$search
00001 /* 00002 * Copyright (c) 2011, Willow Garage, Inc. 00003 * All rights reserved. 00004 * 00005 * Redistribution and use in source and binary forms, with or without 00006 * modification, are permitted provided that the following conditions are met: 00007 * 00008 * * Redistributions of source code must retain the above copyright 00009 * notice, this list of conditions and the following disclaimer. 00010 * * Redistributions in binary form must reproduce the above copyright 00011 * notice, this list of conditions and the following disclaimer in the 00012 * documentation and/or other materials provided with the distribution. 00013 * * Neither the name of the Willow Garage, Inc. nor the names of its 00014 * contributors may be used to endorse or promote products derived from 00015 * this software without specific prior written permission. 00016 * 00017 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00018 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00019 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00020 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 00021 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00022 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 00023 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 00024 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 00025 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 00026 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00027 * POSSIBILITY OF SUCH DAMAGE. 00028 */ 00029 00030 #include <turtlebot_kinect_arm_calibration/detect_calibration_pattern.h> 00031 00032 void PatternDetector::setCameraMatrices(cv::Mat K_, cv::Mat D_) 00033 { 00034 K = K_; 00035 D = D_; 00036 } 00037 00038 void PatternDetector::setPattern(cv::Size grid_size_, float square_size_, 00039 Pattern pattern_type_, cv::Point3f offset_) 00040 { 00041 ideal_points = calcChessboardCorners(grid_size_, square_size_, pattern_type_, offset_); 00042 pattern_type = pattern_type_; 00043 grid_size = grid_size_; 00044 square_size = square_size_; 00045 } 00046 00047 object_pts_t PatternDetector::calcChessboardCorners(cv::Size boardSize, 00048 float squareSize, 00049 Pattern patternType, 00050 cv::Point3f offset) 00051 { 00052 object_pts_t corners; 00053 switch (patternType) 00054 { 00055 case CHESSBOARD: 00056 case CIRCLES_GRID: 00057 for (int i = 0; i < boardSize.height; i++) 00058 for (int j = 0; j < boardSize.width; j++) 00059 corners.push_back( 00060 cv::Point3f(float(j * squareSize), 00061 float(i * squareSize), 0) + offset); 00062 break; 00063 case ASYMMETRIC_CIRCLES_GRID: 00064 for (int i = 0; i < boardSize.height; i++) 00065 for (int j = 0; j < boardSize.width; j++) 00066 corners.push_back( 00067 cv::Point3f(float(i * squareSize), 00068 float((2 * j + i % 2) * squareSize), 0) + offset); 00069 break; 00070 default: 00071 std::logic_error("Unknown pattern type."); 00072 } 00073 return corners; 00074 } 00075 00076 00077 00078 int PatternDetector::detectPattern(cv::Mat& image_in, Eigen::Vector3f& translation, Eigen::Quaternionf& orientation, cv::Mat& image_out) 00079 { 00080 translation.setZero(); 00081 orientation.setIdentity(); 00082 00083 bool found = false; 00084 00085 observation_pts_t observation_points; 00086 00087 switch (pattern_type) 00088 { 00089 case ASYMMETRIC_CIRCLES_GRID: 00090 found = cv::findCirclesGrid(image_in, grid_size, observation_points, 00091 cv::CALIB_CB_ASYMMETRIC_GRID | cv::CALIB_CB_CLUSTERING); 00092 break; 00093 case CHESSBOARD: 00094 found = cv::findChessboardCorners(image_in, grid_size, observation_points, cv::CALIB_CB_ADAPTIVE_THRESH); 00095 break; 00096 case CIRCLES_GRID: 00097 found = cv::findCirclesGrid(image_in, grid_size, observation_points, cv::CALIB_CB_SYMMETRIC_GRID); 00098 break; 00099 } 00100 00101 if(found) 00102 { 00103 // Do subpixel ONLY IF THE PATTERN IS A CHESSBOARD 00104 if (pattern_type == CHESSBOARD) 00105 { 00106 cv::cornerSubPix(image_in, observation_points, cv::Size(5,5), cv::Size(-1,-1), 00107 cv::TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 100, 0.01)); 00108 } 00109 00110 cv::solvePnP(cv::Mat(ideal_points), cv::Mat(observation_points), K, D, 00111 rvec, tvec, false); 00112 cv::Rodrigues(rvec, R); //take the 3x1 rotation representation to a 3x3 rotation matrix. 00113 00114 cv::drawChessboardCorners(image_out, grid_size, cv::Mat(observation_points), found); 00115 00116 convertCVtoEigen(tvec, R, translation, orientation); 00117 } 00118 00119 return found; 00120 } 00121 00122 void convertCVtoEigen(cv::Mat& tvec, cv::Mat& R, Eigen::Vector3f& translation, Eigen::Quaternionf& orientation) 00123 { 00124 // This assumes that cv::Mats are stored as doubles. Is there a way to check this? 00125 // Since it's templated... 00126 translation = Eigen::Vector3f(tvec.at<double>(0,0), tvec.at<double>(0,1), tvec.at<double>(0, 2)); 00127 00128 Eigen::Matrix3f Rmat; 00129 Rmat << R.at<double>(0,0), R.at<double>(0,1), R.at<double>(0,2), 00130 R.at<double>(1,0), R.at<double>(1,1), R.at<double>(1,2), 00131 R.at<double>(2,0), R.at<double>(2,1), R.at<double>(2,2); 00132 00133 orientation = Eigen::Quaternionf(Rmat); 00134 00135 } 00136