00001
00002 #ifndef PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIOPTIONS_H
00003 #define PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIOPTIONS_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "object_manipulation_msgs/GraspableObject.h"
00018 #include "object_manipulation_msgs/GraspableObject.h"
00019 #include "pr2_object_manipulation_msgs/IMGUIAdvancedOptions.h"
00020
00021 namespace pr2_object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct IMGUIOptions_ {
00025 typedef IMGUIOptions_<ContainerAllocator> Type;
00026
00027 IMGUIOptions_()
00028 : collision_checked(false)
00029 , grasp_selection(0)
00030 , arm_selection(0)
00031 , reset_choice(0)
00032 , arm_action_choice(0)
00033 , arm_planner_choice(0)
00034 , gripper_slider_position(0)
00035 , selected_object()
00036 , movable_obstacles()
00037 , adv_options()
00038 {
00039 }
00040
00041 IMGUIOptions_(const ContainerAllocator& _alloc)
00042 : collision_checked(false)
00043 , grasp_selection(0)
00044 , arm_selection(0)
00045 , reset_choice(0)
00046 , arm_action_choice(0)
00047 , arm_planner_choice(0)
00048 , gripper_slider_position(0)
00049 , selected_object(_alloc)
00050 , movable_obstacles(_alloc)
00051 , adv_options(_alloc)
00052 {
00053 }
00054
00055 typedef uint8_t _collision_checked_type;
00056 uint8_t collision_checked;
00057
00058 typedef int32_t _grasp_selection_type;
00059 int32_t grasp_selection;
00060
00061 typedef int32_t _arm_selection_type;
00062 int32_t arm_selection;
00063
00064 typedef int32_t _reset_choice_type;
00065 int32_t reset_choice;
00066
00067 typedef int32_t _arm_action_choice_type;
00068 int32_t arm_action_choice;
00069
00070 typedef int32_t _arm_planner_choice_type;
00071 int32_t arm_planner_choice;
00072
00073 typedef int32_t _gripper_slider_position_type;
00074 int32_t gripper_slider_position;
00075
00076 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _selected_object_type;
00077 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> selected_object;
00078
00079 typedef std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > _movable_obstacles_type;
00080 std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > movable_obstacles;
00081
00082 typedef ::pr2_object_manipulation_msgs::IMGUIAdvancedOptions_<ContainerAllocator> _adv_options_type;
00083 ::pr2_object_manipulation_msgs::IMGUIAdvancedOptions_<ContainerAllocator> adv_options;
00084
00085
00086 ROS_DEPRECATED uint32_t get_movable_obstacles_size() const { return (uint32_t)movable_obstacles.size(); }
00087 ROS_DEPRECATED void set_movable_obstacles_size(uint32_t size) { movable_obstacles.resize((size_t)size); }
00088 ROS_DEPRECATED void get_movable_obstacles_vec(std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) const { vec = this->movable_obstacles; }
00089 ROS_DEPRECATED void set_movable_obstacles_vec(const std::vector< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> , typename ContainerAllocator::template rebind< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::other > & vec) { this->movable_obstacles = vec; }
00090 private:
00091 static const char* __s_getDataType_() { return "pr2_object_manipulation_msgs/IMGUIOptions"; }
00092 public:
00093 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00094
00095 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00096
00097 private:
00098 static const char* __s_getMD5Sum_() { return "8aeba15821e5be12a564fea38cf7ad87"; }
00099 public:
00100 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00101
00102 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00103
00104 private:
00105 static const char* __s_getMessageDefinition_() { return "\n\
00106 # collision checking enabled\n\
00107 bool collision_checked\n\
00108 \n\
00109 # 0=call gripper click\n\
00110 # 1=grasp the provided graspable object\n\
00111 int32 grasp_selection\n\
00112 \n\
00113 # 0=right, 1=left arm\n\
00114 int32 arm_selection\n\
00115 \n\
00116 # for RESET commands\n\
00117 # 0=reset collision objects\n\
00118 # 1=reset attached objects\n\
00119 int32 reset_choice\n\
00120 \n\
00121 # for MOVE_ARM commands\n\
00122 # 0=side\n\
00123 # 1=front\n\
00124 # 2=side handoff\n\
00125 int32 arm_action_choice\n\
00126 \n\
00127 # for MOVE_ARM commands\n\
00128 # 0=open-loop\n\
00129 # 1=with planner\n\
00130 int32 arm_planner_choice\n\
00131 \n\
00132 # for MOVE_GRIPPER commands\n\
00133 # opening of gripper (0=closed..100=open)\n\
00134 int32 gripper_slider_position\n\
00135 \n\
00136 # used if grasp_selection == 1\n\
00137 object_manipulation_msgs/GraspableObject selected_object\n\
00138 \n\
00139 # indicates obstacles that can be moved during grasping\n\
00140 # presumably, the operator has marked these in some fashion\n\
00141 object_manipulation_msgs/GraspableObject[] movable_obstacles\n\
00142 \n\
00143 # more options..\n\
00144 IMGUIAdvancedOptions adv_options\n\
00145 \n\
00146 ================================================================================\n\
00147 MSG: object_manipulation_msgs/GraspableObject\n\
00148 # an object that the object_manipulator can work on\n\
00149 \n\
00150 # a graspable object can be represented in multiple ways. This message\n\
00151 # can contain all of them. Which one is actually used is up to the receiver\n\
00152 # of this message. When adding new representations, one must be careful that\n\
00153 # they have reasonable lightweight defaults indicating that that particular\n\
00154 # representation is not available.\n\
00155 \n\
00156 # the tf frame to be used as a reference frame when combining information from\n\
00157 # the different representations below\n\
00158 string reference_frame_id\n\
00159 \n\
00160 # potential recognition results from a database of models\n\
00161 # all poses are relative to the object reference pose\n\
00162 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00163 \n\
00164 # the point cloud itself\n\
00165 sensor_msgs/PointCloud cluster\n\
00166 \n\
00167 # a region of a PointCloud2 of interest\n\
00168 object_manipulation_msgs/SceneRegion region\n\
00169 \n\
00170 # the name that this object has in the collision environment\n\
00171 string collision_name\n\
00172 ================================================================================\n\
00173 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00174 # Informs that a specific model from the Model Database has been \n\
00175 # identified at a certain location\n\
00176 \n\
00177 # the database id of the model\n\
00178 int32 model_id\n\
00179 \n\
00180 # the pose that it can be found in\n\
00181 geometry_msgs/PoseStamped pose\n\
00182 \n\
00183 # a measure of the confidence level in this detection result\n\
00184 float32 confidence\n\
00185 \n\
00186 # the name of the object detector that generated this detection result\n\
00187 string detector_name\n\
00188 \n\
00189 ================================================================================\n\
00190 MSG: geometry_msgs/PoseStamped\n\
00191 # A Pose with reference coordinate frame and timestamp\n\
00192 Header header\n\
00193 Pose pose\n\
00194 \n\
00195 ================================================================================\n\
00196 MSG: std_msgs/Header\n\
00197 # Standard metadata for higher-level stamped data types.\n\
00198 # This is generally used to communicate timestamped data \n\
00199 # in a particular coordinate frame.\n\
00200 # \n\
00201 # sequence ID: consecutively increasing ID \n\
00202 uint32 seq\n\
00203 #Two-integer timestamp that is expressed as:\n\
00204 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00205 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00206 # time-handling sugar is provided by the client library\n\
00207 time stamp\n\
00208 #Frame this data is associated with\n\
00209 # 0: no frame\n\
00210 # 1: global frame\n\
00211 string frame_id\n\
00212 \n\
00213 ================================================================================\n\
00214 MSG: geometry_msgs/Pose\n\
00215 # A representation of pose in free space, composed of postion and orientation. \n\
00216 Point position\n\
00217 Quaternion orientation\n\
00218 \n\
00219 ================================================================================\n\
00220 MSG: geometry_msgs/Point\n\
00221 # This contains the position of a point in free space\n\
00222 float64 x\n\
00223 float64 y\n\
00224 float64 z\n\
00225 \n\
00226 ================================================================================\n\
00227 MSG: geometry_msgs/Quaternion\n\
00228 # This represents an orientation in free space in quaternion form.\n\
00229 \n\
00230 float64 x\n\
00231 float64 y\n\
00232 float64 z\n\
00233 float64 w\n\
00234 \n\
00235 ================================================================================\n\
00236 MSG: sensor_msgs/PointCloud\n\
00237 # This message holds a collection of 3d points, plus optional additional\n\
00238 # information about each point.\n\
00239 \n\
00240 # Time of sensor data acquisition, coordinate frame ID.\n\
00241 Header header\n\
00242 \n\
00243 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00244 # in the frame given in the header.\n\
00245 geometry_msgs/Point32[] points\n\
00246 \n\
00247 # Each channel should have the same number of elements as points array,\n\
00248 # and the data in each channel should correspond 1:1 with each point.\n\
00249 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00250 ChannelFloat32[] channels\n\
00251 \n\
00252 ================================================================================\n\
00253 MSG: geometry_msgs/Point32\n\
00254 # This contains the position of a point in free space(with 32 bits of precision).\n\
00255 # It is recommeded to use Point wherever possible instead of Point32. \n\
00256 # \n\
00257 # This recommendation is to promote interoperability. \n\
00258 #\n\
00259 # This message is designed to take up less space when sending\n\
00260 # lots of points at once, as in the case of a PointCloud. \n\
00261 \n\
00262 float32 x\n\
00263 float32 y\n\
00264 float32 z\n\
00265 ================================================================================\n\
00266 MSG: sensor_msgs/ChannelFloat32\n\
00267 # This message is used by the PointCloud message to hold optional data\n\
00268 # associated with each point in the cloud. The length of the values\n\
00269 # array should be the same as the length of the points array in the\n\
00270 # PointCloud, and each value should be associated with the corresponding\n\
00271 # point.\n\
00272 \n\
00273 # Channel names in existing practice include:\n\
00274 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00275 # This is opposite to usual conventions but remains for\n\
00276 # historical reasons. The newer PointCloud2 message has no\n\
00277 # such problem.\n\
00278 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00279 # (R,G,B) values packed into the least significant 24 bits,\n\
00280 # in order.\n\
00281 # \"intensity\" - laser or pixel intensity.\n\
00282 # \"distance\"\n\
00283 \n\
00284 # The channel name should give semantics of the channel (e.g.\n\
00285 # \"intensity\" instead of \"value\").\n\
00286 string name\n\
00287 \n\
00288 # The values array should be 1-1 with the elements of the associated\n\
00289 # PointCloud.\n\
00290 float32[] values\n\
00291 \n\
00292 ================================================================================\n\
00293 MSG: object_manipulation_msgs/SceneRegion\n\
00294 # Point cloud\n\
00295 sensor_msgs/PointCloud2 cloud\n\
00296 \n\
00297 # Indices for the region of interest\n\
00298 int32[] mask\n\
00299 \n\
00300 # One of the corresponding 2D images, if applicable\n\
00301 sensor_msgs/Image image\n\
00302 \n\
00303 # The disparity image, if applicable\n\
00304 sensor_msgs/Image disparity_image\n\
00305 \n\
00306 # Camera info for the camera that took the image\n\
00307 sensor_msgs/CameraInfo cam_info\n\
00308 \n\
00309 # a 3D region of interest for grasp planning\n\
00310 geometry_msgs/PoseStamped roi_box_pose\n\
00311 geometry_msgs/Vector3 roi_box_dims\n\
00312 \n\
00313 ================================================================================\n\
00314 MSG: sensor_msgs/PointCloud2\n\
00315 # This message holds a collection of N-dimensional points, which may\n\
00316 # contain additional information such as normals, intensity, etc. The\n\
00317 # point data is stored as a binary blob, its layout described by the\n\
00318 # contents of the \"fields\" array.\n\
00319 \n\
00320 # The point cloud data may be organized 2d (image-like) or 1d\n\
00321 # (unordered). Point clouds organized as 2d images may be produced by\n\
00322 # camera depth sensors such as stereo or time-of-flight.\n\
00323 \n\
00324 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00325 # points).\n\
00326 Header header\n\
00327 \n\
00328 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00329 # 1 and width is the length of the point cloud.\n\
00330 uint32 height\n\
00331 uint32 width\n\
00332 \n\
00333 # Describes the channels and their layout in the binary data blob.\n\
00334 PointField[] fields\n\
00335 \n\
00336 bool is_bigendian # Is this data bigendian?\n\
00337 uint32 point_step # Length of a point in bytes\n\
00338 uint32 row_step # Length of a row in bytes\n\
00339 uint8[] data # Actual point data, size is (row_step*height)\n\
00340 \n\
00341 bool is_dense # True if there are no invalid points\n\
00342 \n\
00343 ================================================================================\n\
00344 MSG: sensor_msgs/PointField\n\
00345 # This message holds the description of one point entry in the\n\
00346 # PointCloud2 message format.\n\
00347 uint8 INT8 = 1\n\
00348 uint8 UINT8 = 2\n\
00349 uint8 INT16 = 3\n\
00350 uint8 UINT16 = 4\n\
00351 uint8 INT32 = 5\n\
00352 uint8 UINT32 = 6\n\
00353 uint8 FLOAT32 = 7\n\
00354 uint8 FLOAT64 = 8\n\
00355 \n\
00356 string name # Name of field\n\
00357 uint32 offset # Offset from start of point struct\n\
00358 uint8 datatype # Datatype enumeration, see above\n\
00359 uint32 count # How many elements in the field\n\
00360 \n\
00361 ================================================================================\n\
00362 MSG: sensor_msgs/Image\n\
00363 # This message contains an uncompressed image\n\
00364 # (0, 0) is at top-left corner of image\n\
00365 #\n\
00366 \n\
00367 Header header # Header timestamp should be acquisition time of image\n\
00368 # Header frame_id should be optical frame of camera\n\
00369 # origin of frame should be optical center of cameara\n\
00370 # +x should point to the right in the image\n\
00371 # +y should point down in the image\n\
00372 # +z should point into to plane of the image\n\
00373 # If the frame_id here and the frame_id of the CameraInfo\n\
00374 # message associated with the image conflict\n\
00375 # the behavior is undefined\n\
00376 \n\
00377 uint32 height # image height, that is, number of rows\n\
00378 uint32 width # image width, that is, number of columns\n\
00379 \n\
00380 # The legal values for encoding are in file src/image_encodings.cpp\n\
00381 # If you want to standardize a new string format, join\n\
00382 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00383 \n\
00384 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00385 # taken from the list of strings in src/image_encodings.cpp\n\
00386 \n\
00387 uint8 is_bigendian # is this data bigendian?\n\
00388 uint32 step # Full row length in bytes\n\
00389 uint8[] data # actual matrix data, size is (step * rows)\n\
00390 \n\
00391 ================================================================================\n\
00392 MSG: sensor_msgs/CameraInfo\n\
00393 # This message defines meta information for a camera. It should be in a\n\
00394 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00395 # image topics named:\n\
00396 #\n\
00397 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00398 # image - monochrome, distorted\n\
00399 # image_color - color, distorted\n\
00400 # image_rect - monochrome, rectified\n\
00401 # image_rect_color - color, rectified\n\
00402 #\n\
00403 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00404 # for producing the four processed image topics from image_raw and\n\
00405 # camera_info. The meaning of the camera parameters are described in\n\
00406 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00407 #\n\
00408 # The image_geometry package provides a user-friendly interface to\n\
00409 # common operations using this meta information. If you want to, e.g.,\n\
00410 # project a 3d point into image coordinates, we strongly recommend\n\
00411 # using image_geometry.\n\
00412 #\n\
00413 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00414 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00415 # indicates an uncalibrated camera.\n\
00416 \n\
00417 #######################################################################\n\
00418 # Image acquisition info #\n\
00419 #######################################################################\n\
00420 \n\
00421 # Time of image acquisition, camera coordinate frame ID\n\
00422 Header header # Header timestamp should be acquisition time of image\n\
00423 # Header frame_id should be optical frame of camera\n\
00424 # origin of frame should be optical center of camera\n\
00425 # +x should point to the right in the image\n\
00426 # +y should point down in the image\n\
00427 # +z should point into the plane of the image\n\
00428 \n\
00429 \n\
00430 #######################################################################\n\
00431 # Calibration Parameters #\n\
00432 #######################################################################\n\
00433 # These are fixed during camera calibration. Their values will be the #\n\
00434 # same in all messages until the camera is recalibrated. Note that #\n\
00435 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00436 # #\n\
00437 # The internal parameters can be used to warp a raw (distorted) image #\n\
00438 # to: #\n\
00439 # 1. An undistorted image (requires D and K) #\n\
00440 # 2. A rectified image (requires D, K, R) #\n\
00441 # The projection matrix P projects 3D points into the rectified image.#\n\
00442 #######################################################################\n\
00443 \n\
00444 # The image dimensions with which the camera was calibrated. Normally\n\
00445 # this will be the full camera resolution in pixels.\n\
00446 uint32 height\n\
00447 uint32 width\n\
00448 \n\
00449 # The distortion model used. Supported models are listed in\n\
00450 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00451 # simple model of radial and tangential distortion - is sufficent.\n\
00452 string distortion_model\n\
00453 \n\
00454 # The distortion parameters, size depending on the distortion model.\n\
00455 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00456 float64[] D\n\
00457 \n\
00458 # Intrinsic camera matrix for the raw (distorted) images.\n\
00459 # [fx 0 cx]\n\
00460 # K = [ 0 fy cy]\n\
00461 # [ 0 0 1]\n\
00462 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00463 # coordinates using the focal lengths (fx, fy) and principal point\n\
00464 # (cx, cy).\n\
00465 float64[9] K # 3x3 row-major matrix\n\
00466 \n\
00467 # Rectification matrix (stereo cameras only)\n\
00468 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00469 # stereo image plane so that epipolar lines in both stereo images are\n\
00470 # parallel.\n\
00471 float64[9] R # 3x3 row-major matrix\n\
00472 \n\
00473 # Projection/camera matrix\n\
00474 # [fx' 0 cx' Tx]\n\
00475 # P = [ 0 fy' cy' Ty]\n\
00476 # [ 0 0 1 0]\n\
00477 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00478 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00479 # is the normal camera intrinsic matrix for the rectified image.\n\
00480 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00481 # coordinates using the focal lengths (fx', fy') and principal point\n\
00482 # (cx', cy') - these may differ from the values in K.\n\
00483 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00484 # also have R = the identity and P[1:3,1:3] = K.\n\
00485 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00486 # position of the optical center of the second camera in the first\n\
00487 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00488 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00489 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00490 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00491 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00492 # the rectified image is given by:\n\
00493 # [u v w]' = P * [X Y Z 1]'\n\
00494 # x = u / w\n\
00495 # y = v / w\n\
00496 # This holds for both images of a stereo pair.\n\
00497 float64[12] P # 3x4 row-major matrix\n\
00498 \n\
00499 \n\
00500 #######################################################################\n\
00501 # Operational Parameters #\n\
00502 #######################################################################\n\
00503 # These define the image region actually captured by the camera #\n\
00504 # driver. Although they affect the geometry of the output image, they #\n\
00505 # may be changed freely without recalibrating the camera. #\n\
00506 #######################################################################\n\
00507 \n\
00508 # Binning refers here to any camera setting which combines rectangular\n\
00509 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00510 # resolution of the output image to\n\
00511 # (width / binning_x) x (height / binning_y).\n\
00512 # The default values binning_x = binning_y = 0 is considered the same\n\
00513 # as binning_x = binning_y = 1 (no subsampling).\n\
00514 uint32 binning_x\n\
00515 uint32 binning_y\n\
00516 \n\
00517 # Region of interest (subwindow of full camera resolution), given in\n\
00518 # full resolution (unbinned) image coordinates. A particular ROI\n\
00519 # always denotes the same window of pixels on the camera sensor,\n\
00520 # regardless of binning settings.\n\
00521 # The default setting of roi (all values 0) is considered the same as\n\
00522 # full resolution (roi.width = width, roi.height = height).\n\
00523 RegionOfInterest roi\n\
00524 \n\
00525 ================================================================================\n\
00526 MSG: sensor_msgs/RegionOfInterest\n\
00527 # This message is used to specify a region of interest within an image.\n\
00528 #\n\
00529 # When used to specify the ROI setting of the camera when the image was\n\
00530 # taken, the height and width fields should either match the height and\n\
00531 # width fields for the associated image; or height = width = 0\n\
00532 # indicates that the full resolution image was captured.\n\
00533 \n\
00534 uint32 x_offset # Leftmost pixel of the ROI\n\
00535 # (0 if the ROI includes the left edge of the image)\n\
00536 uint32 y_offset # Topmost pixel of the ROI\n\
00537 # (0 if the ROI includes the top edge of the image)\n\
00538 uint32 height # Height of ROI\n\
00539 uint32 width # Width of ROI\n\
00540 \n\
00541 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00542 # ROI in this message. Typically this should be False if the full image\n\
00543 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00544 # used).\n\
00545 bool do_rectify\n\
00546 \n\
00547 ================================================================================\n\
00548 MSG: geometry_msgs/Vector3\n\
00549 # This represents a vector in free space. \n\
00550 \n\
00551 float64 x\n\
00552 float64 y\n\
00553 float64 z\n\
00554 ================================================================================\n\
00555 MSG: pr2_object_manipulation_msgs/IMGUIAdvancedOptions\n\
00556 \n\
00557 bool reactive_grasping\n\
00558 bool reactive_force \n\
00559 bool reactive_place\n\
00560 int32 lift_steps\n\
00561 int32 retreat_steps\n\
00562 int32 lift_direction_choice\n\
00563 int32 desired_approach\n\
00564 int32 min_approach\n\
00565 float32 max_contact_force\n\
00566 \n\
00567 "; }
00568 public:
00569 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00570
00571 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00572
00573 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00574 {
00575 ros::serialization::OStream stream(write_ptr, 1000000000);
00576 ros::serialization::serialize(stream, collision_checked);
00577 ros::serialization::serialize(stream, grasp_selection);
00578 ros::serialization::serialize(stream, arm_selection);
00579 ros::serialization::serialize(stream, reset_choice);
00580 ros::serialization::serialize(stream, arm_action_choice);
00581 ros::serialization::serialize(stream, arm_planner_choice);
00582 ros::serialization::serialize(stream, gripper_slider_position);
00583 ros::serialization::serialize(stream, selected_object);
00584 ros::serialization::serialize(stream, movable_obstacles);
00585 ros::serialization::serialize(stream, adv_options);
00586 return stream.getData();
00587 }
00588
00589 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00590 {
00591 ros::serialization::IStream stream(read_ptr, 1000000000);
00592 ros::serialization::deserialize(stream, collision_checked);
00593 ros::serialization::deserialize(stream, grasp_selection);
00594 ros::serialization::deserialize(stream, arm_selection);
00595 ros::serialization::deserialize(stream, reset_choice);
00596 ros::serialization::deserialize(stream, arm_action_choice);
00597 ros::serialization::deserialize(stream, arm_planner_choice);
00598 ros::serialization::deserialize(stream, gripper_slider_position);
00599 ros::serialization::deserialize(stream, selected_object);
00600 ros::serialization::deserialize(stream, movable_obstacles);
00601 ros::serialization::deserialize(stream, adv_options);
00602 return stream.getData();
00603 }
00604
00605 ROS_DEPRECATED virtual uint32_t serializationLength() const
00606 {
00607 uint32_t size = 0;
00608 size += ros::serialization::serializationLength(collision_checked);
00609 size += ros::serialization::serializationLength(grasp_selection);
00610 size += ros::serialization::serializationLength(arm_selection);
00611 size += ros::serialization::serializationLength(reset_choice);
00612 size += ros::serialization::serializationLength(arm_action_choice);
00613 size += ros::serialization::serializationLength(arm_planner_choice);
00614 size += ros::serialization::serializationLength(gripper_slider_position);
00615 size += ros::serialization::serializationLength(selected_object);
00616 size += ros::serialization::serializationLength(movable_obstacles);
00617 size += ros::serialization::serializationLength(adv_options);
00618 return size;
00619 }
00620
00621 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> > Ptr;
00622 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> const> ConstPtr;
00623 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00624 };
00625 typedef ::pr2_object_manipulation_msgs::IMGUIOptions_<std::allocator<void> > IMGUIOptions;
00626
00627 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIOptions> IMGUIOptionsPtr;
00628 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::IMGUIOptions const> IMGUIOptionsConstPtr;
00629
00630
00631 template<typename ContainerAllocator>
00632 std::ostream& operator<<(std::ostream& s, const ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> & v)
00633 {
00634 ros::message_operations::Printer< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> >::stream(s, "", v);
00635 return s;}
00636
00637 }
00638
00639 namespace ros
00640 {
00641 namespace message_traits
00642 {
00643 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> > : public TrueType {};
00644 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> const> : public TrueType {};
00645 template<class ContainerAllocator>
00646 struct MD5Sum< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> > {
00647 static const char* value()
00648 {
00649 return "8aeba15821e5be12a564fea38cf7ad87";
00650 }
00651
00652 static const char* value(const ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> &) { return value(); }
00653 static const uint64_t static_value1 = 0x8aeba15821e5be12ULL;
00654 static const uint64_t static_value2 = 0xa564fea38cf7ad87ULL;
00655 };
00656
00657 template<class ContainerAllocator>
00658 struct DataType< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> > {
00659 static const char* value()
00660 {
00661 return "pr2_object_manipulation_msgs/IMGUIOptions";
00662 }
00663
00664 static const char* value(const ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> &) { return value(); }
00665 };
00666
00667 template<class ContainerAllocator>
00668 struct Definition< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> > {
00669 static const char* value()
00670 {
00671 return "\n\
00672 # collision checking enabled\n\
00673 bool collision_checked\n\
00674 \n\
00675 # 0=call gripper click\n\
00676 # 1=grasp the provided graspable object\n\
00677 int32 grasp_selection\n\
00678 \n\
00679 # 0=right, 1=left arm\n\
00680 int32 arm_selection\n\
00681 \n\
00682 # for RESET commands\n\
00683 # 0=reset collision objects\n\
00684 # 1=reset attached objects\n\
00685 int32 reset_choice\n\
00686 \n\
00687 # for MOVE_ARM commands\n\
00688 # 0=side\n\
00689 # 1=front\n\
00690 # 2=side handoff\n\
00691 int32 arm_action_choice\n\
00692 \n\
00693 # for MOVE_ARM commands\n\
00694 # 0=open-loop\n\
00695 # 1=with planner\n\
00696 int32 arm_planner_choice\n\
00697 \n\
00698 # for MOVE_GRIPPER commands\n\
00699 # opening of gripper (0=closed..100=open)\n\
00700 int32 gripper_slider_position\n\
00701 \n\
00702 # used if grasp_selection == 1\n\
00703 object_manipulation_msgs/GraspableObject selected_object\n\
00704 \n\
00705 # indicates obstacles that can be moved during grasping\n\
00706 # presumably, the operator has marked these in some fashion\n\
00707 object_manipulation_msgs/GraspableObject[] movable_obstacles\n\
00708 \n\
00709 # more options..\n\
00710 IMGUIAdvancedOptions adv_options\n\
00711 \n\
00712 ================================================================================\n\
00713 MSG: object_manipulation_msgs/GraspableObject\n\
00714 # an object that the object_manipulator can work on\n\
00715 \n\
00716 # a graspable object can be represented in multiple ways. This message\n\
00717 # can contain all of them. Which one is actually used is up to the receiver\n\
00718 # of this message. When adding new representations, one must be careful that\n\
00719 # they have reasonable lightweight defaults indicating that that particular\n\
00720 # representation is not available.\n\
00721 \n\
00722 # the tf frame to be used as a reference frame when combining information from\n\
00723 # the different representations below\n\
00724 string reference_frame_id\n\
00725 \n\
00726 # potential recognition results from a database of models\n\
00727 # all poses are relative to the object reference pose\n\
00728 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00729 \n\
00730 # the point cloud itself\n\
00731 sensor_msgs/PointCloud cluster\n\
00732 \n\
00733 # a region of a PointCloud2 of interest\n\
00734 object_manipulation_msgs/SceneRegion region\n\
00735 \n\
00736 # the name that this object has in the collision environment\n\
00737 string collision_name\n\
00738 ================================================================================\n\
00739 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00740 # Informs that a specific model from the Model Database has been \n\
00741 # identified at a certain location\n\
00742 \n\
00743 # the database id of the model\n\
00744 int32 model_id\n\
00745 \n\
00746 # the pose that it can be found in\n\
00747 geometry_msgs/PoseStamped pose\n\
00748 \n\
00749 # a measure of the confidence level in this detection result\n\
00750 float32 confidence\n\
00751 \n\
00752 # the name of the object detector that generated this detection result\n\
00753 string detector_name\n\
00754 \n\
00755 ================================================================================\n\
00756 MSG: geometry_msgs/PoseStamped\n\
00757 # A Pose with reference coordinate frame and timestamp\n\
00758 Header header\n\
00759 Pose pose\n\
00760 \n\
00761 ================================================================================\n\
00762 MSG: std_msgs/Header\n\
00763 # Standard metadata for higher-level stamped data types.\n\
00764 # This is generally used to communicate timestamped data \n\
00765 # in a particular coordinate frame.\n\
00766 # \n\
00767 # sequence ID: consecutively increasing ID \n\
00768 uint32 seq\n\
00769 #Two-integer timestamp that is expressed as:\n\
00770 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00771 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00772 # time-handling sugar is provided by the client library\n\
00773 time stamp\n\
00774 #Frame this data is associated with\n\
00775 # 0: no frame\n\
00776 # 1: global frame\n\
00777 string frame_id\n\
00778 \n\
00779 ================================================================================\n\
00780 MSG: geometry_msgs/Pose\n\
00781 # A representation of pose in free space, composed of postion and orientation. \n\
00782 Point position\n\
00783 Quaternion orientation\n\
00784 \n\
00785 ================================================================================\n\
00786 MSG: geometry_msgs/Point\n\
00787 # This contains the position of a point in free space\n\
00788 float64 x\n\
00789 float64 y\n\
00790 float64 z\n\
00791 \n\
00792 ================================================================================\n\
00793 MSG: geometry_msgs/Quaternion\n\
00794 # This represents an orientation in free space in quaternion form.\n\
00795 \n\
00796 float64 x\n\
00797 float64 y\n\
00798 float64 z\n\
00799 float64 w\n\
00800 \n\
00801 ================================================================================\n\
00802 MSG: sensor_msgs/PointCloud\n\
00803 # This message holds a collection of 3d points, plus optional additional\n\
00804 # information about each point.\n\
00805 \n\
00806 # Time of sensor data acquisition, coordinate frame ID.\n\
00807 Header header\n\
00808 \n\
00809 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00810 # in the frame given in the header.\n\
00811 geometry_msgs/Point32[] points\n\
00812 \n\
00813 # Each channel should have the same number of elements as points array,\n\
00814 # and the data in each channel should correspond 1:1 with each point.\n\
00815 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00816 ChannelFloat32[] channels\n\
00817 \n\
00818 ================================================================================\n\
00819 MSG: geometry_msgs/Point32\n\
00820 # This contains the position of a point in free space(with 32 bits of precision).\n\
00821 # It is recommeded to use Point wherever possible instead of Point32. \n\
00822 # \n\
00823 # This recommendation is to promote interoperability. \n\
00824 #\n\
00825 # This message is designed to take up less space when sending\n\
00826 # lots of points at once, as in the case of a PointCloud. \n\
00827 \n\
00828 float32 x\n\
00829 float32 y\n\
00830 float32 z\n\
00831 ================================================================================\n\
00832 MSG: sensor_msgs/ChannelFloat32\n\
00833 # This message is used by the PointCloud message to hold optional data\n\
00834 # associated with each point in the cloud. The length of the values\n\
00835 # array should be the same as the length of the points array in the\n\
00836 # PointCloud, and each value should be associated with the corresponding\n\
00837 # point.\n\
00838 \n\
00839 # Channel names in existing practice include:\n\
00840 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00841 # This is opposite to usual conventions but remains for\n\
00842 # historical reasons. The newer PointCloud2 message has no\n\
00843 # such problem.\n\
00844 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00845 # (R,G,B) values packed into the least significant 24 bits,\n\
00846 # in order.\n\
00847 # \"intensity\" - laser or pixel intensity.\n\
00848 # \"distance\"\n\
00849 \n\
00850 # The channel name should give semantics of the channel (e.g.\n\
00851 # \"intensity\" instead of \"value\").\n\
00852 string name\n\
00853 \n\
00854 # The values array should be 1-1 with the elements of the associated\n\
00855 # PointCloud.\n\
00856 float32[] values\n\
00857 \n\
00858 ================================================================================\n\
00859 MSG: object_manipulation_msgs/SceneRegion\n\
00860 # Point cloud\n\
00861 sensor_msgs/PointCloud2 cloud\n\
00862 \n\
00863 # Indices for the region of interest\n\
00864 int32[] mask\n\
00865 \n\
00866 # One of the corresponding 2D images, if applicable\n\
00867 sensor_msgs/Image image\n\
00868 \n\
00869 # The disparity image, if applicable\n\
00870 sensor_msgs/Image disparity_image\n\
00871 \n\
00872 # Camera info for the camera that took the image\n\
00873 sensor_msgs/CameraInfo cam_info\n\
00874 \n\
00875 # a 3D region of interest for grasp planning\n\
00876 geometry_msgs/PoseStamped roi_box_pose\n\
00877 geometry_msgs/Vector3 roi_box_dims\n\
00878 \n\
00879 ================================================================================\n\
00880 MSG: sensor_msgs/PointCloud2\n\
00881 # This message holds a collection of N-dimensional points, which may\n\
00882 # contain additional information such as normals, intensity, etc. The\n\
00883 # point data is stored as a binary blob, its layout described by the\n\
00884 # contents of the \"fields\" array.\n\
00885 \n\
00886 # The point cloud data may be organized 2d (image-like) or 1d\n\
00887 # (unordered). Point clouds organized as 2d images may be produced by\n\
00888 # camera depth sensors such as stereo or time-of-flight.\n\
00889 \n\
00890 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00891 # points).\n\
00892 Header header\n\
00893 \n\
00894 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00895 # 1 and width is the length of the point cloud.\n\
00896 uint32 height\n\
00897 uint32 width\n\
00898 \n\
00899 # Describes the channels and their layout in the binary data blob.\n\
00900 PointField[] fields\n\
00901 \n\
00902 bool is_bigendian # Is this data bigendian?\n\
00903 uint32 point_step # Length of a point in bytes\n\
00904 uint32 row_step # Length of a row in bytes\n\
00905 uint8[] data # Actual point data, size is (row_step*height)\n\
00906 \n\
00907 bool is_dense # True if there are no invalid points\n\
00908 \n\
00909 ================================================================================\n\
00910 MSG: sensor_msgs/PointField\n\
00911 # This message holds the description of one point entry in the\n\
00912 # PointCloud2 message format.\n\
00913 uint8 INT8 = 1\n\
00914 uint8 UINT8 = 2\n\
00915 uint8 INT16 = 3\n\
00916 uint8 UINT16 = 4\n\
00917 uint8 INT32 = 5\n\
00918 uint8 UINT32 = 6\n\
00919 uint8 FLOAT32 = 7\n\
00920 uint8 FLOAT64 = 8\n\
00921 \n\
00922 string name # Name of field\n\
00923 uint32 offset # Offset from start of point struct\n\
00924 uint8 datatype # Datatype enumeration, see above\n\
00925 uint32 count # How many elements in the field\n\
00926 \n\
00927 ================================================================================\n\
00928 MSG: sensor_msgs/Image\n\
00929 # This message contains an uncompressed image\n\
00930 # (0, 0) is at top-left corner of image\n\
00931 #\n\
00932 \n\
00933 Header header # Header timestamp should be acquisition time of image\n\
00934 # Header frame_id should be optical frame of camera\n\
00935 # origin of frame should be optical center of cameara\n\
00936 # +x should point to the right in the image\n\
00937 # +y should point down in the image\n\
00938 # +z should point into to plane of the image\n\
00939 # If the frame_id here and the frame_id of the CameraInfo\n\
00940 # message associated with the image conflict\n\
00941 # the behavior is undefined\n\
00942 \n\
00943 uint32 height # image height, that is, number of rows\n\
00944 uint32 width # image width, that is, number of columns\n\
00945 \n\
00946 # The legal values for encoding are in file src/image_encodings.cpp\n\
00947 # If you want to standardize a new string format, join\n\
00948 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00949 \n\
00950 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00951 # taken from the list of strings in src/image_encodings.cpp\n\
00952 \n\
00953 uint8 is_bigendian # is this data bigendian?\n\
00954 uint32 step # Full row length in bytes\n\
00955 uint8[] data # actual matrix data, size is (step * rows)\n\
00956 \n\
00957 ================================================================================\n\
00958 MSG: sensor_msgs/CameraInfo\n\
00959 # This message defines meta information for a camera. It should be in a\n\
00960 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00961 # image topics named:\n\
00962 #\n\
00963 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00964 # image - monochrome, distorted\n\
00965 # image_color - color, distorted\n\
00966 # image_rect - monochrome, rectified\n\
00967 # image_rect_color - color, rectified\n\
00968 #\n\
00969 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00970 # for producing the four processed image topics from image_raw and\n\
00971 # camera_info. The meaning of the camera parameters are described in\n\
00972 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00973 #\n\
00974 # The image_geometry package provides a user-friendly interface to\n\
00975 # common operations using this meta information. If you want to, e.g.,\n\
00976 # project a 3d point into image coordinates, we strongly recommend\n\
00977 # using image_geometry.\n\
00978 #\n\
00979 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00980 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00981 # indicates an uncalibrated camera.\n\
00982 \n\
00983 #######################################################################\n\
00984 # Image acquisition info #\n\
00985 #######################################################################\n\
00986 \n\
00987 # Time of image acquisition, camera coordinate frame ID\n\
00988 Header header # Header timestamp should be acquisition time of image\n\
00989 # Header frame_id should be optical frame of camera\n\
00990 # origin of frame should be optical center of camera\n\
00991 # +x should point to the right in the image\n\
00992 # +y should point down in the image\n\
00993 # +z should point into the plane of the image\n\
00994 \n\
00995 \n\
00996 #######################################################################\n\
00997 # Calibration Parameters #\n\
00998 #######################################################################\n\
00999 # These are fixed during camera calibration. Their values will be the #\n\
01000 # same in all messages until the camera is recalibrated. Note that #\n\
01001 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01002 # #\n\
01003 # The internal parameters can be used to warp a raw (distorted) image #\n\
01004 # to: #\n\
01005 # 1. An undistorted image (requires D and K) #\n\
01006 # 2. A rectified image (requires D, K, R) #\n\
01007 # The projection matrix P projects 3D points into the rectified image.#\n\
01008 #######################################################################\n\
01009 \n\
01010 # The image dimensions with which the camera was calibrated. Normally\n\
01011 # this will be the full camera resolution in pixels.\n\
01012 uint32 height\n\
01013 uint32 width\n\
01014 \n\
01015 # The distortion model used. Supported models are listed in\n\
01016 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01017 # simple model of radial and tangential distortion - is sufficent.\n\
01018 string distortion_model\n\
01019 \n\
01020 # The distortion parameters, size depending on the distortion model.\n\
01021 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01022 float64[] D\n\
01023 \n\
01024 # Intrinsic camera matrix for the raw (distorted) images.\n\
01025 # [fx 0 cx]\n\
01026 # K = [ 0 fy cy]\n\
01027 # [ 0 0 1]\n\
01028 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01029 # coordinates using the focal lengths (fx, fy) and principal point\n\
01030 # (cx, cy).\n\
01031 float64[9] K # 3x3 row-major matrix\n\
01032 \n\
01033 # Rectification matrix (stereo cameras only)\n\
01034 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01035 # stereo image plane so that epipolar lines in both stereo images are\n\
01036 # parallel.\n\
01037 float64[9] R # 3x3 row-major matrix\n\
01038 \n\
01039 # Projection/camera matrix\n\
01040 # [fx' 0 cx' Tx]\n\
01041 # P = [ 0 fy' cy' Ty]\n\
01042 # [ 0 0 1 0]\n\
01043 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01044 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01045 # is the normal camera intrinsic matrix for the rectified image.\n\
01046 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01047 # coordinates using the focal lengths (fx', fy') and principal point\n\
01048 # (cx', cy') - these may differ from the values in K.\n\
01049 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01050 # also have R = the identity and P[1:3,1:3] = K.\n\
01051 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01052 # position of the optical center of the second camera in the first\n\
01053 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01054 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01055 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01056 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01057 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01058 # the rectified image is given by:\n\
01059 # [u v w]' = P * [X Y Z 1]'\n\
01060 # x = u / w\n\
01061 # y = v / w\n\
01062 # This holds for both images of a stereo pair.\n\
01063 float64[12] P # 3x4 row-major matrix\n\
01064 \n\
01065 \n\
01066 #######################################################################\n\
01067 # Operational Parameters #\n\
01068 #######################################################################\n\
01069 # These define the image region actually captured by the camera #\n\
01070 # driver. Although they affect the geometry of the output image, they #\n\
01071 # may be changed freely without recalibrating the camera. #\n\
01072 #######################################################################\n\
01073 \n\
01074 # Binning refers here to any camera setting which combines rectangular\n\
01075 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01076 # resolution of the output image to\n\
01077 # (width / binning_x) x (height / binning_y).\n\
01078 # The default values binning_x = binning_y = 0 is considered the same\n\
01079 # as binning_x = binning_y = 1 (no subsampling).\n\
01080 uint32 binning_x\n\
01081 uint32 binning_y\n\
01082 \n\
01083 # Region of interest (subwindow of full camera resolution), given in\n\
01084 # full resolution (unbinned) image coordinates. A particular ROI\n\
01085 # always denotes the same window of pixels on the camera sensor,\n\
01086 # regardless of binning settings.\n\
01087 # The default setting of roi (all values 0) is considered the same as\n\
01088 # full resolution (roi.width = width, roi.height = height).\n\
01089 RegionOfInterest roi\n\
01090 \n\
01091 ================================================================================\n\
01092 MSG: sensor_msgs/RegionOfInterest\n\
01093 # This message is used to specify a region of interest within an image.\n\
01094 #\n\
01095 # When used to specify the ROI setting of the camera when the image was\n\
01096 # taken, the height and width fields should either match the height and\n\
01097 # width fields for the associated image; or height = width = 0\n\
01098 # indicates that the full resolution image was captured.\n\
01099 \n\
01100 uint32 x_offset # Leftmost pixel of the ROI\n\
01101 # (0 if the ROI includes the left edge of the image)\n\
01102 uint32 y_offset # Topmost pixel of the ROI\n\
01103 # (0 if the ROI includes the top edge of the image)\n\
01104 uint32 height # Height of ROI\n\
01105 uint32 width # Width of ROI\n\
01106 \n\
01107 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01108 # ROI in this message. Typically this should be False if the full image\n\
01109 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01110 # used).\n\
01111 bool do_rectify\n\
01112 \n\
01113 ================================================================================\n\
01114 MSG: geometry_msgs/Vector3\n\
01115 # This represents a vector in free space. \n\
01116 \n\
01117 float64 x\n\
01118 float64 y\n\
01119 float64 z\n\
01120 ================================================================================\n\
01121 MSG: pr2_object_manipulation_msgs/IMGUIAdvancedOptions\n\
01122 \n\
01123 bool reactive_grasping\n\
01124 bool reactive_force \n\
01125 bool reactive_place\n\
01126 int32 lift_steps\n\
01127 int32 retreat_steps\n\
01128 int32 lift_direction_choice\n\
01129 int32 desired_approach\n\
01130 int32 min_approach\n\
01131 float32 max_contact_force\n\
01132 \n\
01133 ";
01134 }
01135
01136 static const char* value(const ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> &) { return value(); }
01137 };
01138
01139 }
01140 }
01141
01142 namespace ros
01143 {
01144 namespace serialization
01145 {
01146
01147 template<class ContainerAllocator> struct Serializer< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> >
01148 {
01149 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01150 {
01151 stream.next(m.collision_checked);
01152 stream.next(m.grasp_selection);
01153 stream.next(m.arm_selection);
01154 stream.next(m.reset_choice);
01155 stream.next(m.arm_action_choice);
01156 stream.next(m.arm_planner_choice);
01157 stream.next(m.gripper_slider_position);
01158 stream.next(m.selected_object);
01159 stream.next(m.movable_obstacles);
01160 stream.next(m.adv_options);
01161 }
01162
01163 ROS_DECLARE_ALLINONE_SERIALIZER;
01164 };
01165 }
01166 }
01167
01168 namespace ros
01169 {
01170 namespace message_operations
01171 {
01172
01173 template<class ContainerAllocator>
01174 struct Printer< ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> >
01175 {
01176 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_object_manipulation_msgs::IMGUIOptions_<ContainerAllocator> & v)
01177 {
01178 s << indent << "collision_checked: ";
01179 Printer<uint8_t>::stream(s, indent + " ", v.collision_checked);
01180 s << indent << "grasp_selection: ";
01181 Printer<int32_t>::stream(s, indent + " ", v.grasp_selection);
01182 s << indent << "arm_selection: ";
01183 Printer<int32_t>::stream(s, indent + " ", v.arm_selection);
01184 s << indent << "reset_choice: ";
01185 Printer<int32_t>::stream(s, indent + " ", v.reset_choice);
01186 s << indent << "arm_action_choice: ";
01187 Printer<int32_t>::stream(s, indent + " ", v.arm_action_choice);
01188 s << indent << "arm_planner_choice: ";
01189 Printer<int32_t>::stream(s, indent + " ", v.arm_planner_choice);
01190 s << indent << "gripper_slider_position: ";
01191 Printer<int32_t>::stream(s, indent + " ", v.gripper_slider_position);
01192 s << indent << "selected_object: ";
01193 s << std::endl;
01194 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.selected_object);
01195 s << indent << "movable_obstacles[]" << std::endl;
01196 for (size_t i = 0; i < v.movable_obstacles.size(); ++i)
01197 {
01198 s << indent << " movable_obstacles[" << i << "]: ";
01199 s << std::endl;
01200 s << indent;
01201 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.movable_obstacles[i]);
01202 }
01203 s << indent << "adv_options: ";
01204 s << std::endl;
01205 Printer< ::pr2_object_manipulation_msgs::IMGUIAdvancedOptions_<ContainerAllocator> >::stream(s, indent + " ", v.adv_options);
01206 }
01207 };
01208
01209
01210 }
01211 }
01212
01213 #endif // PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_IMGUIOPTIONS_H
01214