00001
00002 #ifndef BLORT_ROS_SERVICE_SETCAMERAINFO_H
00003 #define BLORT_ROS_SERVICE_SETCAMERAINFO_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "ros/service_traits.h"
00018
00019 #include "sensor_msgs/CameraInfo.h"
00020
00021
00022
00023 namespace blort_ros
00024 {
00025 template <class ContainerAllocator>
00026 struct SetCameraInfoRequest_ {
00027 typedef SetCameraInfoRequest_<ContainerAllocator> Type;
00028
00029 SetCameraInfoRequest_()
00030 : CameraInfo()
00031 {
00032 }
00033
00034 SetCameraInfoRequest_(const ContainerAllocator& _alloc)
00035 : CameraInfo(_alloc)
00036 {
00037 }
00038
00039 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _CameraInfo_type;
00040 ::sensor_msgs::CameraInfo_<ContainerAllocator> CameraInfo;
00041
00042
00043 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > Ptr;
00044 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> const> ConstPtr;
00045 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00046 };
00047 typedef ::blort_ros::SetCameraInfoRequest_<std::allocator<void> > SetCameraInfoRequest;
00048
00049 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoRequest> SetCameraInfoRequestPtr;
00050 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoRequest const> SetCameraInfoRequestConstPtr;
00051
00052
00053 template <class ContainerAllocator>
00054 struct SetCameraInfoResponse_ {
00055 typedef SetCameraInfoResponse_<ContainerAllocator> Type;
00056
00057 SetCameraInfoResponse_()
00058 {
00059 }
00060
00061 SetCameraInfoResponse_(const ContainerAllocator& _alloc)
00062 {
00063 }
00064
00065
00066 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > Ptr;
00067 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> const> ConstPtr;
00068 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00069 };
00070 typedef ::blort_ros::SetCameraInfoResponse_<std::allocator<void> > SetCameraInfoResponse;
00071
00072 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoResponse> SetCameraInfoResponsePtr;
00073 typedef boost::shared_ptr< ::blort_ros::SetCameraInfoResponse const> SetCameraInfoResponseConstPtr;
00074
00075 struct SetCameraInfo
00076 {
00077
00078 typedef SetCameraInfoRequest Request;
00079 typedef SetCameraInfoResponse Response;
00080 Request request;
00081 Response response;
00082
00083 typedef Request RequestType;
00084 typedef Response ResponseType;
00085 };
00086 }
00087
00088 namespace ros
00089 {
00090 namespace message_traits
00091 {
00092 template<class ContainerAllocator> struct IsMessage< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > : public TrueType {};
00093 template<class ContainerAllocator> struct IsMessage< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> const> : public TrueType {};
00094 template<class ContainerAllocator>
00095 struct MD5Sum< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > {
00096 static const char* value()
00097 {
00098 return "390ddee7feaa14c13062ed91af56953a";
00099 }
00100
00101 static const char* value(const ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00102 static const uint64_t static_value1 = 0x390ddee7feaa14c1ULL;
00103 static const uint64_t static_value2 = 0x3062ed91af56953aULL;
00104 };
00105
00106 template<class ContainerAllocator>
00107 struct DataType< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > {
00108 static const char* value()
00109 {
00110 return "blort_ros/SetCameraInfoRequest";
00111 }
00112
00113 static const char* value(const ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00114 };
00115
00116 template<class ContainerAllocator>
00117 struct Definition< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> > {
00118 static const char* value()
00119 {
00120 return "sensor_msgs/CameraInfo CameraInfo\n\
00121 \n\
00122 ================================================================================\n\
00123 MSG: sensor_msgs/CameraInfo\n\
00124 # This message defines meta information for a camera. It should be in a\n\
00125 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00126 # image topics named:\n\
00127 #\n\
00128 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00129 # image - monochrome, distorted\n\
00130 # image_color - color, distorted\n\
00131 # image_rect - monochrome, rectified\n\
00132 # image_rect_color - color, rectified\n\
00133 #\n\
00134 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00135 # for producing the four processed image topics from image_raw and\n\
00136 # camera_info. The meaning of the camera parameters are described in\n\
00137 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00138 #\n\
00139 # The image_geometry package provides a user-friendly interface to\n\
00140 # common operations using this meta information. If you want to, e.g.,\n\
00141 # project a 3d point into image coordinates, we strongly recommend\n\
00142 # using image_geometry.\n\
00143 #\n\
00144 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00145 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00146 # indicates an uncalibrated camera.\n\
00147 \n\
00148 #######################################################################\n\
00149 # Image acquisition info #\n\
00150 #######################################################################\n\
00151 \n\
00152 # Time of image acquisition, camera coordinate frame ID\n\
00153 Header header # Header timestamp should be acquisition time of image\n\
00154 # Header frame_id should be optical frame of camera\n\
00155 # origin of frame should be optical center of camera\n\
00156 # +x should point to the right in the image\n\
00157 # +y should point down in the image\n\
00158 # +z should point into the plane of the image\n\
00159 \n\
00160 \n\
00161 #######################################################################\n\
00162 # Calibration Parameters #\n\
00163 #######################################################################\n\
00164 # These are fixed during camera calibration. Their values will be the #\n\
00165 # same in all messages until the camera is recalibrated. Note that #\n\
00166 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00167 # #\n\
00168 # The internal parameters can be used to warp a raw (distorted) image #\n\
00169 # to: #\n\
00170 # 1. An undistorted image (requires D and K) #\n\
00171 # 2. A rectified image (requires D, K, R) #\n\
00172 # The projection matrix P projects 3D points into the rectified image.#\n\
00173 #######################################################################\n\
00174 \n\
00175 # The image dimensions with which the camera was calibrated. Normally\n\
00176 # this will be the full camera resolution in pixels.\n\
00177 uint32 height\n\
00178 uint32 width\n\
00179 \n\
00180 # The distortion model used. Supported models are listed in\n\
00181 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00182 # simple model of radial and tangential distortion - is sufficent.\n\
00183 string distortion_model\n\
00184 \n\
00185 # The distortion parameters, size depending on the distortion model.\n\
00186 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00187 float64[] D\n\
00188 \n\
00189 # Intrinsic camera matrix for the raw (distorted) images.\n\
00190 # [fx 0 cx]\n\
00191 # K = [ 0 fy cy]\n\
00192 # [ 0 0 1]\n\
00193 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00194 # coordinates using the focal lengths (fx, fy) and principal point\n\
00195 # (cx, cy).\n\
00196 float64[9] K # 3x3 row-major matrix\n\
00197 \n\
00198 # Rectification matrix (stereo cameras only)\n\
00199 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00200 # stereo image plane so that epipolar lines in both stereo images are\n\
00201 # parallel.\n\
00202 float64[9] R # 3x3 row-major matrix\n\
00203 \n\
00204 # Projection/camera matrix\n\
00205 # [fx' 0 cx' Tx]\n\
00206 # P = [ 0 fy' cy' Ty]\n\
00207 # [ 0 0 1 0]\n\
00208 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00209 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00210 # is the normal camera intrinsic matrix for the rectified image.\n\
00211 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00212 # coordinates using the focal lengths (fx', fy') and principal point\n\
00213 # (cx', cy') - these may differ from the values in K.\n\
00214 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00215 # also have R = the identity and P[1:3,1:3] = K.\n\
00216 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00217 # position of the optical center of the second camera in the first\n\
00218 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00219 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00220 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00221 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00222 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00223 # the rectified image is given by:\n\
00224 # [u v w]' = P * [X Y Z 1]'\n\
00225 # x = u / w\n\
00226 # y = v / w\n\
00227 # This holds for both images of a stereo pair.\n\
00228 float64[12] P # 3x4 row-major matrix\n\
00229 \n\
00230 \n\
00231 #######################################################################\n\
00232 # Operational Parameters #\n\
00233 #######################################################################\n\
00234 # These define the image region actually captured by the camera #\n\
00235 # driver. Although they affect the geometry of the output image, they #\n\
00236 # may be changed freely without recalibrating the camera. #\n\
00237 #######################################################################\n\
00238 \n\
00239 # Binning refers here to any camera setting which combines rectangular\n\
00240 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00241 # resolution of the output image to\n\
00242 # (width / binning_x) x (height / binning_y).\n\
00243 # The default values binning_x = binning_y = 0 is considered the same\n\
00244 # as binning_x = binning_y = 1 (no subsampling).\n\
00245 uint32 binning_x\n\
00246 uint32 binning_y\n\
00247 \n\
00248 # Region of interest (subwindow of full camera resolution), given in\n\
00249 # full resolution (unbinned) image coordinates. A particular ROI\n\
00250 # always denotes the same window of pixels on the camera sensor,\n\
00251 # regardless of binning settings.\n\
00252 # The default setting of roi (all values 0) is considered the same as\n\
00253 # full resolution (roi.width = width, roi.height = height).\n\
00254 RegionOfInterest roi\n\
00255 \n\
00256 ================================================================================\n\
00257 MSG: std_msgs/Header\n\
00258 # Standard metadata for higher-level stamped data types.\n\
00259 # This is generally used to communicate timestamped data \n\
00260 # in a particular coordinate frame.\n\
00261 # \n\
00262 # sequence ID: consecutively increasing ID \n\
00263 uint32 seq\n\
00264 #Two-integer timestamp that is expressed as:\n\
00265 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00266 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00267 # time-handling sugar is provided by the client library\n\
00268 time stamp\n\
00269 #Frame this data is associated with\n\
00270 # 0: no frame\n\
00271 # 1: global frame\n\
00272 string frame_id\n\
00273 \n\
00274 ================================================================================\n\
00275 MSG: sensor_msgs/RegionOfInterest\n\
00276 # This message is used to specify a region of interest within an image.\n\
00277 #\n\
00278 # When used to specify the ROI setting of the camera when the image was\n\
00279 # taken, the height and width fields should either match the height and\n\
00280 # width fields for the associated image; or height = width = 0\n\
00281 # indicates that the full resolution image was captured.\n\
00282 \n\
00283 uint32 x_offset # Leftmost pixel of the ROI\n\
00284 # (0 if the ROI includes the left edge of the image)\n\
00285 uint32 y_offset # Topmost pixel of the ROI\n\
00286 # (0 if the ROI includes the top edge of the image)\n\
00287 uint32 height # Height of ROI\n\
00288 uint32 width # Width of ROI\n\
00289 \n\
00290 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00291 # ROI in this message. Typically this should be False if the full image\n\
00292 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00293 # used).\n\
00294 bool do_rectify\n\
00295 \n\
00296 ";
00297 }
00298
00299 static const char* value(const ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00300 };
00301
00302 }
00303 }
00304
00305
00306 namespace ros
00307 {
00308 namespace message_traits
00309 {
00310 template<class ContainerAllocator> struct IsMessage< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > : public TrueType {};
00311 template<class ContainerAllocator> struct IsMessage< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> const> : public TrueType {};
00312 template<class ContainerAllocator>
00313 struct MD5Sum< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > {
00314 static const char* value()
00315 {
00316 return "d41d8cd98f00b204e9800998ecf8427e";
00317 }
00318
00319 static const char* value(const ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00320 static const uint64_t static_value1 = 0xd41d8cd98f00b204ULL;
00321 static const uint64_t static_value2 = 0xe9800998ecf8427eULL;
00322 };
00323
00324 template<class ContainerAllocator>
00325 struct DataType< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > {
00326 static const char* value()
00327 {
00328 return "blort_ros/SetCameraInfoResponse";
00329 }
00330
00331 static const char* value(const ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00332 };
00333
00334 template<class ContainerAllocator>
00335 struct Definition< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > {
00336 static const char* value()
00337 {
00338 return "\n\
00339 \n\
00340 ";
00341 }
00342
00343 static const char* value(const ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00344 };
00345
00346 template<class ContainerAllocator> struct IsFixedSize< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> > : public TrueType {};
00347 }
00348 }
00349
00350 namespace ros
00351 {
00352 namespace serialization
00353 {
00354
00355 template<class ContainerAllocator> struct Serializer< ::blort_ros::SetCameraInfoRequest_<ContainerAllocator> >
00356 {
00357 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00358 {
00359 stream.next(m.CameraInfo);
00360 }
00361
00362 ROS_DECLARE_ALLINONE_SERIALIZER;
00363 };
00364 }
00365 }
00366
00367
00368 namespace ros
00369 {
00370 namespace serialization
00371 {
00372
00373 template<class ContainerAllocator> struct Serializer< ::blort_ros::SetCameraInfoResponse_<ContainerAllocator> >
00374 {
00375 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
00376 {
00377 }
00378
00379 ROS_DECLARE_ALLINONE_SERIALIZER;
00380 };
00381 }
00382 }
00383
00384 namespace ros
00385 {
00386 namespace service_traits
00387 {
00388 template<>
00389 struct MD5Sum<blort_ros::SetCameraInfo> {
00390 static const char* value()
00391 {
00392 return "390ddee7feaa14c13062ed91af56953a";
00393 }
00394
00395 static const char* value(const blort_ros::SetCameraInfo&) { return value(); }
00396 };
00397
00398 template<>
00399 struct DataType<blort_ros::SetCameraInfo> {
00400 static const char* value()
00401 {
00402 return "blort_ros/SetCameraInfo";
00403 }
00404
00405 static const char* value(const blort_ros::SetCameraInfo&) { return value(); }
00406 };
00407
00408 template<class ContainerAllocator>
00409 struct MD5Sum<blort_ros::SetCameraInfoRequest_<ContainerAllocator> > {
00410 static const char* value()
00411 {
00412 return "390ddee7feaa14c13062ed91af56953a";
00413 }
00414
00415 static const char* value(const blort_ros::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00416 };
00417
00418 template<class ContainerAllocator>
00419 struct DataType<blort_ros::SetCameraInfoRequest_<ContainerAllocator> > {
00420 static const char* value()
00421 {
00422 return "blort_ros/SetCameraInfo";
00423 }
00424
00425 static const char* value(const blort_ros::SetCameraInfoRequest_<ContainerAllocator> &) { return value(); }
00426 };
00427
00428 template<class ContainerAllocator>
00429 struct MD5Sum<blort_ros::SetCameraInfoResponse_<ContainerAllocator> > {
00430 static const char* value()
00431 {
00432 return "390ddee7feaa14c13062ed91af56953a";
00433 }
00434
00435 static const char* value(const blort_ros::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00436 };
00437
00438 template<class ContainerAllocator>
00439 struct DataType<blort_ros::SetCameraInfoResponse_<ContainerAllocator> > {
00440 static const char* value()
00441 {
00442 return "blort_ros/SetCameraInfo";
00443 }
00444
00445 static const char* value(const blort_ros::SetCameraInfoResponse_<ContainerAllocator> &) { return value(); }
00446 };
00447
00448 }
00449 }
00450
00451 #endif // BLORT_ROS_SERVICE_SETCAMERAINFO_H
00452