints\n\
00740 arm_navigation_msgs/PositionConstraint[] position_constraints\n\
00741 arm_navigation_msgs/OrientationConstraint[] orientation_constraints\n\
00742 arm_navigation_msgs/VisibilityConstraint[] visibility_constraints\n\
00743 \n\
00744 ================================================================================\n\
00745 MSG: arm_navigation_msgs/JointConstraint\n\
00746 # Constrain the position of a joint to be within a certain bound\n\
00747 string joint_name\n\
00748 \n\
00749 # the bound to be achieved is [position - tolerance_below, position + tolerance_above]\n\
00750 float64 position\n\
00751 float64 tolerance_above\n\
00752 float64 tolerance_below\n\
00753 \n\
00754 # A weighting factor for this constraint\n\
00755 float64 weight\n\
00756 ================================================================================\n\
00757 MSG: arm_navigation_msgs/PositionConstraint\n\
00758 # This message contains the definition of a position constraint.\n\
00759 Header header\n\
00760 \n\
00761 # The robot link this constraint refers to\n\
00762 string link_name\n\
00763 \n\
00764 # The offset (in the link frame) for the target point on the link we are planning for\n\
00765 geometry_msgs/Point target_point_offset\n\
00766 \n\
00767 # The nominal/target position for the point we are planning for\n\
00768 geometry_msgs/Point position\n\
00769 \n\
00770 # The shape of the bounded region that constrains the position of the end-effector\n\
00771 # This region is always centered at the position defined above\n\
00772 arm_navigation_msgs/Shape constraint_region_shape\n\
00773 \n\
00774 # The orientation of the bounded region that constrains the position of the end-effector. \n\
00775 # This allows the specification of non-axis aligned constraints\n\
00776 geometry_msgs/Quaternion constraint_region_orientation\n\
00777 \n\
00778 # Constraint weighting factor - a weight for this constraint\n\
00779 float64 weight\n\
00780 \n\
00781 ================================================================================\n\
00782 MSG: arm_navigation_msgs/Shape\n\
00783 byte SPHERE=0\n\
00784 byte BOX=1\n\
00785 byte CYLINDER=2\n\
00786 byte MESH=3\n\
00787 \n\
00788 byte type\n\
00789 \n\
00790 \n\
00791 #### define sphere, box, cylinder ####\n\
00792 # the origin of each shape is considered at the shape's center\n\
00793 \n\
00794 # for sphere\n\
00795 # radius := dimensions[0]\n\
00796 \n\
00797 # for cylinder\n\
00798 # radius := dimensions[0]\n\
00799 # length := dimensions[1]\n\
00800 # the length is along the Z axis\n\
00801 \n\
00802 # for box\n\
00803 # size_x := dimensions[0]\n\
00804 # size_y := dimensions[1]\n\
00805 # size_z := dimensions[2]\n\
00806 float64[] dimensions\n\
00807 \n\
00808 \n\
00809 #### define mesh ####\n\
00810 \n\
00811 # list of triangles; triangle k is defined by tre vertices located\n\
00812 # at indices triangles[3k], triangles[3k+1], triangles[3k+2]\n\
00813 int32[] triangles\n\
00814 geometry_msgs/Point[] vertices\n\
00815 \n\
00816 ================================================================================\n\
00817 MSG: arm_navigation_msgs/OrientationConstraint\n\
00818 # This message contains the definition of an orientation constraint.\n\
00819 Header header\n\
00820 \n\
00821 # The robot link this constraint refers to\n\
00822 string link_name\n\
00823 \n\
00824 # The type of the constraint\n\
00825 int32 type\n\
00826 int32 LINK_FRAME=0\n\
00827 int32 HEADER_FRAME=1\n\
00828 \n\
00829 # The desired orientation of the robot link specified as a quaternion\n\
00830 geometry_msgs/Quaternion orientation\n\
00831 \n\
00832 # optional RPY error tolerances specified if \n\
00833 float64 absolute_roll_tolerance\n\
00834 float64 absolute_pitch_tolerance\n\
00835 float64 absolute_yaw_tolerance\n\
00836 \n\
00837 # Constraint weighting factor - a weight for this constraint\n\
00838 float64 weight\n\
00839 \n\
00840 ================================================================================\n\
00841 MSG: arm_navigation_msgs/VisibilityConstraint\n\
00842 # This message contains the definition of a visibility constraint.\n\
00843 Header header\n\
00844 \n\
00845 # The point stamped target that needs to be kept within view of the sensor\n\
00846 geometry_msgs/PointStamped target\n\
00847 \n\
00848 # The local pose of the frame in which visibility is to be maintained\n\
00849 # The frame id should represent the robot link to which the sensor is attached\n\
00850 # The visual axis of the sensor is assumed to be along the X axis of this frame\n\
00851 geometry_msgs/PoseStamped sensor_pose\n\
00852 \n\
00853 # The deviation (in radians) that will be tolerated\n\
00854 # Constraint error will be measured as the solid angle between the \n\
00855 # X axis of the frame defined above and the vector between the origin \n\
00856 # of the frame defined above and the target location\n\
00857 float64 absolute_tolerance\n\
00858 \n\
00859 \n\
00860 ================================================================================\n\
00861 MSG: geometry_msgs/PointStamped\n\
00862 # This represents a Point with reference coordinate frame and timestamp\n\
00863 Header header\n\
00864 Point point\n\
00865 \n\
00866 ================================================================================\n\
00867 MSG: arm_navigation_msgs/OrderedCollisionOperations\n\
00868 # A set of collision operations that will be performed in the order they are specified\n\
00869 CollisionOperation[] collision_operations\n\
00870 ================================================================================\n\
00871 MSG: arm_navigation_msgs/CollisionOperation\n\
00872 # A definition of a collision operation\n\
00873 # E.g. (\"gripper\",COLLISION_SET_ALL,ENABLE) will enable collisions \n\
00874 # between the gripper and all objects in the collision space\n\
00875 \n\
00876 string object1\n\
00877 string object2\n\
00878 string COLLISION_SET_ALL=\"all\"\n\
00879 string COLLISION_SET_OBJECTS=\"objects\"\n\
00880 string COLLISION_SET_ATTACHED_OBJECTS=\"attached\"\n\
00881 \n\
00882 # The penetration distance to which collisions are allowed. This is 0.0 by default.\n\
00883 float64 penetration_distance\n\
00884 \n\
00885 # Flag that determines whether collisions will be enabled or disabled for the pair of objects specified above\n\
00886 int32 operation\n\
00887 int32 DISABLE=0\n\
00888 int32 ENABLE=1\n\
00889 \n\
00890 ================================================================================\n\
00891 MSG: arm_navigation_msgs/LinkPadding\n\
00892 #name for the link\n\
00893 string link_name\n\
00894 \n\
00895 # padding to apply to the link\n\
00896 float64 padding\n\
00897 \n\
00898 ";
00899 }
00900
00901 static const char* value(const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> &) { return value(); }
00902 };
00903
00904 }
00905 }
00906
00907 namespace ros
00908 {
00909 namespace serialization
00910 {
00911
00912 template<class ContainerAllocator> struct Serializer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> >
00913 {
00914 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00915 {
00916 stream.next(m.arm_name);
00917 stream.next(m.place_locations);
00918 stream.next(m.grasp);
00919 stream.next(m.desired_retreat_distance);
00920 stream.next(m.min_retreat_distance);
00921 stream.next(m.approach);
00922 stream.next(m.collision_object_name);
00923 stream.next(m.collision_support_surface_name);
00924 stream.next(m.allow_gripper_support_collision);
00925 stream.next(m.use_reactive_place);
00926 stream.next(m.place_padding);
00927 stream.next(m.only_perform_feasibility_test);
00928 stream.next(m.path_constraints);
00929 stream.next(m.additional_collision_operations);
00930 stream.next(m.additional_link_padding);
00931 }
00932
00933 ROS_DECLARE_ALLINONE_SERIALIZER;
00934 };
00935 }
00936 }
00937
00938 namespace ros
00939 {
00940 namespace message_operations
00941 {
00942
00943 template<class ContainerAllocator>
00944 struct Printer< ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> >
00945 {
00946 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::object_manipulation_msgs::PlaceGoal_<ContainerAllocator> & v)
00947 {
00948 s << indent << "arm_name: ";
00949 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
00950 s << indent << "place_locations[]" << std::endl;
00951 for (size_t i = 0; i < v.place_locations.size(); ++i)
00952 {
00953 s << indent << " place_locations[" << i << "]: ";
00954 s << std::endl;
00955 s << indent;
00956 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.place_locations[i]);
00957 }
00958 s << indent << "grasp: ";
00959 s << std::endl;
00960 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasp);
00961 s << indent << "desired_retreat_distance: ";
00962 Printer<float>::stream(s, indent + " ", v.desired_retreat_distance);
00963 s << indent << "min_retreat_distance: ";
00964 Printer<float>::stream(s, indent + " ", v.min_retreat_distance);
00965 s << indent << "approach: ";
00966 s << std::endl;
00967 Printer< ::object_manipulation_msgs::GripperTranslation_<ContainerAllocator> >::stream(s, indent + " ", v.approach);
00968 s << indent << "collision_object_name: ";
00969 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_object_name);
00970 s << indent << "collision_support_surface_name: ";
00971 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.collision_support_surface_name);
00972 s << indent << "allow_gripper_support_collision: ";
00973 Printer<uint8_t>::stream(s, indent + " ", v.allow_gripper_support_collision);
00974 s << indent << "use_reactive_place: ";
00975 Printer<uint8_t>::stream(s, indent + " ", v.use_reactive_place);
00976 s << indent << "place_padding: ";
00977 Printer<double>::stream(s, indent + " ", v.place_padding);
00978 s << indent << "only_perform_feasibility_test: ";
00979 Printer<uint8_t>::stream(s, indent + " ", v.only_perform_feasibility_test);
00980 s << indent << "path_constraints: ";
00981 s << std::endl;
00982 Printer< ::arm_navigation_msgs::Constraints_<ContainerAllocator> >::stream(s, indent + " ", v.path_constraints);
00983 s << indent << "additional_collision_operations: ";
00984 s << std::endl;
00985 Printer< ::arm_navigation_msgs::OrderedCollisionOperations_<ContainerAllocator> >::stream(s, indent + " ", v.additional_collision_operations);
00986 s << indent << "additional_link_padding[]" << std::endl;
00987 for (size_t i = 0; i < v.additional_link_padding.size(); ++i)
00988 {
00989 s << indent << " additional_link_padding[" << i << "]: ";
00990 s << std::endl;
00991 s << indent;
00992 Printer< ::arm_navigation_msgs::LinkPadding_<ContainerAllocator> >::stream(s, indent + " ", v.additional_link_padding[i]);
00993 }
00994 }
00995 };
00996
00997
00998 }
00999 }
01000
01001 #endif // OBJECT_MANIPULATION_MSGS_MESSAGE_PLACEGOAL_H
01002