matrix_EIGEN.cpp
Go to the documentation of this file.
00001 #include "../config.h"
00002 #ifdef __MATRIXWRAPPER_EIGEN__
00003 
00004 #include "matrix_EIGEN.h"
00005 #include "vector_EIGEN.h"
00006 
00007 #include <Eigen/LU>
00008 
00009 using namespace std;
00010 
00011 // Passing the constructor arguments...
00012 MyMatrix::Matrix() : EigenMatrix() {}
00013 MyMatrix::Matrix(int num_rows, int num_cols) : EigenMatrix(num_rows,
00014                                                            num_cols){}
00015 
00016 // Destructor
00017 MyMatrix::~Matrix(){}
00018 
00019 // Copy constructor
00020 MyMatrix::Matrix(const MyMatrix& a) : EigenMatrix(a){}
00021 
00022 // ill-designed
00023 MyMatrix::Matrix(const EigenMatrix & a) : EigenMatrix(a){}
00024 
00025 MyMatrix::Matrix(int num_rows,const RowVector& v):EigenMatrix(num_rows,v.columns()){
00026   EigenMatrix & m = *this;
00027   const EigenRowVector & r = v;
00028   for(unsigned int i=0;i<num_rows;i++)
00029     m.row(i) = r;
00030 }
00031 
00032 MyRowVector MyMatrix::operator[](unsigned int i) const{
00033   return this->rowCopy(i);
00034 }
00035 
00036 // Size/Capacity
00037 unsigned int MyMatrix::size() const { return this->rows();}
00038 unsigned int MyMatrix::capacity() const { return this->rows();}
00039 
00040 // Number of Rows/Cols
00041 unsigned int MyMatrix::rows() const { return ((const EigenMatrix *)this)->rows();}
00042 unsigned int MyMatrix::columns() const { return ((const EigenMatrix *)this)->cols();}
00043 
00044 // MATRIX - SCALAR operators
00045 MyMatrix& MyMatrix::operator+= (double a)
00046 {
00047   EigenMatrix & op1 = *this;
00048   op1 += EigenMatrix::Constant(op1.rows(), op1.cols(), a);
00049   return (MyMatrix&)op1;
00050 }
00051 
00052 MyMatrix& MyMatrix::operator-= (double a)
00053 {
00054   EigenMatrix & op1 = (*this);
00055   op1 -= EigenMatrix::Constant(op1.rows(), op1.cols(), a);
00056   return (MyMatrix&) op1;
00057 }
00058 
00059 MyMatrix& MyMatrix::operator*= (double a)
00060 {
00061   EigenMatrix & op1 = (*this);
00062   op1 *= a;
00063   return *this;
00064 }
00065 
00066 MyMatrix& MyMatrix::operator/= (double a)
00067 {
00068   EigenMatrix & op1 = (*this);
00069   op1 /= a;
00070   return (MyMatrix&) op1;
00071 }
00072 
00073 MyMatrix MyMatrix::operator+ (double a) const
00074 {
00075   return (MyMatrix)(((EigenMatrix)(*this)) + EigenMatrix::Constant(rows(), cols(), a));
00076 }
00077 
00078 MyMatrix MyMatrix::operator- (double a) const
00079 {
00080   return (MyMatrix)(((EigenMatrix)(*this)) - EigenMatrix::Constant(rows(), cols(), a));
00081 }
00082 
00083 MyMatrix MyMatrix::operator* (double a) const
00084 {
00085   const EigenMatrix& op1 = (*this);
00086   return (MyMatrix) (op1 *  a);
00087 }
00088 
00089 MyMatrix MyMatrix::operator/ (double a) const
00090 {
00091   const EigenMatrix& op1 = (*this);
00092   return (MyMatrix) (op1 /  a);
00093 }
00094 
00095 MyMatrix&
00096 MyMatrix::operator =(const MySymmetricMatrix& a)
00097 {
00098   *this =(MyMatrix) a;
00099 
00100   return *this;
00101 }
00102 
00103 // MATRIX - MATRIX Operators
00104 MyMatrix MyMatrix::operator- (const MyMatrix& a) const
00105 {
00106   const EigenMatrix& op1 = *this;
00107   const EigenMatrix& op2 = a;
00108 
00109   return (MyMatrix)(op1 - op2);
00110 }
00111 
00112 MyMatrix MyMatrix::operator+ (const MyMatrix& a) const
00113 {
00114   const EigenMatrix& op1 = *this;
00115   const EigenMatrix& op2 = a;
00116 
00117   return (MyMatrix)(op1 + op2);
00118 }
00119 
00120 MyMatrix MyMatrix::operator* (const MyMatrix& a) const
00121 {
00122   const EigenMatrix& op1 = *this;
00123   const EigenMatrix& op2 = a;
00124 
00125   return (MyMatrix)(op1 * op2);
00126 }
00127 
00128 MyMatrix & MyMatrix::operator+= (const MyMatrix& a)
00129 {
00130   EigenMatrix & op1 = (*this);
00131   const EigenMatrix & op2 = a;
00132   op1 += op2;
00133   return (MyMatrix &) op1;
00134 }
00135 
00136 MyMatrix & MyMatrix::operator-= (const MyMatrix& a)
00137 {
00138   EigenMatrix & op1 = (*this);
00139   const EigenMatrix & op2 = a;
00140   op1 -= op2;
00141   return (MyMatrix &) op1;
00142 }
00143 
00144 
00145 // MATRIX - VECTOR Operators
00146 MyColumnVector MyMatrix::operator* (const MyColumnVector &b) const
00147 {
00148   const EigenMatrix& op1 = (*this);
00149   return (MyColumnVector) (op1 * ((const EigenColumnVector&)b));
00150 }
00151 
00152 
00153 
00154 double& MyMatrix::operator()(unsigned int a, unsigned int b)
00155 {
00156   EigenMatrix & op1 = (*this);
00157   return op1(a-1,b-1);
00158 }
00159 
00160 double MyMatrix::operator()(unsigned int a, unsigned int b) const
00161 {
00162   const EigenMatrix & op1(*this);
00163   return op1(a-1,b-1);
00164 }
00165 
00166 bool MyMatrix::operator==(const MyMatrix& a) const
00167 {
00168   if (this->rows() != a.rows()) return false;
00169   if (this->columns() != a.columns()) return false;
00170   return(((EigenMatrix)(*this)-(EigenMatrix)a).isApproxToConstant(0.0));
00171 }
00172 
00173 
00174 // Set all elements equal to a
00175 MyMatrix&
00176  MyMatrix::operator=(double a)
00177 {
00178   ((EigenMatrix&)(*this)).setConstant(a);
00179   return *this;
00180 }
00181 
00182 
00183 MyRowVector MyMatrix::rowCopy(unsigned int r) const
00184 {
00185   return (MyRowVector) (*this).row(r);
00186 }
00187 
00188 MyColumnVector MyMatrix::columnCopy(unsigned int c) const
00189 {
00190   return (MyColumnVector) (*this).col(c);
00191 }
00192 
00193 
00194 
00195 
00196 MyMatrix MyMatrix::transpose() const
00197 {
00198   const EigenMatrix &op1 = (*this);
00199   return (MyMatrix) op1.transpose();
00200 }
00201 
00202 double MyMatrix::determinant() const
00203 {
00204   unsigned int r = this->rows();
00205   assert(r == this->columns());
00206   const EigenMatrix& A = (*this);
00207   return A.determinant();
00208 }
00209 
00210 
00211 MyMatrix MyMatrix::inverse() const
00212 {
00213   unsigned int r = this->rows();
00214   assert(r == this->columns());
00215   const EigenMatrix& A = (*this);
00216   return (MyMatrix) A.inverse();
00217 }
00218 
00219 
00220 int
00221 MyMatrix::convertToSymmetricMatrix(MySymmetricMatrix& sym)
00222 {
00223   // test if matrix is square matrix
00224   assert(this->rows() == this->columns());
00225 
00226   const EigenMatrix & A = (EigenMatrix &) (*this);
00227   sym = MySymmetricMatrix(A.selfadjointView<Eigen::Upper>());
00228   return 0;
00229 }
00230 
00231 void
00232 MyMatrix::resize(unsigned int i, unsigned int j, bool copy, bool initialize)
00233 {
00234   EigenMatrix & temp = (EigenMatrix &) (*this);
00235   temp.resize(i,j);
00236 }
00237 
00238 // get sub matrix
00239 MyMatrix MyMatrix::sub(int i_start, int i_end, int j_start , int j_end) const
00240 {
00241   const EigenMatrix & A = (EigenMatrix &) (*this);
00242   MyMatrix submatrix(A.block(i_start-1,j_start-1,i_end-i_start+1,j_end-j_start+1));
00243   return submatrix;
00244 }
00245 
00247 // CLASS SYMMETRIC MATRIX  //
00249 
00250 MySymmetricMatrix::SymmetricMatrix() : EigenSymmetricMatrix() {}
00251 MySymmetricMatrix::SymmetricMatrix(int n) : EigenSymmetricMatrix(n,n) {}
00252 MySymmetricMatrix::SymmetricMatrix(int num_rows,const RowVector& v):EigenSymmetricMatrix(num_rows,v.columns()){
00253   EigenSymmetricMatrix & m = *this;
00254   const EigenRowVector & r = v;
00255   for(unsigned int i=0;i<num_rows;i++)
00256     m.row(i) = r;
00257 }
00258 
00259 MyRowVector MySymmetricMatrix::operator[](unsigned int i) const{
00260   return this->rowCopy(i);
00261 }
00262 
00263 
00264 
00265 // Copy constructor
00266 MySymmetricMatrix::SymmetricMatrix(const SymmetricMatrix& a) : EigenSymmetricMatrix(a){}
00267 MySymmetricMatrix::SymmetricMatrix(const EigenSymmetricMatrix& a) : EigenSymmetricMatrix(a){}
00268 MySymmetricMatrix::SymmetricMatrix(const EigenSymmetricView & a) : EigenSymmetricMatrix(a){}
00269 
00270 // Destructor
00271 MySymmetricMatrix::~SymmetricMatrix(){}
00272 
00273 // Size/Capacity
00274 unsigned int MySymmetricMatrix::size() const { return this->rows();}
00275 unsigned int MySymmetricMatrix::capacity() const { return this->rows();}
00276 
00277 // Ask Number of Rows and Columns
00278 unsigned int MySymmetricMatrix::rows() const { return ((const EigenSymmetricMatrix *)this)->rows();}
00279 unsigned int MySymmetricMatrix::columns() const { return ((const EigenSymmetricMatrix *)this)->cols();}
00280 
00281 
00282 MyRowVector MySymmetricMatrix::rowCopy(unsigned int r) const
00283 {
00284   
00285   unsigned int cols = columns();
00286   EigenRowVector temp(cols);
00287   for (unsigned int i=0; i<cols; i++)
00288     temp(i) = (*this)(r,i+1);
00289   return (MyRowVector) temp;
00290 }
00291 
00292 MySymmetricMatrix MySymmetricMatrix::transpose() const {return (*this);}
00293 
00294 MySymmetricMatrix MySymmetricMatrix::inverse() const
00295 {
00296   unsigned int r = this->rows();
00297   assert(r == this->columns());
00298   const EigenSymmetricMatrix& A = (*this);
00299   // EigenSymmetricView A = ((const EigenSymmetricMatrix *)(this))->selfadjointView<Eigen::Upper>();
00300   return MySymmetricMatrix(A.inverse());
00301 }
00302 
00303 double MySymmetricMatrix::determinant() const
00304 {
00305   unsigned int r = this->rows();
00306   assert(r == this->columns());
00307   const EigenSymmetricMatrix& A = (*this);
00308   // EigenSymmetricView A = ((const EigenSymmetricMatrix *)(this))->selfadjointView<Eigen::Upper>();
00309   return A.determinant();
00310 }
00311 
00312 
00313 // Set all elements equal to a
00314 MySymmetricMatrix& MySymmetricMatrix::operator=(const double a)
00315 {
00316   ((EigenSymmetricMatrix&)(*this)).setConstant(a);
00317   return *this;
00318 }
00319 
00320 
00321 // SYMMETRICMATRIX - SCALAR operators
00322 MySymmetricMatrix& MySymmetricMatrix::operator +=(double a)
00323 {
00324   EigenSymmetricMatrix & op1 = *this;
00325   op1 += EigenSymmetricMatrix::Constant(op1.rows(), op1.cols(), a);
00326   return (MySymmetricMatrix&)op1;
00327 }
00328 
00329 MySymmetricMatrix& MySymmetricMatrix::operator -=(double a)
00330 {
00331   EigenSymmetricMatrix & op1 = *this;
00332   op1 -= EigenSymmetricMatrix::Constant(op1.rows(), op1.cols(), a);
00333   return (MySymmetricMatrix&)op1;
00334 }
00335 
00336 MySymmetricMatrix& MySymmetricMatrix::operator *=(double b)
00337 {
00338   EigenSymmetricMatrix & op1 = (*this);
00339   op1 *= b;
00340   return (MySymmetricMatrix&) op1;
00341 }
00342 
00343 MySymmetricMatrix& MySymmetricMatrix::operator /=(double b)
00344 {
00345   EigenSymmetricMatrix & op1 = (*this);
00346   op1 /= b;
00347   return (MySymmetricMatrix&) op1;
00348 }
00349 
00350 MySymmetricMatrix MySymmetricMatrix::operator +(double a) const
00351 {
00352   return (MySymmetricMatrix)(((EigenSymmetricMatrix)(*this)) + EigenSymmetricMatrix::Constant(rows(), cols(), a));
00353 }
00354 
00355 MySymmetricMatrix MySymmetricMatrix::operator -(double a) const
00356 {
00357   return (MySymmetricMatrix)(((EigenSymmetricMatrix)(*this)) - EigenSymmetricMatrix::Constant(rows(), cols(), a));
00358 }
00359 
00360 MySymmetricMatrix MySymmetricMatrix::operator *(double b) const
00361 {
00362  const EigenSymmetricMatrix& op1 = (*this);
00363   return (MySymmetricMatrix) (op1 *  b);
00364 }
00365 
00366 MySymmetricMatrix MySymmetricMatrix::operator /(double b) const
00367 {
00368   const EigenSymmetricMatrix& op1 = (*this);
00369   return (MySymmetricMatrix) (op1 /  b);
00370 }
00371 
00372 
00373 
00374 
00375 // SYMMETRICMATRIX - MATRIX operators
00376 MyMatrix& MySymmetricMatrix::operator +=(const MyMatrix& a)
00377 {
00378   EigenSymmetricMatrix & op1 = (*this);
00379   op1 += a;
00380   return (MyMatrix &) op1;
00381 }
00382 
00383 MyMatrix& MySymmetricMatrix::operator -=(const MyMatrix& a)
00384 {
00385   EigenSymmetricMatrix & op1 = (*this);
00386   op1 -= a;
00387   return (MyMatrix &) op1;
00388 }
00389 
00390 
00391 MyMatrix MySymmetricMatrix::operator+ (const MyMatrix &a) const
00392 {
00393   const EigenSymmetricMatrix& op1 = *this;
00394   const EigenMatrix& op2 = a;
00395 
00396   return (MyMatrix) (op1 + op2);
00397 }
00398 
00399 MyMatrix MySymmetricMatrix::operator- (const MyMatrix &a) const
00400 {
00401   const EigenSymmetricMatrix& op1 = *this;
00402   const EigenMatrix& op2 = a;
00403 
00404   return (MyMatrix) (op1 - op2);
00405 }
00406 
00407 MyMatrix MySymmetricMatrix::operator* (const MyMatrix &a) const
00408 {
00409   const EigenSymmetricMatrix& op1 = *this;
00410   const EigenMatrix& op2 = a;
00411 
00412   return (MyMatrix) (op1 * op2);
00413 }
00414 
00415 
00416 
00417 // SYMMETRICMATRIX - SYMMETRICMATRIX operators
00418 MySymmetricMatrix& MySymmetricMatrix::operator +=(const MySymmetricMatrix& a)
00419 {
00420   EigenSymmetricMatrix & op1 = (*this);
00421   const EigenSymmetricMatrix & op2 = a;
00422   op1 += op2;
00423   return (MySymmetricMatrix &) op1;
00424 }
00425 
00426 MySymmetricMatrix& MySymmetricMatrix::operator -=(const MySymmetricMatrix& a)
00427 {
00428   EigenSymmetricMatrix & op1 = (*this);
00429   const EigenSymmetricMatrix & op2 = a;
00430   op1 -= op2;
00431   return (MySymmetricMatrix &) op1;
00432 }
00433 
00434 MySymmetricMatrix MySymmetricMatrix::operator+ (const MySymmetricMatrix &a) const
00435 {
00436   const EigenSymmetricMatrix& op1 = *this;
00437   const EigenSymmetricMatrix& op2 = a;
00438 
00439   return (MySymmetricMatrix) (op1 + op2);
00440 }
00441 
00442 MySymmetricMatrix MySymmetricMatrix::operator- (const MySymmetricMatrix &a) const
00443 {
00444   const EigenSymmetricMatrix& op1 = *this;
00445   const EigenSymmetricMatrix& op2 = a;
00446 
00447   return (MySymmetricMatrix) (op1 - op2);
00448 }
00449 
00450 MyMatrix MySymmetricMatrix::operator* (const MySymmetricMatrix &a) const
00451 {
00452   const EigenSymmetricMatrix& op1 = *this;
00453   const EigenSymmetricMatrix& op2 = a;
00454 
00455   return (MyMatrix) (op1 * op2);
00456 }
00457 
00458 
00459 
00460 
00461 MyColumnVector MySymmetricMatrix::operator* (const MyColumnVector &b) const
00462 {
00463   const EigenSymmetricMatrix& op1 = (EigenSymmetricMatrix) *this;
00464   return (MyColumnVector) (op1 * ((const EigenColumnVector&)b));
00465 }
00466 
00467 void MySymmetricMatrix::multiply (const MyColumnVector &b, MyColumnVector &result) const
00468 {
00469   const EigenSymmetricMatrix& op1 = (EigenSymmetricMatrix) *this;
00470   result = (MyColumnVector) (op1 * ((const EigenColumnVector&)b));
00471 }
00472 
00473 MyMatrix MySymmetricMatrix::sub(int i_start, int i_end, int j_start , int j_end) const
00474 {
00475   MyMatrix submatrix(i_end-i_start+1, j_end-j_start+1);
00476   for (int i=i_start; i<=i_end; i++)
00477     for (int j=j_start; j<=j_end; j++)
00478       submatrix(i-i_start+1,j-j_start+1) = (*this)(i,j);
00479 
00480   return submatrix;
00481 }
00482 
00483 
00484 
00485 double& MySymmetricMatrix::operator()(unsigned int a, unsigned int b)
00486 {
00487   EigenSymmetricMatrix & op1 = (*this);
00488   return op1(a-1,b-1);
00489 }
00490 
00491 double MySymmetricMatrix::operator()(unsigned int a, unsigned int b) const
00492 {
00493   const EigenSymmetricMatrix & op1(*this);
00494   return op1(a-1,b-1);
00495 }
00496 
00497 bool MySymmetricMatrix::operator==(const MySymmetricMatrix& a) const
00498 {
00499   if (this->rows() != a.rows()) return false;
00500   if (this->columns() != a.columns()) return false;
00501   return(((EigenSymmetricMatrix)(*this)-(EigenSymmetricMatrix)a).isApproxToConstant(0.0));
00502 }
00503 
00504 void
00505 MySymmetricMatrix::resize(unsigned int i, bool copy, bool initialize)
00506 {
00507   EigenSymmetricMatrix & temp = (EigenSymmetricMatrix &) (*this);
00508   temp.resize(i,i);
00509 }
00510 
00511 
00512 #endif
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Properties Friends Defines


bfl_eigen
Author(s): Klaas Gadeyne, Wim Meeussen, Tinne Delaet and many others. See web page for a full contributor list. Eigen matrix library support added by Johannes Meyer.
autogenerated on Mon Jul 15 2013 16:45:57