00001
00002
00003 """
00004 Serialization of sensor_msgs.PointCloud2 messages.
00005
00006 Author: Tim Field
00007 """
00008
00009 import roslib; roslib.load_manifest('sensor_msgs')
00010
00011 import ctypes
00012 import math
00013 import struct
00014
00015 from sensor_msgs.msg import PointCloud2, PointField
00016
00017 _DATATYPES = {}
00018 _DATATYPES[PointField.INT8] = ('b', 1)
00019 _DATATYPES[PointField.UINT8] = ('B', 1)
00020 _DATATYPES[PointField.INT16] = ('h', 2)
00021 _DATATYPES[PointField.UINT16] = ('H', 2)
00022 _DATATYPES[PointField.INT32] = ('i', 4)
00023 _DATATYPES[PointField.UINT32] = ('I', 4)
00024 _DATATYPES[PointField.FLOAT32] = ('f', 4)
00025 _DATATYPES[PointField.FLOAT64] = ('d', 8)
00026
00027 def read_points(cloud, field_names=None, skip_nans=False, uvs=[]):
00028 """
00029 Read points from a L{sensor_msgs.PointCloud2} message.
00030
00031 @param cloud: The point cloud to read from.
00032 @type cloud: L{sensor_msgs.PointCloud2}
00033 @param field_names: The names of fields to read. If None, read all fields. [default: None]
00034 @type field_names: iterable
00035 @param skip_nans: If True, then don't return any point with a NaN value.
00036 @type skip_nans: bool [default: False]
00037 @param uvs: If specified, then only return the points at the given coordinates. [default: empty list]
00038 @type uvs: iterable
00039 @return: Generator which yields a list of values for each point.
00040 @rtype: generator
00041 """
00042 assert isinstance(cloud, roslib.message.Message) and cloud._type == 'sensor_msgs/PointCloud2', 'cloud is not a sensor_msgs.msg.PointCloud2'
00043 fmt = _get_struct_fmt(cloud.is_bigendian, cloud.fields, field_names)
00044 width, height, point_step, row_step, data, isnan = cloud.width, cloud.height, cloud.point_step, cloud.row_step, cloud.data, math.isnan
00045 unpack_from = struct.Struct(fmt).unpack_from
00046
00047 if skip_nans:
00048 if uvs:
00049 for u, v in uvs:
00050 p = unpack_from(data, (row_step * v) + (point_step * u))
00051 has_nan = False
00052 for pv in p:
00053 if isnan(pv):
00054 has_nan = True
00055 break
00056 if not has_nan:
00057 yield p
00058 else:
00059 for v in xrange(height):
00060 offset = row_step * v
00061 for u in xrange(width):
00062 p = unpack_from(data, offset)
00063 has_nan = False
00064 for pv in p:
00065 if isnan(pv):
00066 has_nan = True
00067 break
00068 if not has_nan:
00069 yield p
00070 offset += point_step
00071 else:
00072 if uvs:
00073 for u, v in uvs:
00074 yield unpack_from(data, (row_step * v) + (point_step * u))
00075 else:
00076 for v in xrange(height):
00077 offset = row_step * v
00078 for u in xrange(width):
00079 yield unpack_from(data, offset)
00080 offset += point_step
00081
00082 def create_cloud(header, fields, points):
00083 """
00084 Create a L{sensor_msgs.msg.PointCloud2} message.
00085
00086 @param header: The point cloud header.
00087 @type header: L{std_msgs.msg.Header}
00088 @param fields: The point cloud fields.
00089 @type fields: iterable of L{sensor_msgs.msg.PointField}
00090 @param points: The point cloud points.
00091 @type points: list
00092 @return: The point cloud.
00093 @rtype: L{sensor_msgs.msg.PointCloud2}
00094 """
00095
00096 cloud_struct = struct.Struct(_get_struct_fmt(False, fields))
00097
00098 buff = ctypes.create_string_buffer(cloud_struct.size * len(points))
00099
00100 point_step, pack_into = cloud_struct.size, cloud_struct.pack_into
00101 offset = 0
00102 for p in points:
00103 pack_into(buff, offset, *p)
00104 offset += point_step
00105
00106 return PointCloud2(header=header,
00107 height=1,
00108 width=len(points),
00109 is_dense=False,
00110 is_bigendian=False,
00111 fields=fields,
00112 point_step=cloud_struct.size,
00113 row_step=cloud_struct.size * len(points),
00114 data=buff.raw)
00115
00116 def create_cloud_xyz32(header, points):
00117 """
00118 Create a L{sensor_msgs.msg.PointCloud2} message with 3 float32 fields (x, y, z).
00119
00120 @param header: The point cloud header.
00121 @type header: L{std_msgs.msg.Header}
00122 @param points: The point cloud points.
00123 @type points: iterable
00124 @return: The point cloud.
00125 @rtype: L{sensor_msgs.msg.PointCloud2}
00126 """
00127 fields = [PointField('x', 0, PointField.FLOAT32, 1),
00128 PointField('y', 4, PointField.FLOAT32, 1),
00129 PointField('z', 8, PointField.FLOAT32, 1)]
00130 return create_cloud(header, fields, points)
00131
00132 def _get_struct_fmt(is_bigendian, fields, field_names=None):
00133 fmt = '>' if is_bigendian else '<'
00134
00135 offset = 0
00136 for field in (f for f in sorted(fields, key=lambda f: f.offset) if field_names is None or f.name in field_names):
00137 if offset < field.offset:
00138 fmt += 'x' * (field.offset - offset)
00139 offset = field.offset
00140 if field.datatype not in _DATATYPES:
00141 print >> sys.stderr, 'Skipping unknown PointField datatype [%d]' % field.datatype
00142 else:
00143 datatype_fmt, datatype_length = _DATATYPES[field.datatype]
00144 fmt += field.count * datatype_fmt
00145 offset += field.count * datatype_length
00146
00147 return fmt