00001
00002 #ifndef PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEGOAL_H
00003 #define PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEGOAL_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "geometry_msgs/PoseStamped.h"
00018 #include "object_manipulation_msgs/GraspableObject.h"
00019 #include "object_manipulation_msgs/Grasp.h"
00020
00021 namespace pr2_object_manipulation_msgs
00022 {
00023 template <class ContainerAllocator>
00024 struct GetGripperPoseGoal_ {
00025 typedef GetGripperPoseGoal_<ContainerAllocator> Type;
00026
00027 GetGripperPoseGoal_()
00028 : arm_name()
00029 , gripper_pose()
00030 , gripper_opening(0.0)
00031 , object()
00032 , grasp()
00033 {
00034 }
00035
00036 GetGripperPoseGoal_(const ContainerAllocator& _alloc)
00037 : arm_name(_alloc)
00038 , gripper_pose(_alloc)
00039 , gripper_opening(0.0)
00040 , object(_alloc)
00041 , grasp(_alloc)
00042 {
00043 }
00044
00045 typedef std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > _arm_name_type;
00046 std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > arm_name;
00047
00048 typedef ::geometry_msgs::PoseStamped_<ContainerAllocator> _gripper_pose_type;
00049 ::geometry_msgs::PoseStamped_<ContainerAllocator> gripper_pose;
00050
00051 typedef float _gripper_opening_type;
00052 float gripper_opening;
00053
00054 typedef ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> _object_type;
00055 ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> object;
00056
00057 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type;
00058 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp;
00059
00060
00061 private:
00062 static const char* __s_getDataType_() { return "pr2_object_manipulation_msgs/GetGripperPoseGoal"; }
00063 public:
00064 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00065
00066 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00067
00068 private:
00069 static const char* __s_getMD5Sum_() { return "7ca516fef9c15991c035b01ff6268377"; }
00070 public:
00071 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00072
00073 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00074
00075 private:
00076 static const char* __s_getMessageDefinition_() { return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00077 \n\
00078 # for which arm are we requesting a pose\n\
00079 # useful for knowing which arm to initialize from when seed is empty\n\
00080 string arm_name\n\
00081 \n\
00082 # a seed position for the ghosted gripper. If emtpy (quaternion of norm 0)\n\
00083 # the ghosted gripper will be initialized at the current position of the gripper\n\
00084 geometry_msgs/PoseStamped gripper_pose\n\
00085 float32 gripper_opening\n\
00086 \n\
00087 # An object that the gripper is holding. May be empty.\n\
00088 object_manipulation_msgs/GraspableObject object\n\
00089 \n\
00090 # how we are holding the object, if any.\n\
00091 object_manipulation_msgs/Grasp grasp\n\
00092 \n\
00093 \n\
00094 ================================================================================\n\
00095 MSG: geometry_msgs/PoseStamped\n\
00096 # A Pose with reference coordinate frame and timestamp\n\
00097 Header header\n\
00098 Pose pose\n\
00099 \n\
00100 ================================================================================\n\
00101 MSG: std_msgs/Header\n\
00102 # Standard metadata for higher-level stamped data types.\n\
00103 # This is generally used to communicate timestamped data \n\
00104 # in a particular coordinate frame.\n\
00105 # \n\
00106 # sequence ID: consecutively increasing ID \n\
00107 uint32 seq\n\
00108 #Two-integer timestamp that is expressed as:\n\
00109 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00110 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00111 # time-handling sugar is provided by the client library\n\
00112 time stamp\n\
00113 #Frame this data is associated with\n\
00114 # 0: no frame\n\
00115 # 1: global frame\n\
00116 string frame_id\n\
00117 \n\
00118 ================================================================================\n\
00119 MSG: geometry_msgs/Pose\n\
00120 # A representation of pose in free space, composed of postion and orientation. \n\
00121 Point position\n\
00122 Quaternion orientation\n\
00123 \n\
00124 ================================================================================\n\
00125 MSG: geometry_msgs/Point\n\
00126 # This contains the position of a point in free space\n\
00127 float64 x\n\
00128 float64 y\n\
00129 float64 z\n\
00130 \n\
00131 ================================================================================\n\
00132 MSG: geometry_msgs/Quaternion\n\
00133 # This represents an orientation in free space in quaternion form.\n\
00134 \n\
00135 float64 x\n\
00136 float64 y\n\
00137 float64 z\n\
00138 float64 w\n\
00139 \n\
00140 ================================================================================\n\
00141 MSG: object_manipulation_msgs/GraspableObject\n\
00142 # an object that the object_manipulator can work on\n\
00143 \n\
00144 # a graspable object can be represented in multiple ways. This message\n\
00145 # can contain all of them. Which one is actually used is up to the receiver\n\
00146 # of this message. When adding new representations, one must be careful that\n\
00147 # they have reasonable lightweight defaults indicating that that particular\n\
00148 # representation is not available.\n\
00149 \n\
00150 # the tf frame to be used as a reference frame when combining information from\n\
00151 # the different representations below\n\
00152 string reference_frame_id\n\
00153 \n\
00154 # potential recognition results from a database of models\n\
00155 # all poses are relative to the object reference pose\n\
00156 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00157 \n\
00158 # the point cloud itself\n\
00159 sensor_msgs/PointCloud cluster\n\
00160 \n\
00161 # a region of a PointCloud2 of interest\n\
00162 object_manipulation_msgs/SceneRegion region\n\
00163 \n\
00164 # the name that this object has in the collision environment\n\
00165 string collision_name\n\
00166 ================================================================================\n\
00167 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00168 # Informs that a specific model from the Model Database has been \n\
00169 # identified at a certain location\n\
00170 \n\
00171 # the database id of the model\n\
00172 int32 model_id\n\
00173 \n\
00174 # the pose that it can be found in\n\
00175 geometry_msgs/PoseStamped pose\n\
00176 \n\
00177 # a measure of the confidence level in this detection result\n\
00178 float32 confidence\n\
00179 \n\
00180 # the name of the object detector that generated this detection result\n\
00181 string detector_name\n\
00182 \n\
00183 ================================================================================\n\
00184 MSG: sensor_msgs/PointCloud\n\
00185 # This message holds a collection of 3d points, plus optional additional\n\
00186 # information about each point.\n\
00187 \n\
00188 # Time of sensor data acquisition, coordinate frame ID.\n\
00189 Header header\n\
00190 \n\
00191 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00192 # in the frame given in the header.\n\
00193 geometry_msgs/Point32[] points\n\
00194 \n\
00195 # Each channel should have the same number of elements as points array,\n\
00196 # and the data in each channel should correspond 1:1 with each point.\n\
00197 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00198 ChannelFloat32[] channels\n\
00199 \n\
00200 ================================================================================\n\
00201 MSG: geometry_msgs/Point32\n\
00202 # This contains the position of a point in free space(with 32 bits of precision).\n\
00203 # It is recommeded to use Point wherever possible instead of Point32. \n\
00204 # \n\
00205 # This recommendation is to promote interoperability. \n\
00206 #\n\
00207 # This message is designed to take up less space when sending\n\
00208 # lots of points at once, as in the case of a PointCloud. \n\
00209 \n\
00210 float32 x\n\
00211 float32 y\n\
00212 float32 z\n\
00213 ================================================================================\n\
00214 MSG: sensor_msgs/ChannelFloat32\n\
00215 # This message is used by the PointCloud message to hold optional data\n\
00216 # associated with each point in the cloud. The length of the values\n\
00217 # array should be the same as the length of the points array in the\n\
00218 # PointCloud, and each value should be associated with the corresponding\n\
00219 # point.\n\
00220 \n\
00221 # Channel names in existing practice include:\n\
00222 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00223 # This is opposite to usual conventions but remains for\n\
00224 # historical reasons. The newer PointCloud2 message has no\n\
00225 # such problem.\n\
00226 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00227 # (R,G,B) values packed into the least significant 24 bits,\n\
00228 # in order.\n\
00229 # \"intensity\" - laser or pixel intensity.\n\
00230 # \"distance\"\n\
00231 \n\
00232 # The channel name should give semantics of the channel (e.g.\n\
00233 # \"intensity\" instead of \"value\").\n\
00234 string name\n\
00235 \n\
00236 # The values array should be 1-1 with the elements of the associated\n\
00237 # PointCloud.\n\
00238 float32[] values\n\
00239 \n\
00240 ================================================================================\n\
00241 MSG: object_manipulation_msgs/SceneRegion\n\
00242 # Point cloud\n\
00243 sensor_msgs/PointCloud2 cloud\n\
00244 \n\
00245 # Indices for the region of interest\n\
00246 int32[] mask\n\
00247 \n\
00248 # One of the corresponding 2D images, if applicable\n\
00249 sensor_msgs/Image image\n\
00250 \n\
00251 # The disparity image, if applicable\n\
00252 sensor_msgs/Image disparity_image\n\
00253 \n\
00254 # Camera info for the camera that took the image\n\
00255 sensor_msgs/CameraInfo cam_info\n\
00256 \n\
00257 # a 3D region of interest for grasp planning\n\
00258 geometry_msgs/PoseStamped roi_box_pose\n\
00259 geometry_msgs/Vector3 roi_box_dims\n\
00260 \n\
00261 ================================================================================\n\
00262 MSG: sensor_msgs/PointCloud2\n\
00263 # This message holds a collection of N-dimensional points, which may\n\
00264 # contain additional information such as normals, intensity, etc. The\n\
00265 # point data is stored as a binary blob, its layout described by the\n\
00266 # contents of the \"fields\" array.\n\
00267 \n\
00268 # The point cloud data may be organized 2d (image-like) or 1d\n\
00269 # (unordered). Point clouds organized as 2d images may be produced by\n\
00270 # camera depth sensors such as stereo or time-of-flight.\n\
00271 \n\
00272 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00273 # points).\n\
00274 Header header\n\
00275 \n\
00276 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00277 # 1 and width is the length of the point cloud.\n\
00278 uint32 height\n\
00279 uint32 width\n\
00280 \n\
00281 # Describes the channels and their layout in the binary data blob.\n\
00282 PointField[] fields\n\
00283 \n\
00284 bool is_bigendian # Is this data bigendian?\n\
00285 uint32 point_step # Length of a point in bytes\n\
00286 uint32 row_step # Length of a row in bytes\n\
00287 uint8[] data # Actual point data, size is (row_step*height)\n\
00288 \n\
00289 bool is_dense # True if there are no invalid points\n\
00290 \n\
00291 ================================================================================\n\
00292 MSG: sensor_msgs/PointField\n\
00293 # This message holds the description of one point entry in the\n\
00294 # PointCloud2 message format.\n\
00295 uint8 INT8 = 1\n\
00296 uint8 UINT8 = 2\n\
00297 uint8 INT16 = 3\n\
00298 uint8 UINT16 = 4\n\
00299 uint8 INT32 = 5\n\
00300 uint8 UINT32 = 6\n\
00301 uint8 FLOAT32 = 7\n\
00302 uint8 FLOAT64 = 8\n\
00303 \n\
00304 string name # Name of field\n\
00305 uint32 offset # Offset from start of point struct\n\
00306 uint8 datatype # Datatype enumeration, see above\n\
00307 uint32 count # How many elements in the field\n\
00308 \n\
00309 ================================================================================\n\
00310 MSG: sensor_msgs/Image\n\
00311 # This message contains an uncompressed image\n\
00312 # (0, 0) is at top-left corner of image\n\
00313 #\n\
00314 \n\
00315 Header header # Header timestamp should be acquisition time of image\n\
00316 # Header frame_id should be optical frame of camera\n\
00317 # origin of frame should be optical center of cameara\n\
00318 # +x should point to the right in the image\n\
00319 # +y should point down in the image\n\
00320 # +z should point into to plane of the image\n\
00321 # If the frame_id here and the frame_id of the CameraInfo\n\
00322 # message associated with the image conflict\n\
00323 # the behavior is undefined\n\
00324 \n\
00325 uint32 height # image height, that is, number of rows\n\
00326 uint32 width # image width, that is, number of columns\n\
00327 \n\
00328 # The legal values for encoding are in file src/image_encodings.cpp\n\
00329 # If you want to standardize a new string format, join\n\
00330 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00331 \n\
00332 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00333 # taken from the list of strings in src/image_encodings.cpp\n\
00334 \n\
00335 uint8 is_bigendian # is this data bigendian?\n\
00336 uint32 step # Full row length in bytes\n\
00337 uint8[] data # actual matrix data, size is (step * rows)\n\
00338 \n\
00339 ================================================================================\n\
00340 MSG: sensor_msgs/CameraInfo\n\
00341 # This message defines meta information for a camera. It should be in a\n\
00342 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00343 # image topics named:\n\
00344 #\n\
00345 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00346 # image - monochrome, distorted\n\
00347 # image_color - color, distorted\n\
00348 # image_rect - monochrome, rectified\n\
00349 # image_rect_color - color, rectified\n\
00350 #\n\
00351 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00352 # for producing the four processed image topics from image_raw and\n\
00353 # camera_info. The meaning of the camera parameters are described in\n\
00354 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00355 #\n\
00356 # The image_geometry package provides a user-friendly interface to\n\
00357 # common operations using this meta information. If you want to, e.g.,\n\
00358 # project a 3d point into image coordinates, we strongly recommend\n\
00359 # using image_geometry.\n\
00360 #\n\
00361 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00362 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00363 # indicates an uncalibrated camera.\n\
00364 \n\
00365 #######################################################################\n\
00366 # Image acquisition info #\n\
00367 #######################################################################\n\
00368 \n\
00369 # Time of image acquisition, camera coordinate frame ID\n\
00370 Header header # Header timestamp should be acquisition time of image\n\
00371 # Header frame_id should be optical frame of camera\n\
00372 # origin of frame should be optical center of camera\n\
00373 # +x should point to the right in the image\n\
00374 # +y should point down in the image\n\
00375 # +z should point into the plane of the image\n\
00376 \n\
00377 \n\
00378 #######################################################################\n\
00379 # Calibration Parameters #\n\
00380 #######################################################################\n\
00381 # These are fixed during camera calibration. Their values will be the #\n\
00382 # same in all messages until the camera is recalibrated. Note that #\n\
00383 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00384 # #\n\
00385 # The internal parameters can be used to warp a raw (distorted) image #\n\
00386 # to: #\n\
00387 # 1. An undistorted image (requires D and K) #\n\
00388 # 2. A rectified image (requires D, K, R) #\n\
00389 # The projection matrix P projects 3D points into the rectified image.#\n\
00390 #######################################################################\n\
00391 \n\
00392 # The image dimensions with which the camera was calibrated. Normally\n\
00393 # this will be the full camera resolution in pixels.\n\
00394 uint32 height\n\
00395 uint32 width\n\
00396 \n\
00397 # The distortion model used. Supported models are listed in\n\
00398 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00399 # simple model of radial and tangential distortion - is sufficent.\n\
00400 string distortion_model\n\
00401 \n\
00402 # The distortion parameters, size depending on the distortion model.\n\
00403 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00404 float64[] D\n\
00405 \n\
00406 # Intrinsic camera matrix for the raw (distorted) images.\n\
00407 # [fx 0 cx]\n\
00408 # K = [ 0 fy cy]\n\
00409 # [ 0 0 1]\n\
00410 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00411 # coordinates using the focal lengths (fx, fy) and principal point\n\
00412 # (cx, cy).\n\
00413 float64[9] K # 3x3 row-major matrix\n\
00414 \n\
00415 # Rectification matrix (stereo cameras only)\n\
00416 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00417 # stereo image plane so that epipolar lines in both stereo images are\n\
00418 # parallel.\n\
00419 float64[9] R # 3x3 row-major matrix\n\
00420 \n\
00421 # Projection/camera matrix\n\
00422 # [fx' 0 cx' Tx]\n\
00423 # P = [ 0 fy' cy' Ty]\n\
00424 # [ 0 0 1 0]\n\
00425 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00426 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00427 # is the normal camera intrinsic matrix for the rectified image.\n\
00428 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00429 # coordinates using the focal lengths (fx', fy') and principal point\n\
00430 # (cx', cy') - these may differ from the values in K.\n\
00431 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00432 # also have R = the identity and P[1:3,1:3] = K.\n\
00433 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00434 # position of the optical center of the second camera in the first\n\
00435 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00436 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00437 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00438 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00439 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00440 # the rectified image is given by:\n\
00441 # [u v w]' = P * [X Y Z 1]'\n\
00442 # x = u / w\n\
00443 # y = v / w\n\
00444 # This holds for both images of a stereo pair.\n\
00445 float64[12] P # 3x4 row-major matrix\n\
00446 \n\
00447 \n\
00448 #######################################################################\n\
00449 # Operational Parameters #\n\
00450 #######################################################################\n\
00451 # These define the image region actually captured by the camera #\n\
00452 # driver. Although they affect the geometry of the output image, they #\n\
00453 # may be changed freely without recalibrating the camera. #\n\
00454 #######################################################################\n\
00455 \n\
00456 # Binning refers here to any camera setting which combines rectangular\n\
00457 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00458 # resolution of the output image to\n\
00459 # (width / binning_x) x (height / binning_y).\n\
00460 # The default values binning_x = binning_y = 0 is considered the same\n\
00461 # as binning_x = binning_y = 1 (no subsampling).\n\
00462 uint32 binning_x\n\
00463 uint32 binning_y\n\
00464 \n\
00465 # Region of interest (subwindow of full camera resolution), given in\n\
00466 # full resolution (unbinned) image coordinates. A particular ROI\n\
00467 # always denotes the same window of pixels on the camera sensor,\n\
00468 # regardless of binning settings.\n\
00469 # The default setting of roi (all values 0) is considered the same as\n\
00470 # full resolution (roi.width = width, roi.height = height).\n\
00471 RegionOfInterest roi\n\
00472 \n\
00473 ================================================================================\n\
00474 MSG: sensor_msgs/RegionOfInterest\n\
00475 # This message is used to specify a region of interest within an image.\n\
00476 #\n\
00477 # When used to specify the ROI setting of the camera when the image was\n\
00478 # taken, the height and width fields should either match the height and\n\
00479 # width fields for the associated image; or height = width = 0\n\
00480 # indicates that the full resolution image was captured.\n\
00481 \n\
00482 uint32 x_offset # Leftmost pixel of the ROI\n\
00483 # (0 if the ROI includes the left edge of the image)\n\
00484 uint32 y_offset # Topmost pixel of the ROI\n\
00485 # (0 if the ROI includes the top edge of the image)\n\
00486 uint32 height # Height of ROI\n\
00487 uint32 width # Width of ROI\n\
00488 \n\
00489 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00490 # ROI in this message. Typically this should be False if the full image\n\
00491 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00492 # used).\n\
00493 bool do_rectify\n\
00494 \n\
00495 ================================================================================\n\
00496 MSG: geometry_msgs/Vector3\n\
00497 # This represents a vector in free space. \n\
00498 \n\
00499 float64 x\n\
00500 float64 y\n\
00501 float64 z\n\
00502 ================================================================================\n\
00503 MSG: object_manipulation_msgs/Grasp\n\
00504 \n\
00505 # The internal posture of the hand for the pre-grasp\n\
00506 # only positions are used\n\
00507 sensor_msgs/JointState pre_grasp_posture\n\
00508 \n\
00509 # The internal posture of the hand for the grasp\n\
00510 # positions and efforts are used\n\
00511 sensor_msgs/JointState grasp_posture\n\
00512 \n\
00513 # The position of the end-effector for the grasp relative to a reference frame \n\
00514 # (that is always specified elsewhere, not in this message)\n\
00515 geometry_msgs/Pose grasp_pose\n\
00516 \n\
00517 # The estimated probability of success for this grasp\n\
00518 float64 success_probability\n\
00519 \n\
00520 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00521 bool cluster_rep\n\
00522 \n\
00523 # how far the pre-grasp should ideally be away from the grasp\n\
00524 float32 desired_approach_distance\n\
00525 \n\
00526 # how much distance between pre-grasp and grasp must actually be feasible \n\
00527 # for the grasp not to be rejected\n\
00528 float32 min_approach_distance\n\
00529 \n\
00530 # an optional list of obstacles that we have semantic information about\n\
00531 # and that we expect might move in the course of executing this grasp\n\
00532 # the grasp planner is expected to make sure they move in an OK way; during\n\
00533 # execution, grasp executors will not check for collisions against these objects\n\
00534 GraspableObject[] moved_obstacles\n\
00535 \n\
00536 ================================================================================\n\
00537 MSG: sensor_msgs/JointState\n\
00538 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00539 #\n\
00540 # The state of each joint (revolute or prismatic) is defined by:\n\
00541 # * the position of the joint (rad or m),\n\
00542 # * the velocity of the joint (rad/s or m/s) and \n\
00543 # * the effort that is applied in the joint (Nm or N).\n\
00544 #\n\
00545 # Each joint is uniquely identified by its name\n\
00546 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00547 # in one message have to be recorded at the same time.\n\
00548 #\n\
00549 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00550 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00551 # effort associated with them, you can leave the effort array empty. \n\
00552 #\n\
00553 # All arrays in this message should have the same size, or be empty.\n\
00554 # This is the only way to uniquely associate the joint name with the correct\n\
00555 # states.\n\
00556 \n\
00557 \n\
00558 Header header\n\
00559 \n\
00560 string[] name\n\
00561 float64[] position\n\
00562 float64[] velocity\n\
00563 float64[] effort\n\
00564 \n\
00565 "; }
00566 public:
00567 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00568
00569 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00570
00571 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00572 {
00573 ros::serialization::OStream stream(write_ptr, 1000000000);
00574 ros::serialization::serialize(stream, arm_name);
00575 ros::serialization::serialize(stream, gripper_pose);
00576 ros::serialization::serialize(stream, gripper_opening);
00577 ros::serialization::serialize(stream, object);
00578 ros::serialization::serialize(stream, grasp);
00579 return stream.getData();
00580 }
00581
00582 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00583 {
00584 ros::serialization::IStream stream(read_ptr, 1000000000);
00585 ros::serialization::deserialize(stream, arm_name);
00586 ros::serialization::deserialize(stream, gripper_pose);
00587 ros::serialization::deserialize(stream, gripper_opening);
00588 ros::serialization::deserialize(stream, object);
00589 ros::serialization::deserialize(stream, grasp);
00590 return stream.getData();
00591 }
00592
00593 ROS_DEPRECATED virtual uint32_t serializationLength() const
00594 {
00595 uint32_t size = 0;
00596 size += ros::serialization::serializationLength(arm_name);
00597 size += ros::serialization::serializationLength(gripper_pose);
00598 size += ros::serialization::serializationLength(gripper_opening);
00599 size += ros::serialization::serializationLength(object);
00600 size += ros::serialization::serializationLength(grasp);
00601 return size;
00602 }
00603
00604 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > Ptr;
00605 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> const> ConstPtr;
00606 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00607 };
00608 typedef ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<std::allocator<void> > GetGripperPoseGoal;
00609
00610 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseGoal> GetGripperPoseGoalPtr;
00611 typedef boost::shared_ptr< ::pr2_object_manipulation_msgs::GetGripperPoseGoal const> GetGripperPoseGoalConstPtr;
00612
00613
00614 template<typename ContainerAllocator>
00615 std::ostream& operator<<(std::ostream& s, const ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> & v)
00616 {
00617 ros::message_operations::Printer< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> >::stream(s, "", v);
00618 return s;}
00619
00620 }
00621
00622 namespace ros
00623 {
00624 namespace message_traits
00625 {
00626 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > : public TrueType {};
00627 template<class ContainerAllocator> struct IsMessage< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> const> : public TrueType {};
00628 template<class ContainerAllocator>
00629 struct MD5Sum< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > {
00630 static const char* value()
00631 {
00632 return "7ca516fef9c15991c035b01ff6268377";
00633 }
00634
00635 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> &) { return value(); }
00636 static const uint64_t static_value1 = 0x7ca516fef9c15991ULL;
00637 static const uint64_t static_value2 = 0xc035b01ff6268377ULL;
00638 };
00639
00640 template<class ContainerAllocator>
00641 struct DataType< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > {
00642 static const char* value()
00643 {
00644 return "pr2_object_manipulation_msgs/GetGripperPoseGoal";
00645 }
00646
00647 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> &) { return value(); }
00648 };
00649
00650 template<class ContainerAllocator>
00651 struct Definition< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> > {
00652 static const char* value()
00653 {
00654 return "# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ======\n\
00655 \n\
00656 # for which arm are we requesting a pose\n\
00657 # useful for knowing which arm to initialize from when seed is empty\n\
00658 string arm_name\n\
00659 \n\
00660 # a seed position for the ghosted gripper. If emtpy (quaternion of norm 0)\n\
00661 # the ghosted gripper will be initialized at the current position of the gripper\n\
00662 geometry_msgs/PoseStamped gripper_pose\n\
00663 float32 gripper_opening\n\
00664 \n\
00665 # An object that the gripper is holding. May be empty.\n\
00666 object_manipulation_msgs/GraspableObject object\n\
00667 \n\
00668 # how we are holding the object, if any.\n\
00669 object_manipulation_msgs/Grasp grasp\n\
00670 \n\
00671 \n\
00672 ================================================================================\n\
00673 MSG: geometry_msgs/PoseStamped\n\
00674 # A Pose with reference coordinate frame and timestamp\n\
00675 Header header\n\
00676 Pose pose\n\
00677 \n\
00678 ================================================================================\n\
00679 MSG: std_msgs/Header\n\
00680 # Standard metadata for higher-level stamped data types.\n\
00681 # This is generally used to communicate timestamped data \n\
00682 # in a particular coordinate frame.\n\
00683 # \n\
00684 # sequence ID: consecutively increasing ID \n\
00685 uint32 seq\n\
00686 #Two-integer timestamp that is expressed as:\n\
00687 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00688 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00689 # time-handling sugar is provided by the client library\n\
00690 time stamp\n\
00691 #Frame this data is associated with\n\
00692 # 0: no frame\n\
00693 # 1: global frame\n\
00694 string frame_id\n\
00695 \n\
00696 ================================================================================\n\
00697 MSG: geometry_msgs/Pose\n\
00698 # A representation of pose in free space, composed of postion and orientation. \n\
00699 Point position\n\
00700 Quaternion orientation\n\
00701 \n\
00702 ================================================================================\n\
00703 MSG: geometry_msgs/Point\n\
00704 # This contains the position of a point in free space\n\
00705 float64 x\n\
00706 float64 y\n\
00707 float64 z\n\
00708 \n\
00709 ================================================================================\n\
00710 MSG: geometry_msgs/Quaternion\n\
00711 # This represents an orientation in free space in quaternion form.\n\
00712 \n\
00713 float64 x\n\
00714 float64 y\n\
00715 float64 z\n\
00716 float64 w\n\
00717 \n\
00718 ================================================================================\n\
00719 MSG: object_manipulation_msgs/GraspableObject\n\
00720 # an object that the object_manipulator can work on\n\
00721 \n\
00722 # a graspable object can be represented in multiple ways. This message\n\
00723 # can contain all of them. Which one is actually used is up to the receiver\n\
00724 # of this message. When adding new representations, one must be careful that\n\
00725 # they have reasonable lightweight defaults indicating that that particular\n\
00726 # representation is not available.\n\
00727 \n\
00728 # the tf frame to be used as a reference frame when combining information from\n\
00729 # the different representations below\n\
00730 string reference_frame_id\n\
00731 \n\
00732 # potential recognition results from a database of models\n\
00733 # all poses are relative to the object reference pose\n\
00734 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00735 \n\
00736 # the point cloud itself\n\
00737 sensor_msgs/PointCloud cluster\n\
00738 \n\
00739 # a region of a PointCloud2 of interest\n\
00740 object_manipulation_msgs/SceneRegion region\n\
00741 \n\
00742 # the name that this object has in the collision environment\n\
00743 string collision_name\n\
00744 ================================================================================\n\
00745 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00746 # Informs that a specific model from the Model Database has been \n\
00747 # identified at a certain location\n\
00748 \n\
00749 # the database id of the model\n\
00750 int32 model_id\n\
00751 \n\
00752 # the pose that it can be found in\n\
00753 geometry_msgs/PoseStamped pose\n\
00754 \n\
00755 # a measure of the confidence level in this detection result\n\
00756 float32 confidence\n\
00757 \n\
00758 # the name of the object detector that generated this detection result\n\
00759 string detector_name\n\
00760 \n\
00761 ================================================================================\n\
00762 MSG: sensor_msgs/PointCloud\n\
00763 # This message holds a collection of 3d points, plus optional additional\n\
00764 # information about each point.\n\
00765 \n\
00766 # Time of sensor data acquisition, coordinate frame ID.\n\
00767 Header header\n\
00768 \n\
00769 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00770 # in the frame given in the header.\n\
00771 geometry_msgs/Point32[] points\n\
00772 \n\
00773 # Each channel should have the same number of elements as points array,\n\
00774 # and the data in each channel should correspond 1:1 with each point.\n\
00775 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00776 ChannelFloat32[] channels\n\
00777 \n\
00778 ================================================================================\n\
00779 MSG: geometry_msgs/Point32\n\
00780 # This contains the position of a point in free space(with 32 bits of precision).\n\
00781 # It is recommeded to use Point wherever possible instead of Point32. \n\
00782 # \n\
00783 # This recommendation is to promote interoperability. \n\
00784 #\n\
00785 # This message is designed to take up less space when sending\n\
00786 # lots of points at once, as in the case of a PointCloud. \n\
00787 \n\
00788 float32 x\n\
00789 float32 y\n\
00790 float32 z\n\
00791 ================================================================================\n\
00792 MSG: sensor_msgs/ChannelFloat32\n\
00793 # This message is used by the PointCloud message to hold optional data\n\
00794 # associated with each point in the cloud. The length of the values\n\
00795 # array should be the same as the length of the points array in the\n\
00796 # PointCloud, and each value should be associated with the corresponding\n\
00797 # point.\n\
00798 \n\
00799 # Channel names in existing practice include:\n\
00800 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00801 # This is opposite to usual conventions but remains for\n\
00802 # historical reasons. The newer PointCloud2 message has no\n\
00803 # such problem.\n\
00804 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00805 # (R,G,B) values packed into the least significant 24 bits,\n\
00806 # in order.\n\
00807 # \"intensity\" - laser or pixel intensity.\n\
00808 # \"distance\"\n\
00809 \n\
00810 # The channel name should give semantics of the channel (e.g.\n\
00811 # \"intensity\" instead of \"value\").\n\
00812 string name\n\
00813 \n\
00814 # The values array should be 1-1 with the elements of the associated\n\
00815 # PointCloud.\n\
00816 float32[] values\n\
00817 \n\
00818 ================================================================================\n\
00819 MSG: object_manipulation_msgs/SceneRegion\n\
00820 # Point cloud\n\
00821 sensor_msgs/PointCloud2 cloud\n\
00822 \n\
00823 # Indices for the region of interest\n\
00824 int32[] mask\n\
00825 \n\
00826 # One of the corresponding 2D images, if applicable\n\
00827 sensor_msgs/Image image\n\
00828 \n\
00829 # The disparity image, if applicable\n\
00830 sensor_msgs/Image disparity_image\n\
00831 \n\
00832 # Camera info for the camera that took the image\n\
00833 sensor_msgs/CameraInfo cam_info\n\
00834 \n\
00835 # a 3D region of interest for grasp planning\n\
00836 geometry_msgs/PoseStamped roi_box_pose\n\
00837 geometry_msgs/Vector3 roi_box_dims\n\
00838 \n\
00839 ================================================================================\n\
00840 MSG: sensor_msgs/PointCloud2\n\
00841 # This message holds a collection of N-dimensional points, which may\n\
00842 # contain additional information such as normals, intensity, etc. The\n\
00843 # point data is stored as a binary blob, its layout described by the\n\
00844 # contents of the \"fields\" array.\n\
00845 \n\
00846 # The point cloud data may be organized 2d (image-like) or 1d\n\
00847 # (unordered). Point clouds organized as 2d images may be produced by\n\
00848 # camera depth sensors such as stereo or time-of-flight.\n\
00849 \n\
00850 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00851 # points).\n\
00852 Header header\n\
00853 \n\
00854 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00855 # 1 and width is the length of the point cloud.\n\
00856 uint32 height\n\
00857 uint32 width\n\
00858 \n\
00859 # Describes the channels and their layout in the binary data blob.\n\
00860 PointField[] fields\n\
00861 \n\
00862 bool is_bigendian # Is this data bigendian?\n\
00863 uint32 point_step # Length of a point in bytes\n\
00864 uint32 row_step # Length of a row in bytes\n\
00865 uint8[] data # Actual point data, size is (row_step*height)\n\
00866 \n\
00867 bool is_dense # True if there are no invalid points\n\
00868 \n\
00869 ================================================================================\n\
00870 MSG: sensor_msgs/PointField\n\
00871 # This message holds the description of one point entry in the\n\
00872 # PointCloud2 message format.\n\
00873 uint8 INT8 = 1\n\
00874 uint8 UINT8 = 2\n\
00875 uint8 INT16 = 3\n\
00876 uint8 UINT16 = 4\n\
00877 uint8 INT32 = 5\n\
00878 uint8 UINT32 = 6\n\
00879 uint8 FLOAT32 = 7\n\
00880 uint8 FLOAT64 = 8\n\
00881 \n\
00882 string name # Name of field\n\
00883 uint32 offset # Offset from start of point struct\n\
00884 uint8 datatype # Datatype enumeration, see above\n\
00885 uint32 count # How many elements in the field\n\
00886 \n\
00887 ================================================================================\n\
00888 MSG: sensor_msgs/Image\n\
00889 # This message contains an uncompressed image\n\
00890 # (0, 0) is at top-left corner of image\n\
00891 #\n\
00892 \n\
00893 Header header # Header timestamp should be acquisition time of image\n\
00894 # Header frame_id should be optical frame of camera\n\
00895 # origin of frame should be optical center of cameara\n\
00896 # +x should point to the right in the image\n\
00897 # +y should point down in the image\n\
00898 # +z should point into to plane of the image\n\
00899 # If the frame_id here and the frame_id of the CameraInfo\n\
00900 # message associated with the image conflict\n\
00901 # the behavior is undefined\n\
00902 \n\
00903 uint32 height # image height, that is, number of rows\n\
00904 uint32 width # image width, that is, number of columns\n\
00905 \n\
00906 # The legal values for encoding are in file src/image_encodings.cpp\n\
00907 # If you want to standardize a new string format, join\n\
00908 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00909 \n\
00910 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00911 # taken from the list of strings in src/image_encodings.cpp\n\
00912 \n\
00913 uint8 is_bigendian # is this data bigendian?\n\
00914 uint32 step # Full row length in bytes\n\
00915 uint8[] data # actual matrix data, size is (step * rows)\n\
00916 \n\
00917 ================================================================================\n\
00918 MSG: sensor_msgs/CameraInfo\n\
00919 # This message defines meta information for a camera. It should be in a\n\
00920 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00921 # image topics named:\n\
00922 #\n\
00923 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00924 # image - monochrome, distorted\n\
00925 # image_color - color, distorted\n\
00926 # image_rect - monochrome, rectified\n\
00927 # image_rect_color - color, rectified\n\
00928 #\n\
00929 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00930 # for producing the four processed image topics from image_raw and\n\
00931 # camera_info. The meaning of the camera parameters are described in\n\
00932 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00933 #\n\
00934 # The image_geometry package provides a user-friendly interface to\n\
00935 # common operations using this meta information. If you want to, e.g.,\n\
00936 # project a 3d point into image coordinates, we strongly recommend\n\
00937 # using image_geometry.\n\
00938 #\n\
00939 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00940 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00941 # indicates an uncalibrated camera.\n\
00942 \n\
00943 #######################################################################\n\
00944 # Image acquisition info #\n\
00945 #######################################################################\n\
00946 \n\
00947 # Time of image acquisition, camera coordinate frame ID\n\
00948 Header header # Header timestamp should be acquisition time of image\n\
00949 # Header frame_id should be optical frame of camera\n\
00950 # origin of frame should be optical center of camera\n\
00951 # +x should point to the right in the image\n\
00952 # +y should point down in the image\n\
00953 # +z should point into the plane of the image\n\
00954 \n\
00955 \n\
00956 #######################################################################\n\
00957 # Calibration Parameters #\n\
00958 #######################################################################\n\
00959 # These are fixed during camera calibration. Their values will be the #\n\
00960 # same in all messages until the camera is recalibrated. Note that #\n\
00961 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00962 # #\n\
00963 # The internal parameters can be used to warp a raw (distorted) image #\n\
00964 # to: #\n\
00965 # 1. An undistorted image (requires D and K) #\n\
00966 # 2. A rectified image (requires D, K, R) #\n\
00967 # The projection matrix P projects 3D points into the rectified image.#\n\
00968 #######################################################################\n\
00969 \n\
00970 # The image dimensions with which the camera was calibrated. Normally\n\
00971 # this will be the full camera resolution in pixels.\n\
00972 uint32 height\n\
00973 uint32 width\n\
00974 \n\
00975 # The distortion model used. Supported models are listed in\n\
00976 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00977 # simple model of radial and tangential distortion - is sufficent.\n\
00978 string distortion_model\n\
00979 \n\
00980 # The distortion parameters, size depending on the distortion model.\n\
00981 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00982 float64[] D\n\
00983 \n\
00984 # Intrinsic camera matrix for the raw (distorted) images.\n\
00985 # [fx 0 cx]\n\
00986 # K = [ 0 fy cy]\n\
00987 # [ 0 0 1]\n\
00988 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00989 # coordinates using the focal lengths (fx, fy) and principal point\n\
00990 # (cx, cy).\n\
00991 float64[9] K # 3x3 row-major matrix\n\
00992 \n\
00993 # Rectification matrix (stereo cameras only)\n\
00994 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00995 # stereo image plane so that epipolar lines in both stereo images are\n\
00996 # parallel.\n\
00997 float64[9] R # 3x3 row-major matrix\n\
00998 \n\
00999 # Projection/camera matrix\n\
01000 # [fx' 0 cx' Tx]\n\
01001 # P = [ 0 fy' cy' Ty]\n\
01002 # [ 0 0 1 0]\n\
01003 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01004 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01005 # is the normal camera intrinsic matrix for the rectified image.\n\
01006 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01007 # coordinates using the focal lengths (fx', fy') and principal point\n\
01008 # (cx', cy') - these may differ from the values in K.\n\
01009 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01010 # also have R = the identity and P[1:3,1:3] = K.\n\
01011 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01012 # position of the optical center of the second camera in the first\n\
01013 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01014 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01015 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01016 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01017 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01018 # the rectified image is given by:\n\
01019 # [u v w]' = P * [X Y Z 1]'\n\
01020 # x = u / w\n\
01021 # y = v / w\n\
01022 # This holds for both images of a stereo pair.\n\
01023 float64[12] P # 3x4 row-major matrix\n\
01024 \n\
01025 \n\
01026 #######################################################################\n\
01027 # Operational Parameters #\n\
01028 #######################################################################\n\
01029 # These define the image region actually captured by the camera #\n\
01030 # driver. Although they affect the geometry of the output image, they #\n\
01031 # may be changed freely without recalibrating the camera. #\n\
01032 #######################################################################\n\
01033 \n\
01034 # Binning refers here to any camera setting which combines rectangular\n\
01035 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01036 # resolution of the output image to\n\
01037 # (width / binning_x) x (height / binning_y).\n\
01038 # The default values binning_x = binning_y = 0 is considered the same\n\
01039 # as binning_x = binning_y = 1 (no subsampling).\n\
01040 uint32 binning_x\n\
01041 uint32 binning_y\n\
01042 \n\
01043 # Region of interest (subwindow of full camera resolution), given in\n\
01044 # full resolution (unbinned) image coordinates. A particular ROI\n\
01045 # always denotes the same window of pixels on the camera sensor,\n\
01046 # regardless of binning settings.\n\
01047 # The default setting of roi (all values 0) is considered the same as\n\
01048 # full resolution (roi.width = width, roi.height = height).\n\
01049 RegionOfInterest roi\n\
01050 \n\
01051 ================================================================================\n\
01052 MSG: sensor_msgs/RegionOfInterest\n\
01053 # This message is used to specify a region of interest within an image.\n\
01054 #\n\
01055 # When used to specify the ROI setting of the camera when the image was\n\
01056 # taken, the height and width fields should either match the height and\n\
01057 # width fields for the associated image; or height = width = 0\n\
01058 # indicates that the full resolution image was captured.\n\
01059 \n\
01060 uint32 x_offset # Leftmost pixel of the ROI\n\
01061 # (0 if the ROI includes the left edge of the image)\n\
01062 uint32 y_offset # Topmost pixel of the ROI\n\
01063 # (0 if the ROI includes the top edge of the image)\n\
01064 uint32 height # Height of ROI\n\
01065 uint32 width # Width of ROI\n\
01066 \n\
01067 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01068 # ROI in this message. Typically this should be False if the full image\n\
01069 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01070 # used).\n\
01071 bool do_rectify\n\
01072 \n\
01073 ================================================================================\n\
01074 MSG: geometry_msgs/Vector3\n\
01075 # This represents a vector in free space. \n\
01076 \n\
01077 float64 x\n\
01078 float64 y\n\
01079 float64 z\n\
01080 ================================================================================\n\
01081 MSG: object_manipulation_msgs/Grasp\n\
01082 \n\
01083 # The internal posture of the hand for the pre-grasp\n\
01084 # only positions are used\n\
01085 sensor_msgs/JointState pre_grasp_posture\n\
01086 \n\
01087 # The internal posture of the hand for the grasp\n\
01088 # positions and efforts are used\n\
01089 sensor_msgs/JointState grasp_posture\n\
01090 \n\
01091 # The position of the end-effector for the grasp relative to a reference frame \n\
01092 # (that is always specified elsewhere, not in this message)\n\
01093 geometry_msgs/Pose grasp_pose\n\
01094 \n\
01095 # The estimated probability of success for this grasp\n\
01096 float64 success_probability\n\
01097 \n\
01098 # Debug flag to indicate that this grasp would be the best in its cluster\n\
01099 bool cluster_rep\n\
01100 \n\
01101 # how far the pre-grasp should ideally be away from the grasp\n\
01102 float32 desired_approach_distance\n\
01103 \n\
01104 # how much distance between pre-grasp and grasp must actually be feasible \n\
01105 # for the grasp not to be rejected\n\
01106 float32 min_approach_distance\n\
01107 \n\
01108 # an optional list of obstacles that we have semantic information about\n\
01109 # and that we expect might move in the course of executing this grasp\n\
01110 # the grasp planner is expected to make sure they move in an OK way; during\n\
01111 # execution, grasp executors will not check for collisions against these objects\n\
01112 GraspableObject[] moved_obstacles\n\
01113 \n\
01114 ================================================================================\n\
01115 MSG: sensor_msgs/JointState\n\
01116 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
01117 #\n\
01118 # The state of each joint (revolute or prismatic) is defined by:\n\
01119 # * the position of the joint (rad or m),\n\
01120 # * the velocity of the joint (rad/s or m/s) and \n\
01121 # * the effort that is applied in the joint (Nm or N).\n\
01122 #\n\
01123 # Each joint is uniquely identified by its name\n\
01124 # The header specifies the time at which the joint states were recorded. All the joint states\n\
01125 # in one message have to be recorded at the same time.\n\
01126 #\n\
01127 # This message consists of a multiple arrays, one for each part of the joint state. \n\
01128 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
01129 # effort associated with them, you can leave the effort array empty. \n\
01130 #\n\
01131 # All arrays in this message should have the same size, or be empty.\n\
01132 # This is the only way to uniquely associate the joint name with the correct\n\
01133 # states.\n\
01134 \n\
01135 \n\
01136 Header header\n\
01137 \n\
01138 string[] name\n\
01139 float64[] position\n\
01140 float64[] velocity\n\
01141 float64[] effort\n\
01142 \n\
01143 ";
01144 }
01145
01146 static const char* value(const ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> &) { return value(); }
01147 };
01148
01149 }
01150 }
01151
01152 namespace ros
01153 {
01154 namespace serialization
01155 {
01156
01157 template<class ContainerAllocator> struct Serializer< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> >
01158 {
01159 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01160 {
01161 stream.next(m.arm_name);
01162 stream.next(m.gripper_pose);
01163 stream.next(m.gripper_opening);
01164 stream.next(m.object);
01165 stream.next(m.grasp);
01166 }
01167
01168 ROS_DECLARE_ALLINONE_SERIALIZER;
01169 };
01170 }
01171 }
01172
01173 namespace ros
01174 {
01175 namespace message_operations
01176 {
01177
01178 template<class ContainerAllocator>
01179 struct Printer< ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> >
01180 {
01181 template<typename Stream> static void stream(Stream& s, const std::string& indent, const ::pr2_object_manipulation_msgs::GetGripperPoseGoal_<ContainerAllocator> & v)
01182 {
01183 s << indent << "arm_name: ";
01184 Printer<std::basic_string<char, std::char_traits<char>, typename ContainerAllocator::template rebind<char>::other > >::stream(s, indent + " ", v.arm_name);
01185 s << indent << "gripper_pose: ";
01186 s << std::endl;
01187 Printer< ::geometry_msgs::PoseStamped_<ContainerAllocator> >::stream(s, indent + " ", v.gripper_pose);
01188 s << indent << "gripper_opening: ";
01189 Printer<float>::stream(s, indent + " ", v.gripper_opening);
01190 s << indent << "object: ";
01191 s << std::endl;
01192 Printer< ::object_manipulation_msgs::GraspableObject_<ContainerAllocator> >::stream(s, indent + " ", v.object);
01193 s << indent << "grasp: ";
01194 s << std::endl;
01195 Printer< ::object_manipulation_msgs::Grasp_<ContainerAllocator> >::stream(s, indent + " ", v.grasp);
01196 }
01197 };
01198
01199
01200 }
01201 }
01202
01203 #endif // PR2_OBJECT_MANIPULATION_MSGS_MESSAGE_GETGRIPPERPOSEGOAL_H
01204