$search
00001 00002 00003 00006 00007 00008 // This is originally by Sande and Gentleman in 1967! I have translated from 00009 // Fortran into C and a little bit of C++. 00010 00011 // It takes about twice as long as fftw 00012 // (http://theory.lcs.mit.edu/~fftw/homepage.html) 00013 // but is much shorter than fftw and so despite its age 00014 // might represent a reasonable 00015 // compromise between speed and complexity. 00016 // If you really need the speed get fftw. 00017 00018 00019 // THIS SUBROUTINE WAS WRITTEN BY G.SANDE OF PRINCETON UNIVERSITY AND 00020 // W.M.GENTLMAN OF THE BELL TELEPHONE LAB. IT WAS BROUGHT TO LONDON 00021 // BY DR. M.D. GODFREY AT THE IMPERIAL COLLEGE AND WAS ADAPTED FOR 00022 // BURROUGHS 6700 BY D. R. BRILLINGER AND J. PEMBERTON 00023 // IT REPRESENTS THE STATE OF THE ART OF COMPUTING COMPLETE FINITE 00024 // DISCRETE FOURIER TRANSFORMS AS OF NOV.1967. 00025 // OTHER PROGRAMS REQUIRED. 00026 // ONLY THOSE SUBROUTINES INCLUDED HERE. 00027 // USAGE. 00028 // CALL AR1DFT(N,X,Y) 00029 // WHERE N IS THE NUMBER OF POINTS IN THE SEQUENCE . 00030 // X - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE REAL 00031 // PART OF THE SEQUENCE. 00032 // Y - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE 00033 // IMAGINARY PART OF THE SEQUENCE. 00034 // THE TRANSFORM IS RETURNED IN X AND Y. 00035 // METHOD 00036 // FOR A GENERAL DISCUSSION OF THESE TRANSFORMS AND OF 00037 // THE FAST METHOD FOR COMPUTING THEM, SEE GENTLEMAN AND SANDE, 00038 // @FAST FOURIER TRANSFORMS - FOR FUN AND PROFIT,@ 1966 FALL JOINT 00039 // COMPUTER CONFERENCE. 00040 // THIS PROGRAM COMPUTES THIS FOR A COMPLEX SEQUENCE Z(T) OF LENGTH 00041 // N WHOSE ELEMENTS ARE STORED AT(X(I) , Y(I)) AND RETURNS THE 00042 // TRANSFORM COEFFICIENTS AT (X(I), Y(I)). 00043 // DESCRIPTION 00044 // AR1DFT IS A HIGHLY MODULAR ROUTINE CAPABLE OF COMPUTING IN PLACE 00045 // THE COMPLETE FINITE DISCRETE FOURIER TRANSFORM OF A ONE- 00046 // DIMENSIONAL SEQUENCE OF RATHER GENERAL LENGTH N. 00047 // THE MAIN ROUTINE , AR1DFT ITSELF, FACTORS N. IT THEN CALLS ON 00048 // ON GR 1D FT TO COMPUTE THE ACTUAL TRANSFORMS, USING THESE FACTORS. 00049 // THIS GR 1D FT DOES, CALLING AT EACH STAGE ON THE APPROPRIATE KERN 00050 // EL R2FTK, R4FTK, R8FTK, R16FTK, R3FTK, R5FTK, OR RPFTK TO PERFORM 00051 // THE COMPUTATIONS FOR THIS PASS OVER THE SEQUENCE, DEPENDING ON 00052 // WHETHER THE CORRESPONDING FACTOR IS 2, 4, 8, 16, 3, 5, OR SOME 00053 // MORE GENERAL PRIME P. WHEN GR1DFT IS FINISHED THE TRANSFORM IS 00054 // COMPUTED, HOWEVER, THE RESULTS ARE STORED IN "DIGITS REVERSED" 00055 // ORDER. AR1DFT THEREFORE, CALLS UPON GR 1S FS TO SORT THEM OUT. 00056 // TO RETURN TO THE FACTORIZATION, SINGLETON HAS POINTED OUT THAT 00057 // THE TRANSFORMS ARE MORE EFFICIENT IF THE SAMPLE SIZE N, IS OF THE 00058 // FORM B*A**2 AND B CONSISTS OF A SINGLE FACTOR. IN SUCH A CASE 00059 // IF WE PROCESS THE FACTORS IN THE ORDER ABA THEN 00060 // THE REORDERING CAN BE DONE AS FAST IN PLACE, AS WITH SCRATCH 00061 // STORAGE. BUT AS B BECOMES MORE COMPLICATED, THE COST OF THE DIGIT 00062 // REVERSING DUE TO B PART BECOMES VERY EXPENSIVE IF WE TRY TO DO IT 00063 // IN PLACE. IN SUCH A CASE IT MIGHT BE BETTER TO USE EXTRA STORAGE 00064 // A ROUTINE TO DO THIS IS, HOWEVER, NOT INCLUDED HERE. 00065 // ANOTHER FEATURE INFLUENCING THE FACTORIZATION IS THAT FOR ANY FIXED 00066 // FACTOR N WE CAN PREPARE A SPECIAL KERNEL WHICH WILL COMPUTE 00067 // THAT STAGE OF THE TRANSFORM MORE EFFICIENTLY THAN WOULD A KERNEL 00068 // FOR GENERAL FACTORS, ESPECIALLY IF THE GENERAL KERNEL HAD TO BE 00069 // APPLIED SEVERAL TIMES. FOR EXAMPLE, FACTORS OF 4 ARE MORE 00070 // EFFICIENT THAN FACTORS OF 2, FACTORS OF 8 MORE EFFICIENT THAN 4,ETC 00071 // ON THE OTHER HAND DIMINISHING RETURNS RAPIDLY SET IN, ESPECIALLY 00072 // SINCE THE LENGTH OF THE KERNEL FOR A SPECIAL CASE IS ROUGHLY 00073 // PROPORTIONAL TO THE FACTOR IT DEALS WITH. HENCE THESE PROBABLY ARE 00074 // ALL THE KERNELS WE WISH TO HAVE. 00075 // RESTRICTIONS. 00076 // AN UNFORTUNATE FEATURE OF THE SORTING PROBLEM IS THAT THE MOST 00077 // EFFICIENT WAY TO DO IT IS WITH NESTED DO LOOPS, ONE FOR EACH 00078 // FACTOR. THIS PUTS A RESTRICTION ON N AS TO HOW MANY FACTORS IT 00079 // CAN HAVE. CURRENTLY THE LIMIT IS 16, BUT THE LIMIT CAN BE READILY 00080 // RAISED IF NECESSARY. 00081 // A SECOND RESTRICTION OF THE PROGRAM IS THAT LOCAL STORAGE OF THE 00082 // THE ORDER P**2 IS REQUIRED BY THE GENERAL KERNEL RPFTK, SO SOME 00083 // LIMIT MUST BE SET ON P. CURRENTLY THIS IS 19, BUT IT CAN BE INCRE 00084 // INCREASED BY TRIVIAL CHANGES. 00085 // OTHER COMMENTS. 00086 //(1) THE ROUTINE IS ADAPTED TO CHECK WHETHER A GIVEN N WILL MEET THE 00087 // ABOVE FACTORING REQUIREMENTS AN, IF NOT, TO RETURN THE NEXT HIGHER 00088 // NUMBER, NX, SAY, WHICH WILL MEET THESE REQUIREMENTS. 00089 // THIS CAN BE ACCHIEVED BY A STATEMENT OF THE FORM 00090 // CALL FACTR(N,X,Y). 00091 // IF A DIFFERENT N, SAY NX, IS RETURNED THEN THE TRANSFORMS COULD BE 00092 // OBTAINED BY EXTENDING THE SIZE OF THE X-ARRAY AND Y-ARRAY TO NX, 00093 // AND SETTING X(I) = Y(I) = 0., FOR I = N+1, NX. 00094 //(2) IF THE SEQUENCE Z IS ONLY A REAL SEQUENCE, THEN THE IMAGINARY PART 00095 // Y(I)=0., THIS WILL RETURN THE COSINE TRANSFORM OF THE REAL SEQUENCE 00096 // IN X, AND THE SINE TRANSFORM IN Y. 00097 00098 00099 #define WANT_STREAM 00100 00101 #define WANT_MATH 00102 00103 #include "newmatap.h" 00104 00105 #ifdef use_namespace 00106 namespace NEWMAT { 00107 #endif 00108 00109 #ifdef DO_REPORT 00110 #define REPORT { static ExeCounter ExeCount(__LINE__,20); ++ExeCount; } 00111 #else 00112 #define REPORT {} 00113 #endif 00114 00115 inline Real square(Real x) { return x*x; } 00116 inline int square(int x) { return x*x; } 00117 00118 static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM, 00119 const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM, 00120 Real* X, Real* Y); 00121 static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR, 00122 Real* X, Real* Y); 00123 static void R_P_FTK (int N, int M, int P, Real* X, Real* Y); 00124 static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1); 00125 static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1, 00126 Real* X2, Real* Y2); 00127 static void R_4_FTK (int N, int M, 00128 Real* X0, Real* Y0, Real* X1, Real* Y1, 00129 Real* X2, Real* Y2, Real* X3, Real* Y3); 00130 static void R_5_FTK (int N, int M, 00131 Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2, 00132 Real* X3, Real* Y3, Real* X4, Real* Y4); 00133 static void R_8_FTK (int N, int M, 00134 Real* X0, Real* Y0, Real* X1, Real* Y1, 00135 Real* X2, Real* Y2, Real* X3, Real* Y3, 00136 Real* X4, Real* Y4, Real* X5, Real* Y5, 00137 Real* X6, Real* Y6, Real* X7, Real* Y7); 00138 static void R_16_FTK (int N, int M, 00139 Real* X0, Real* Y0, Real* X1, Real* Y1, 00140 Real* X2, Real* Y2, Real* X3, Real* Y3, 00141 Real* X4, Real* Y4, Real* X5, Real* Y5, 00142 Real* X6, Real* Y6, Real* X7, Real* Y7, 00143 Real* X8, Real* Y8, Real* X9, Real* Y9, 00144 Real* X10, Real* Y10, Real* X11, Real* Y11, 00145 Real* X12, Real* Y12, Real* X13, Real* Y13, 00146 Real* X14, Real* Y14, Real* X15, Real* Y15); 00147 static int BitReverse(int x, int prod, int n, const SimpleIntArray& f); 00148 00149 00150 bool FFT_Controller::ar_1d_ft (int PTS, Real* X, Real *Y) 00151 { 00152 // ARBITRARY RADIX ONE DIMENSIONAL FOURIER TRANSFORM 00153 00154 REPORT 00155 00156 int F,J,N,NF,P,PMAX,P_SYM,P_TWO,Q,R,TWO_GRP; 00157 00158 // NP is maximum number of squared factors allows PTS up to 2**32 at least 00159 // NQ is number of not-squared factors - increase if we increase PMAX 00160 const int NP = 16, NQ = 10; 00161 SimpleIntArray PP(NP), QQ(NQ); 00162 00163 TWO_GRP=16; PMAX=19; 00164 00165 // PMAX is the maximum factor size 00166 // TWO_GRP is the maximum power of 2 handled as a single factor 00167 // Doesn't take advantage of combining powers of 2 when calculating 00168 // number of factors 00169 00170 if (PTS<=1) return true; 00171 N=PTS; P_SYM=1; F=2; P=0; Q=0; 00172 00173 // P counts the number of squared factors 00174 // Q counts the number of the rest 00175 // R = 0 for no non-squared factors; 1 otherwise 00176 00177 // FACTOR holds all the factors - non-squared ones in the middle 00178 // - length is 2*P+Q 00179 // SYM also holds all the factors but with the non-squared ones 00180 // multiplied together - length is 2*P+R 00181 // PP holds the values of the squared factors - length is P 00182 // QQ holds the values of the rest - length is Q 00183 00184 // P_SYM holds the product of the squared factors 00185 00186 // find the factors - load into PP and QQ 00187 while (N > 1) 00188 { 00189 bool fail = true; 00190 for (J=F; J<=PMAX; J++) 00191 if (N % J == 0) { fail = false; F=J; break; } 00192 if (fail || P >= NP || Q >= NQ) return false; // can't factor 00193 N /= F; 00194 if (N % F != 0) QQ[Q++] = F; 00195 else { N /= F; PP[P++] = F; P_SYM *= F; } 00196 } 00197 00198 R = (Q == 0) ? 0 : 1; // R = 0 if no not-squared factors, 1 otherwise 00199 00200 NF = 2*P + Q; 00201 SimpleIntArray FACTOR(NF + 1), SYM(2*P + R); 00202 FACTOR[NF] = 0; // we need this in the "combine powers of 2" 00203 00204 // load into SYM and FACTOR 00205 for (J=0; J<P; J++) 00206 { SYM[J]=FACTOR[J]=PP[P-1-J]; FACTOR[P+Q+J]=SYM[P+R+J]=PP[J]; } 00207 00208 if (Q>0) 00209 { 00210 REPORT 00211 for (J=0; J<Q; J++) FACTOR[P+J]=QQ[J]; 00212 SYM[P]=PTS/square(P_SYM); 00213 } 00214 00215 // combine powers of 2 00216 P_TWO = 1; 00217 for (J=0; J < NF; J++) 00218 { 00219 if (FACTOR[J]!=2) continue; 00220 P_TWO=P_TWO*2; FACTOR[J]=1; 00221 if (P_TWO<TWO_GRP && FACTOR[J+1]==2) continue; 00222 FACTOR[J]=P_TWO; P_TWO=1; 00223 } 00224 00225 if (P==0) R=0; 00226 if (Q<=1) Q=0; 00227 00228 // do the analysis 00229 GR_1D_FT(PTS,NF,FACTOR,X,Y); // the transform 00230 GR_1D_FS(PTS,2*P+R,Q,SYM,P_SYM,QQ,X,Y); // the reshuffling 00231 00232 return true; 00233 00234 } 00235 00236 static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM, 00237 const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM, 00238 Real* X, Real* Y) 00239 { 00240 // GENERAL RADIX ONE DIMENSIONAL FOURIER SORT 00241 00242 // PTS = number of points 00243 // N_SYM = length of SYM 00244 // N_UN_SYM = length of UN_SYM 00245 // SYM: squared factors + product of non-squared factors + squared factors 00246 // P_SYM = product of squared factors (each included only once) 00247 // UN_SYM: not-squared factors 00248 00249 REPORT 00250 00251 Real T; 00252 int JJ,KK,P_UN_SYM; 00253 00254 // I have replaced the multiple for-loop used by Sande-Gentleman code 00255 // by the following code which does not limit the number of factors 00256 00257 if (N_SYM > 0) 00258 { 00259 REPORT 00260 SimpleIntArray U(N_SYM); 00261 for(MultiRadixCounter MRC(N_SYM, SYM, U); !MRC.Finish(); ++MRC) 00262 { 00263 if (MRC.Swap()) 00264 { 00265 int P = MRC.Reverse(); int JJ = MRC.Counter(); Real T; 00266 T=X[JJ]; X[JJ]=X[P]; X[P]=T; T=Y[JJ]; Y[JJ]=Y[P]; Y[P]=T; 00267 } 00268 } 00269 } 00270 00271 int J,JL,K,L,M,MS; 00272 00273 // UN_SYM contains the non-squared factors 00274 // I have replaced the Sande-Gentleman code as it runs into 00275 // integer overflow problems 00276 // My code (and theirs) would be improved by using a bit array 00277 // as suggested by Van Loan 00278 00279 if (N_UN_SYM==0) { REPORT return; } 00280 P_UN_SYM=PTS/square(P_SYM); JL=(P_UN_SYM-3)*P_SYM; MS=P_UN_SYM*P_SYM; 00281 00282 for (J = P_SYM; J<=JL; J+=P_SYM) 00283 { 00284 K=J; 00285 do K = P_SYM * BitReverse(K / P_SYM, P_UN_SYM, N_UN_SYM, UN_SYM); 00286 while (K<J); 00287 00288 if (K!=J) 00289 { 00290 REPORT 00291 for (L=0; L<P_SYM; L++) for (M=L; M<PTS; M+=MS) 00292 { 00293 JJ=M+J; KK=M+K; 00294 T=X[JJ]; X[JJ]=X[KK]; X[KK]=T; T=Y[JJ]; Y[JJ]=Y[KK]; Y[KK]=T; 00295 } 00296 } 00297 } 00298 00299 return; 00300 } 00301 00302 static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR, 00303 Real* X, Real* Y) 00304 { 00305 // GENERAL RADIX ONE DIMENSIONAL FOURIER TRANSFORM; 00306 00307 REPORT 00308 00309 int M = N; 00310 00311 for (int i = 0; i < N_FACTOR; i++) 00312 { 00313 int P = FACTOR[i]; M /= P; 00314 00315 switch(P) 00316 { 00317 case 1: REPORT break; 00318 case 2: REPORT R_2_FTK (N,M,X,Y,X+M,Y+M); break; 00319 case 3: REPORT R_3_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M); break; 00320 case 4: REPORT R_4_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M); break; 00321 case 5: 00322 REPORT 00323 R_5_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M,X+4*M,Y+4*M); 00324 break; 00325 case 8: 00326 REPORT 00327 R_8_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M, 00328 X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M, 00329 X+6*M,Y+6*M,X+7*M,Y+7*M); 00330 break; 00331 case 16: 00332 REPORT 00333 R_16_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M, 00334 X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M, 00335 X+6*M,Y+6*M,X+7*M,Y+7*M,X+8*M,Y+8*M, 00336 X+9*M,Y+9*M,X+10*M,Y+10*M,X+11*M,Y+11*M, 00337 X+12*M,Y+12*M,X+13*M,Y+13*M,X+14*M,Y+14*M, 00338 X+15*M,Y+15*M); 00339 break; 00340 default: REPORT R_P_FTK (N,M,P,X,Y); break; 00341 } 00342 } 00343 00344 } 00345 00346 static void R_P_FTK (int N, int M, int P, Real* X, Real* Y) 00347 // RADIX PRIME FOURIER TRANSFORM KERNEL; 00348 // X and Y are treated as M * P matrices with Fortran storage 00349 { 00350 REPORT 00351 bool NO_FOLD,ZERO; 00352 Real ANGLE,IS,IU,RS,RU,T,TWOPI,XT,YT; 00353 int J,JJ,K0,K,M_OVER_2,MP,PM,PP,U,V; 00354 00355 Real AA [9][9], BB [9][9]; 00356 Real A [18], B [18], C [18], S [18]; 00357 Real IA [9], IB [9], RA [9], RB [9]; 00358 00359 TWOPI=8.0*atan(1.0); 00360 M_OVER_2=M/2+1; MP=M*P; PP=P/2; PM=P-1; 00361 00362 for (U=0; U<PP; U++) 00363 { 00364 ANGLE=TWOPI*Real(U+1)/Real(P); 00365 JJ=P-U-2; 00366 A[U]=cos(ANGLE); B[U]=sin(ANGLE); 00367 A[JJ]=A[U]; B[JJ]= -B[U]; 00368 } 00369 00370 for (U=1; U<=PP; U++) 00371 { 00372 for (V=1; V<=PP; V++) 00373 { JJ=U*V-U*V/P*P; AA[V-1][U-1]=A[JJ-1]; BB[V-1][U-1]=B[JJ-1]; } 00374 } 00375 00376 for (J=0; J<M_OVER_2; J++) 00377 { 00378 NO_FOLD = (J==0 || 2*J==M); 00379 K0=J; 00380 ANGLE=TWOPI*Real(J)/Real(MP); ZERO=ANGLE==0.0; 00381 C[0]=cos(ANGLE); S[0]=sin(ANGLE); 00382 for (U=1; U<PM; U++) 00383 { 00384 C[U]=C[U-1]*C[0]-S[U-1]*S[0]; 00385 S[U]=S[U-1]*C[0]+C[U-1]*S[0]; 00386 } 00387 goto L700; 00388 L500: 00389 REPORT 00390 if (NO_FOLD) { REPORT goto L1500; } 00391 REPORT 00392 NO_FOLD=true; K0=M-J; 00393 for (U=0; U<PM; U++) 00394 { T=C[U]*A[U]+S[U]*B[U]; S[U]= -S[U]*A[U]+C[U]*B[U]; C[U]=T; } 00395 L700: 00396 REPORT 00397 for (K=K0; K<N; K+=MP) 00398 { 00399 XT=X[K]; YT=Y[K]; 00400 for (U=1; U<=PP; U++) 00401 { 00402 RA[U-1]=XT; IA[U-1]=YT; 00403 RB[U-1]=0.0; IB[U-1]=0.0; 00404 } 00405 for (U=1; U<=PP; U++) 00406 { 00407 JJ=P-U; 00408 RS=X[K+M*U]+X[K+M*JJ]; IS=Y[K+M*U]+Y[K+M*JJ]; 00409 RU=X[K+M*U]-X[K+M*JJ]; IU=Y[K+M*U]-Y[K+M*JJ]; 00410 XT=XT+RS; YT=YT+IS; 00411 for (V=0; V<PP; V++) 00412 { 00413 RA[V]=RA[V]+RS*AA[V][U-1]; IA[V]=IA[V]+IS*AA[V][U-1]; 00414 RB[V]=RB[V]+RU*BB[V][U-1]; IB[V]=IB[V]+IU*BB[V][U-1]; 00415 } 00416 } 00417 X[K]=XT; Y[K]=YT; 00418 for (U=1; U<=PP; U++) 00419 { 00420 if (!ZERO) 00421 { 00422 REPORT 00423 XT=RA[U-1]+IB[U-1]; YT=IA[U-1]-RB[U-1]; 00424 X[K+M*U]=XT*C[U-1]+YT*S[U-1]; Y[K+M*U]=YT*C[U-1]-XT*S[U-1]; 00425 JJ=P-U; 00426 XT=RA[U-1]-IB[U-1]; YT=IA[U-1]+RB[U-1]; 00427 X[K+M*JJ]=XT*C[JJ-1]+YT*S[JJ-1]; 00428 Y[K+M*JJ]=YT*C[JJ-1]-XT*S[JJ-1]; 00429 } 00430 else 00431 { 00432 REPORT 00433 X[K+M*U]=RA[U-1]+IB[U-1]; Y[K+M*U]=IA[U-1]-RB[U-1]; 00434 JJ=P-U; 00435 X[K+M*JJ]=RA[U-1]-IB[U-1]; Y[K+M*JJ]=IA[U-1]+RB[U-1]; 00436 } 00437 } 00438 } 00439 goto L500; 00440 L1500: ; 00441 } 00442 return; 00443 } 00444 00445 static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1) 00446 // RADIX TWO FOURIER TRANSFORM KERNEL; 00447 { 00448 REPORT 00449 bool NO_FOLD,ZERO; 00450 int J,K,K0,M2,M_OVER_2; 00451 Real ANGLE,C,IS,IU,RS,RU,S,TWOPI; 00452 00453 M2=M*2; M_OVER_2=M/2+1; 00454 TWOPI=8.0*atan(1.0); 00455 00456 for (J=0; J<M_OVER_2; J++) 00457 { 00458 NO_FOLD = (J==0 || 2*J==M); 00459 K0=J; 00460 ANGLE=TWOPI*Real(J)/Real(M2); ZERO=ANGLE==0.0; 00461 C=cos(ANGLE); S=sin(ANGLE); 00462 goto L200; 00463 L100: 00464 REPORT 00465 if (NO_FOLD) { REPORT goto L600; } 00466 REPORT 00467 NO_FOLD=true; K0=M-J; C= -C; 00468 L200: 00469 REPORT 00470 for (K=K0; K<N; K+=M2) 00471 { 00472 RS=X0[K]+X1[K]; IS=Y0[K]+Y1[K]; 00473 RU=X0[K]-X1[K]; IU=Y0[K]-Y1[K]; 00474 X0[K]=RS; Y0[K]=IS; 00475 if (!ZERO) { X1[K]=RU*C+IU*S; Y1[K]=IU*C-RU*S; } 00476 else { X1[K]=RU; Y1[K]=IU; } 00477 } 00478 goto L100; 00479 L600: ; 00480 } 00481 00482 return; 00483 } 00484 00485 static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1, 00486 Real* X2, Real* Y2) 00487 // RADIX THREE FOURIER TRANSFORM KERNEL 00488 { 00489 REPORT 00490 bool NO_FOLD,ZERO; 00491 int J,K,K0,M3,M_OVER_2; 00492 Real ANGLE,A,B,C1,C2,S1,S2,T,TWOPI; 00493 Real I0,I1,I2,IA,IB,IS,R0,R1,R2,RA,RB,RS; 00494 00495 M3=M*3; M_OVER_2=M/2+1; TWOPI=8.0*atan(1.0); 00496 A=cos(TWOPI/3.0); B=sin(TWOPI/3.0); 00497 00498 for (J=0; J<M_OVER_2; J++) 00499 { 00500 NO_FOLD = (J==0 || 2*J==M); 00501 K0=J; 00502 ANGLE=TWOPI*Real(J)/Real(M3); ZERO=ANGLE==0.0; 00503 C1=cos(ANGLE); S1=sin(ANGLE); 00504 C2=C1*C1-S1*S1; S2=S1*C1+C1*S1; 00505 goto L200; 00506 L100: 00507 REPORT 00508 if (NO_FOLD) { REPORT goto L600; } 00509 REPORT 00510 NO_FOLD=true; K0=M-J; 00511 T=C1*A+S1*B; S1=C1*B-S1*A; C1=T; 00512 T=C2*A-S2*B; S2= -C2*B-S2*A; C2=T; 00513 L200: 00514 REPORT 00515 for (K=K0; K<N; K+=M3) 00516 { 00517 R0 = X0[K]; I0 = Y0[K]; 00518 RS=X1[K]+X2[K]; IS=Y1[K]+Y2[K]; 00519 X0[K]=R0+RS; Y0[K]=I0+IS; 00520 RA=R0+RS*A; IA=I0+IS*A; 00521 RB=(X1[K]-X2[K])*B; IB=(Y1[K]-Y2[K])*B; 00522 if (!ZERO) 00523 { 00524 REPORT 00525 R1=RA+IB; I1=IA-RB; R2=RA-IB; I2=IA+RB; 00526 X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1; 00527 X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2; 00528 } 00529 else { REPORT X1[K]=RA+IB; Y1[K]=IA-RB; X2[K]=RA-IB; Y2[K]=IA+RB; } 00530 } 00531 goto L100; 00532 L600: ; 00533 } 00534 00535 return; 00536 } 00537 00538 static void R_4_FTK (int N, int M, 00539 Real* X0, Real* Y0, Real* X1, Real* Y1, 00540 Real* X2, Real* Y2, Real* X3, Real* Y3) 00541 // RADIX FOUR FOURIER TRANSFORM KERNEL 00542 { 00543 REPORT 00544 bool NO_FOLD,ZERO; 00545 int J,K,K0,M4,M_OVER_2; 00546 Real ANGLE,C1,C2,C3,S1,S2,S3,T,TWOPI; 00547 Real I1,I2,I3,IS0,IS1,IU0,IU1,R1,R2,R3,RS0,RS1,RU0,RU1; 00548 00549 M4=M*4; M_OVER_2=M/2+1; 00550 TWOPI=8.0*atan(1.0); 00551 00552 for (J=0; J<M_OVER_2; J++) 00553 { 00554 NO_FOLD = (J==0 || 2*J==M); 00555 K0=J; 00556 ANGLE=TWOPI*Real(J)/Real(M4); ZERO=ANGLE==0.0; 00557 C1=cos(ANGLE); S1=sin(ANGLE); 00558 C2=C1*C1-S1*S1; S2=S1*C1+C1*S1; 00559 C3=C2*C1-S2*S1; S3=S2*C1+C2*S1; 00560 goto L200; 00561 L100: 00562 REPORT 00563 if (NO_FOLD) { REPORT goto L600; } 00564 REPORT 00565 NO_FOLD=true; K0=M-J; 00566 T=C1; C1=S1; S1=T; 00567 C2= -C2; 00568 T=C3; C3= -S3; S3= -T; 00569 L200: 00570 REPORT 00571 for (K=K0; K<N; K+=M4) 00572 { 00573 RS0=X0[K]+X2[K]; IS0=Y0[K]+Y2[K]; 00574 RU0=X0[K]-X2[K]; IU0=Y0[K]-Y2[K]; 00575 RS1=X1[K]+X3[K]; IS1=Y1[K]+Y3[K]; 00576 RU1=X1[K]-X3[K]; IU1=Y1[K]-Y3[K]; 00577 X0[K]=RS0+RS1; Y0[K]=IS0+IS1; 00578 if (!ZERO) 00579 { 00580 REPORT 00581 R1=RU0+IU1; I1=IU0-RU1; 00582 R2=RS0-RS1; I2=IS0-IS1; 00583 R3=RU0-IU1; I3=IU0+RU1; 00584 X2[K]=R1*C1+I1*S1; Y2[K]=I1*C1-R1*S1; 00585 X1[K]=R2*C2+I2*S2; Y1[K]=I2*C2-R2*S2; 00586 X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3; 00587 } 00588 else 00589 { 00590 REPORT 00591 X2[K]=RU0+IU1; Y2[K]=IU0-RU1; 00592 X1[K]=RS0-RS1; Y1[K]=IS0-IS1; 00593 X3[K]=RU0-IU1; Y3[K]=IU0+RU1; 00594 } 00595 } 00596 goto L100; 00597 L600: ; 00598 } 00599 00600 return; 00601 } 00602 00603 static void R_5_FTK (int N, int M, 00604 Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2, 00605 Real* X3, Real* Y3, Real* X4, Real* Y4) 00606 // RADIX FIVE FOURIER TRANSFORM KERNEL 00607 00608 { 00609 REPORT 00610 bool NO_FOLD,ZERO; 00611 int J,K,K0,M5,M_OVER_2; 00612 Real ANGLE,A1,A2,B1,B2,C1,C2,C3,C4,S1,S2,S3,S4,T,TWOPI; 00613 Real R0,R1,R2,R3,R4,RA1,RA2,RB1,RB2,RS1,RS2,RU1,RU2; 00614 Real I0,I1,I2,I3,I4,IA1,IA2,IB1,IB2,IS1,IS2,IU1,IU2; 00615 00616 M5=M*5; M_OVER_2=M/2+1; 00617 TWOPI=8.0*atan(1.0); 00618 A1=cos(TWOPI/5.0); B1=sin(TWOPI/5.0); 00619 A2=cos(2.0*TWOPI/5.0); B2=sin(2.0*TWOPI/5.0); 00620 00621 for (J=0; J<M_OVER_2; J++) 00622 { 00623 NO_FOLD = (J==0 || 2*J==M); 00624 K0=J; 00625 ANGLE=TWOPI*Real(J)/Real(M5); ZERO=ANGLE==0.0; 00626 C1=cos(ANGLE); S1=sin(ANGLE); 00627 C2=C1*C1-S1*S1; S2=S1*C1+C1*S1; 00628 C3=C2*C1-S2*S1; S3=S2*C1+C2*S1; 00629 C4=C2*C2-S2*S2; S4=S2*C2+C2*S2; 00630 goto L200; 00631 L100: 00632 REPORT 00633 if (NO_FOLD) { REPORT goto L600; } 00634 REPORT 00635 NO_FOLD=true; K0=M-J; 00636 T=C1*A1+S1*B1; S1=C1*B1-S1*A1; C1=T; 00637 T=C2*A2+S2*B2; S2=C2*B2-S2*A2; C2=T; 00638 T=C3*A2-S3*B2; S3= -C3*B2-S3*A2; C3=T; 00639 T=C4*A1-S4*B1; S4= -C4*B1-S4*A1; C4=T; 00640 L200: 00641 REPORT 00642 for (K=K0; K<N; K+=M5) 00643 { 00644 R0=X0[K]; I0=Y0[K]; 00645 RS1=X1[K]+X4[K]; IS1=Y1[K]+Y4[K]; 00646 RU1=X1[K]-X4[K]; IU1=Y1[K]-Y4[K]; 00647 RS2=X2[K]+X3[K]; IS2=Y2[K]+Y3[K]; 00648 RU2=X2[K]-X3[K]; IU2=Y2[K]-Y3[K]; 00649 X0[K]=R0+RS1+RS2; Y0[K]=I0+IS1+IS2; 00650 RA1=R0+RS1*A1+RS2*A2; IA1=I0+IS1*A1+IS2*A2; 00651 RA2=R0+RS1*A2+RS2*A1; IA2=I0+IS1*A2+IS2*A1; 00652 RB1=RU1*B1+RU2*B2; IB1=IU1*B1+IU2*B2; 00653 RB2=RU1*B2-RU2*B1; IB2=IU1*B2-IU2*B1; 00654 if (!ZERO) 00655 { 00656 REPORT 00657 R1=RA1+IB1; I1=IA1-RB1; 00658 R2=RA2+IB2; I2=IA2-RB2; 00659 R3=RA2-IB2; I3=IA2+RB2; 00660 R4=RA1-IB1; I4=IA1+RB1; 00661 X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1; 00662 X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2; 00663 X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3; 00664 X4[K]=R4*C4+I4*S4; Y4[K]=I4*C4-R4*S4; 00665 } 00666 else 00667 { 00668 REPORT 00669 X1[K]=RA1+IB1; Y1[K]=IA1-RB1; 00670 X2[K]=RA2+IB2; Y2[K]=IA2-RB2; 00671 X3[K]=RA2-IB2; Y3[K]=IA2+RB2; 00672 X4[K]=RA1-IB1; Y4[K]=IA1+RB1; 00673 } 00674 } 00675 goto L100; 00676 L600: ; 00677 } 00678 00679 return; 00680 } 00681 00682 static void R_8_FTK (int N, int M, 00683 Real* X0, Real* Y0, Real* X1, Real* Y1, 00684 Real* X2, Real* Y2, Real* X3, Real* Y3, 00685 Real* X4, Real* Y4, Real* X5, Real* Y5, 00686 Real* X6, Real* Y6, Real* X7, Real* Y7) 00687 // RADIX EIGHT FOURIER TRANSFORM KERNEL 00688 { 00689 REPORT 00690 bool NO_FOLD,ZERO; 00691 int J,K,K0,M8,M_OVER_2; 00692 Real ANGLE,C1,C2,C3,C4,C5,C6,C7,E,S1,S2,S3,S4,S5,S6,S7,T,TWOPI; 00693 Real R1,R2,R3,R4,R5,R6,R7,RS0,RS1,RS2,RS3,RU0,RU1,RU2,RU3; 00694 Real I1,I2,I3,I4,I5,I6,I7,IS0,IS1,IS2,IS3,IU0,IU1,IU2,IU3; 00695 Real RSS0,RSS1,RSU0,RSU1,RUS0,RUS1,RUU0,RUU1; 00696 Real ISS0,ISS1,ISU0,ISU1,IUS0,IUS1,IUU0,IUU1; 00697 00698 M8=M*8; M_OVER_2=M/2+1; 00699 TWOPI=8.0*atan(1.0); E=cos(TWOPI/8.0); 00700 00701 for (J=0;J<M_OVER_2;J++) 00702 { 00703 NO_FOLD= (J==0 || 2*J==M); 00704 K0=J; 00705 ANGLE=TWOPI*Real(J)/Real(M8); ZERO=ANGLE==0.0; 00706 C1=cos(ANGLE); S1=sin(ANGLE); 00707 C2=C1*C1-S1*S1; S2=C1*S1+S1*C1; 00708 C3=C2*C1-S2*S1; S3=S2*C1+C2*S1; 00709 C4=C2*C2-S2*S2; S4=S2*C2+C2*S2; 00710 C5=C4*C1-S4*S1; S5=S4*C1+C4*S1; 00711 C6=C4*C2-S4*S2; S6=S4*C2+C4*S2; 00712 C7=C4*C3-S4*S3; S7=S4*C3+C4*S3; 00713 goto L200; 00714 L100: 00715 REPORT 00716 if (NO_FOLD) { REPORT goto L600; } 00717 REPORT 00718 NO_FOLD=true; K0=M-J; 00719 T=(C1+S1)*E; S1=(C1-S1)*E; C1=T; 00720 T=S2; S2=C2; C2=T; 00721 T=(-C3+S3)*E; S3=(C3+S3)*E; C3=T; 00722 C4= -C4; 00723 T= -(C5+S5)*E; S5=(-C5+S5)*E; C5=T; 00724 T= -S6; S6= -C6; C6=T; 00725 T=(C7-S7)*E; S7= -(C7+S7)*E; C7=T; 00726 L200: 00727 REPORT 00728 for (K=K0; K<N; K+=M8) 00729 { 00730 RS0=X0[K]+X4[K]; IS0=Y0[K]+Y4[K]; 00731 RU0=X0[K]-X4[K]; IU0=Y0[K]-Y4[K]; 00732 RS1=X1[K]+X5[K]; IS1=Y1[K]+Y5[K]; 00733 RU1=X1[K]-X5[K]; IU1=Y1[K]-Y5[K]; 00734 RS2=X2[K]+X6[K]; IS2=Y2[K]+Y6[K]; 00735 RU2=X2[K]-X6[K]; IU2=Y2[K]-Y6[K]; 00736 RS3=X3[K]+X7[K]; IS3=Y3[K]+Y7[K]; 00737 RU3=X3[K]-X7[K]; IU3=Y3[K]-Y7[K]; 00738 RSS0=RS0+RS2; ISS0=IS0+IS2; 00739 RSU0=RS0-RS2; ISU0=IS0-IS2; 00740 RSS1=RS1+RS3; ISS1=IS1+IS3; 00741 RSU1=RS1-RS3; ISU1=IS1-IS3; 00742 RUS0=RU0-IU2; IUS0=IU0+RU2; 00743 RUU0=RU0+IU2; IUU0=IU0-RU2; 00744 RUS1=RU1-IU3; IUS1=IU1+RU3; 00745 RUU1=RU1+IU3; IUU1=IU1-RU3; 00746 T=(RUS1+IUS1)*E; IUS1=(IUS1-RUS1)*E; RUS1=T; 00747 T=(RUU1+IUU1)*E; IUU1=(IUU1-RUU1)*E; RUU1=T; 00748 X0[K]=RSS0+RSS1; Y0[K]=ISS0+ISS1; 00749 if (!ZERO) 00750 { 00751 REPORT 00752 R1=RUU0+RUU1; I1=IUU0+IUU1; 00753 R2=RSU0+ISU1; I2=ISU0-RSU1; 00754 R3=RUS0+IUS1; I3=IUS0-RUS1; 00755 R4=RSS0-RSS1; I4=ISS0-ISS1; 00756 R5=RUU0-RUU1; I5=IUU0-IUU1; 00757 R6=RSU0-ISU1; I6=ISU0+RSU1; 00758 R7=RUS0-IUS1; I7=IUS0+RUS1; 00759 X4[K]=R1*C1+I1*S1; Y4[K]=I1*C1-R1*S1; 00760 X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2; 00761 X6[K]=R3*C3+I3*S3; Y6[K]=I3*C3-R3*S3; 00762 X1[K]=R4*C4+I4*S4; Y1[K]=I4*C4-R4*S4; 00763 X5[K]=R5*C5+I5*S5; Y5[K]=I5*C5-R5*S5; 00764 X3[K]=R6*C6+I6*S6; Y3[K]=I6*C6-R6*S6; 00765 X7[K]=R7*C7+I7*S7; Y7[K]=I7*C7-R7*S7; 00766 } 00767 else 00768 { 00769 REPORT 00770 X4[K]=RUU0+RUU1; Y4[K]=IUU0+IUU1; 00771 X2[K]=RSU0+ISU1; Y2[K]=ISU0-RSU1; 00772 X6[K]=RUS0+IUS1; Y6[K]=IUS0-RUS1; 00773 X1[K]=RSS0-RSS1; Y1[K]=ISS0-ISS1; 00774 X5[K]=RUU0-RUU1; Y5[K]=IUU0-IUU1; 00775 X3[K]=RSU0-ISU1; Y3[K]=ISU0+RSU1; 00776 X7[K]=RUS0-IUS1; Y7[K]=IUS0+RUS1; 00777 } 00778 } 00779 goto L100; 00780 L600: ; 00781 } 00782 00783 return; 00784 } 00785 00786 static void R_16_FTK (int N, int M, 00787 Real* X0, Real* Y0, Real* X1, Real* Y1, 00788 Real* X2, Real* Y2, Real* X3, Real* Y3, 00789 Real* X4, Real* Y4, Real* X5, Real* Y5, 00790 Real* X6, Real* Y6, Real* X7, Real* Y7, 00791 Real* X8, Real* Y8, Real* X9, Real* Y9, 00792 Real* X10, Real* Y10, Real* X11, Real* Y11, 00793 Real* X12, Real* Y12, Real* X13, Real* Y13, 00794 Real* X14, Real* Y14, Real* X15, Real* Y15) 00795 // RADIX SIXTEEN FOURIER TRANSFORM KERNEL 00796 { 00797 REPORT 00798 bool NO_FOLD,ZERO; 00799 int J,K,K0,M16,M_OVER_2; 00800 Real ANGLE,EI1,ER1,E2,EI3,ER3,EI5,ER5,T,TWOPI; 00801 Real RS0,RS1,RS2,RS3,RS4,RS5,RS6,RS7; 00802 Real IS0,IS1,IS2,IS3,IS4,IS5,IS6,IS7; 00803 Real RU0,RU1,RU2,RU3,RU4,RU5,RU6,RU7; 00804 Real IU0,IU1,IU2,IU3,IU4,IU5,IU6,IU7; 00805 Real RUS0,RUS1,RUS2,RUS3,RUU0,RUU1,RUU2,RUU3; 00806 Real ISS0,ISS1,ISS2,ISS3,ISU0,ISU1,ISU2,ISU3; 00807 Real RSS0,RSS1,RSS2,RSS3,RSU0,RSU1,RSU2,RSU3; 00808 Real IUS0,IUS1,IUS2,IUS3,IUU0,IUU1,IUU2,IUU3; 00809 Real RSSS0,RSSS1,RSSU0,RSSU1,RSUS0,RSUS1,RSUU0,RSUU1; 00810 Real ISSS0,ISSS1,ISSU0,ISSU1,ISUS0,ISUS1,ISUU0,ISUU1; 00811 Real RUSS0,RUSS1,RUSU0,RUSU1,RUUS0,RUUS1,RUUU0,RUUU1; 00812 Real IUSS0,IUSS1,IUSU0,IUSU1,IUUS0,IUUS1,IUUU0,IUUU1; 00813 Real R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15; 00814 Real I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15; 00815 Real C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15; 00816 Real S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15; 00817 00818 M16=M*16; M_OVER_2=M/2+1; 00819 TWOPI=8.0*atan(1.0); 00820 ER1=cos(TWOPI/16.0); EI1=sin(TWOPI/16.0); 00821 E2=cos(TWOPI/8.0); 00822 ER3=cos(3.0*TWOPI/16.0); EI3=sin(3.0*TWOPI/16.0); 00823 ER5=cos(5.0*TWOPI/16.0); EI5=sin(5.0*TWOPI/16.0); 00824 00825 for (J=0; J<M_OVER_2; J++) 00826 { 00827 NO_FOLD = (J==0 || 2*J==M); 00828 K0=J; 00829 ANGLE=TWOPI*Real(J)/Real(M16); 00830 ZERO=ANGLE==0.0; 00831 C1=cos(ANGLE); S1=sin(ANGLE); 00832 C2=C1*C1-S1*S1; S2=C1*S1+S1*C1; 00833 C3=C2*C1-S2*S1; S3=S2*C1+C2*S1; 00834 C4=C2*C2-S2*S2; S4=S2*C2+C2*S2; 00835 C5=C4*C1-S4*S1; S5=S4*C1+C4*S1; 00836 C6=C4*C2-S4*S2; S6=S4*C2+C4*S2; 00837 C7=C4*C3-S4*S3; S7=S4*C3+C4*S3; 00838 C8=C4*C4-S4*S4; S8=C4*S4+S4*C4; 00839 C9=C8*C1-S8*S1; S9=S8*C1+C8*S1; 00840 C10=C8*C2-S8*S2; S10=S8*C2+C8*S2; 00841 C11=C8*C3-S8*S3; S11=S8*C3+C8*S3; 00842 C12=C8*C4-S8*S4; S12=S8*C4+C8*S4; 00843 C13=C8*C5-S8*S5; S13=S8*C5+C8*S5; 00844 C14=C8*C6-S8*S6; S14=S8*C6+C8*S6; 00845 C15=C8*C7-S8*S7; S15=S8*C7+C8*S7; 00846 goto L200; 00847 L100: 00848 REPORT 00849 if (NO_FOLD) { REPORT goto L600; } 00850 REPORT 00851 NO_FOLD=true; K0=M-J; 00852 T=C1*ER1+S1*EI1; S1= -S1*ER1+C1*EI1; C1=T; 00853 T=(C2+S2)*E2; S2=(C2-S2)*E2; C2=T; 00854 T=C3*ER3+S3*EI3; S3= -S3*ER3+C3*EI3; C3=T; 00855 T=S4; S4=C4; C4=T; 00856 T=S5*ER1-C5*EI1; S5=C5*ER1+S5*EI1; C5=T; 00857 T=(-C6+S6)*E2; S6=(C6+S6)*E2; C6=T; 00858 T=S7*ER3-C7*EI3; S7=C7*ER3+S7*EI3; C7=T; 00859 C8= -C8; 00860 T= -(C9*ER1+S9*EI1); S9=S9*ER1-C9*EI1; C9=T; 00861 T= -(C10+S10)*E2; S10=(-C10+S10)*E2; C10=T; 00862 T= -(C11*ER3+S11*EI3); S11=S11*ER3-C11*EI3; C11=T; 00863 T= -S12; S12= -C12; C12=T; 00864 T= -S13*ER1+C13*EI1; S13= -(C13*ER1+S13*EI1); C13=T; 00865 T=(C14-S14)*E2; S14= -(C14+S14)*E2; C14=T; 00866 T= -S15*ER3+C15*EI3; S15= -(C15*ER3+S15*EI3); C15=T; 00867 L200: 00868 REPORT 00869 for (K=K0; K<N; K+=M16) 00870 { 00871 RS0=X0[K]+X8[K]; IS0=Y0[K]+Y8[K]; 00872 RU0=X0[K]-X8[K]; IU0=Y0[K]-Y8[K]; 00873 RS1=X1[K]+X9[K]; IS1=Y1[K]+Y9[K]; 00874 RU1=X1[K]-X9[K]; IU1=Y1[K]-Y9[K]; 00875 RS2=X2[K]+X10[K]; IS2=Y2[K]+Y10[K]; 00876 RU2=X2[K]-X10[K]; IU2=Y2[K]-Y10[K]; 00877 RS3=X3[K]+X11[K]; IS3=Y3[K]+Y11[K]; 00878 RU3=X3[K]-X11[K]; IU3=Y3[K]-Y11[K]; 00879 RS4=X4[K]+X12[K]; IS4=Y4[K]+Y12[K]; 00880 RU4=X4[K]-X12[K]; IU4=Y4[K]-Y12[K]; 00881 RS5=X5[K]+X13[K]; IS5=Y5[K]+Y13[K]; 00882 RU5=X5[K]-X13[K]; IU5=Y5[K]-Y13[K]; 00883 RS6=X6[K]+X14[K]; IS6=Y6[K]+Y14[K]; 00884 RU6=X6[K]-X14[K]; IU6=Y6[K]-Y14[K]; 00885 RS7=X7[K]+X15[K]; IS7=Y7[K]+Y15[K]; 00886 RU7=X7[K]-X15[K]; IU7=Y7[K]-Y15[K]; 00887 RSS0=RS0+RS4; ISS0=IS0+IS4; 00888 RSS1=RS1+RS5; ISS1=IS1+IS5; 00889 RSS2=RS2+RS6; ISS2=IS2+IS6; 00890 RSS3=RS3+RS7; ISS3=IS3+IS7; 00891 RSU0=RS0-RS4; ISU0=IS0-IS4; 00892 RSU1=RS1-RS5; ISU1=IS1-IS5; 00893 RSU2=RS2-RS6; ISU2=IS2-IS6; 00894 RSU3=RS3-RS7; ISU3=IS3-IS7; 00895 RUS0=RU0-IU4; IUS0=IU0+RU4; 00896 RUS1=RU1-IU5; IUS1=IU1+RU5; 00897 RUS2=RU2-IU6; IUS2=IU2+RU6; 00898 RUS3=RU3-IU7; IUS3=IU3+RU7; 00899 RUU0=RU0+IU4; IUU0=IU0-RU4; 00900 RUU1=RU1+IU5; IUU1=IU1-RU5; 00901 RUU2=RU2+IU6; IUU2=IU2-RU6; 00902 RUU3=RU3+IU7; IUU3=IU3-RU7; 00903 T=(RSU1+ISU1)*E2; ISU1=(ISU1-RSU1)*E2; RSU1=T; 00904 T=(RSU3+ISU3)*E2; ISU3=(ISU3-RSU3)*E2; RSU3=T; 00905 T=RUS1*ER3+IUS1*EI3; IUS1=IUS1*ER3-RUS1*EI3; RUS1=T; 00906 T=(RUS2+IUS2)*E2; IUS2=(IUS2-RUS2)*E2; RUS2=T; 00907 T=RUS3*ER5+IUS3*EI5; IUS3=IUS3*ER5-RUS3*EI5; RUS3=T; 00908 T=RUU1*ER1+IUU1*EI1; IUU1=IUU1*ER1-RUU1*EI1; RUU1=T; 00909 T=(RUU2+IUU2)*E2; IUU2=(IUU2-RUU2)*E2; RUU2=T; 00910 T=RUU3*ER3+IUU3*EI3; IUU3=IUU3*ER3-RUU3*EI3; RUU3=T; 00911 RSSS0=RSS0+RSS2; ISSS0=ISS0+ISS2; 00912 RSSS1=RSS1+RSS3; ISSS1=ISS1+ISS3; 00913 RSSU0=RSS0-RSS2; ISSU0=ISS0-ISS2; 00914 RSSU1=RSS1-RSS3; ISSU1=ISS1-ISS3; 00915 RSUS0=RSU0-ISU2; ISUS0=ISU0+RSU2; 00916 RSUS1=RSU1-ISU3; ISUS1=ISU1+RSU3; 00917 RSUU0=RSU0+ISU2; ISUU0=ISU0-RSU2; 00918 RSUU1=RSU1+ISU3; ISUU1=ISU1-RSU3; 00919 RUSS0=RUS0-IUS2; IUSS0=IUS0+RUS2; 00920 RUSS1=RUS1-IUS3; IUSS1=IUS1+RUS3; 00921 RUSU0=RUS0+IUS2; IUSU0=IUS0-RUS2; 00922 RUSU1=RUS1+IUS3; IUSU1=IUS1-RUS3; 00923 RUUS0=RUU0+RUU2; IUUS0=IUU0+IUU2; 00924 RUUS1=RUU1+RUU3; IUUS1=IUU1+IUU3; 00925 RUUU0=RUU0-RUU2; IUUU0=IUU0-IUU2; 00926 RUUU1=RUU1-RUU3; IUUU1=IUU1-IUU3; 00927 X0[K]=RSSS0+RSSS1; Y0[K]=ISSS0+ISSS1; 00928 if (!ZERO) 00929 { 00930 REPORT 00931 R1=RUUS0+RUUS1; I1=IUUS0+IUUS1; 00932 R2=RSUU0+RSUU1; I2=ISUU0+ISUU1; 00933 R3=RUSU0+RUSU1; I3=IUSU0+IUSU1; 00934 R4=RSSU0+ISSU1; I4=ISSU0-RSSU1; 00935 R5=RUUU0+IUUU1; I5=IUUU0-RUUU1; 00936 R6=RSUS0+ISUS1; I6=ISUS0-RSUS1; 00937 R7=RUSS0+IUSS1; I7=IUSS0-RUSS1; 00938 R8=RSSS0-RSSS1; I8=ISSS0-ISSS1; 00939 R9=RUUS0-RUUS1; I9=IUUS0-IUUS1; 00940 R10=RSUU0-RSUU1; I10=ISUU0-ISUU1; 00941 R11=RUSU0-RUSU1; I11=IUSU0-IUSU1; 00942 R12=RSSU0-ISSU1; I12=ISSU0+RSSU1; 00943 R13=RUUU0-IUUU1; I13=IUUU0+RUUU1; 00944 R14=RSUS0-ISUS1; I14=ISUS0+RSUS1; 00945 R15=RUSS0-IUSS1; I15=IUSS0+RUSS1; 00946 X8[K]=R1*C1+I1*S1; Y8[K]=I1*C1-R1*S1; 00947 X4[K]=R2*C2+I2*S2; Y4[K]=I2*C2-R2*S2; 00948 X12[K]=R3*C3+I3*S3; Y12[K]=I3*C3-R3*S3; 00949 X2[K]=R4*C4+I4*S4; Y2[K]=I4*C4-R4*S4; 00950 X10[K]=R5*C5+I5*S5; Y10[K]=I5*C5-R5*S5; 00951 X6[K]=R6*C6+I6*S6; Y6[K]=I6*C6-R6*S6; 00952 X14[K]=R7*C7+I7*S7; Y14[K]=I7*C7-R7*S7; 00953 X1[K]=R8*C8+I8*S8; Y1[K]=I8*C8-R8*S8; 00954 X9[K]=R9*C9+I9*S9; Y9[K]=I9*C9-R9*S9; 00955 X5[K]=R10*C10+I10*S10; Y5[K]=I10*C10-R10*S10; 00956 X13[K]=R11*C11+I11*S11; Y13[K]=I11*C11-R11*S11; 00957 X3[K]=R12*C12+I12*S12; Y3[K]=I12*C12-R12*S12; 00958 X11[K]=R13*C13+I13*S13; Y11[K]=I13*C13-R13*S13; 00959 X7[K]=R14*C14+I14*S14; Y7[K]=I14*C14-R14*S14; 00960 X15[K]=R15*C15+I15*S15; Y15[K]=I15*C15-R15*S15; 00961 } 00962 else 00963 { 00964 REPORT 00965 X8[K]=RUUS0+RUUS1; Y8[K]=IUUS0+IUUS1; 00966 X4[K]=RSUU0+RSUU1; Y4[K]=ISUU0+ISUU1; 00967 X12[K]=RUSU0+RUSU1; Y12[K]=IUSU0+IUSU1; 00968 X2[K]=RSSU0+ISSU1; Y2[K]=ISSU0-RSSU1; 00969 X10[K]=RUUU0+IUUU1; Y10[K]=IUUU0-RUUU1; 00970 X6[K]=RSUS0+ISUS1; Y6[K]=ISUS0-RSUS1; 00971 X14[K]=RUSS0+IUSS1; Y14[K]=IUSS0-RUSS1; 00972 X1[K]=RSSS0-RSSS1; Y1[K]=ISSS0-ISSS1; 00973 X9[K]=RUUS0-RUUS1; Y9[K]=IUUS0-IUUS1; 00974 X5[K]=RSUU0-RSUU1; Y5[K]=ISUU0-ISUU1; 00975 X13[K]=RUSU0-RUSU1; Y13[K]=IUSU0-IUSU1; 00976 X3[K]=RSSU0-ISSU1; Y3[K]=ISSU0+RSSU1; 00977 X11[K]=RUUU0-IUUU1; Y11[K]=IUUU0+RUUU1; 00978 X7[K]=RSUS0-ISUS1; Y7[K]=ISUS0+RSUS1; 00979 X15[K]=RUSS0-IUSS1; Y15[K]=IUSS0+RUSS1; 00980 } 00981 } 00982 goto L100; 00983 L600: ; 00984 } 00985 00986 return; 00987 } 00988 00989 // can the number of points be factorised sufficiently 00990 // for the fft to run 00991 00992 bool FFT_Controller::CanFactor(int PTS) 00993 { 00994 REPORT 00995 const int NP = 16, NQ = 10, PMAX=19; 00996 00997 if (PTS<=1) { REPORT return true; } 00998 00999 int N = PTS, F = 2, P = 0, Q = 0; 01000 01001 while (N > 1) 01002 { 01003 bool fail = true; 01004 for (int J = F; J <= PMAX; J++) 01005 if (N % J == 0) { fail = false; F=J; break; } 01006 if (fail || P >= NP || Q >= NQ) { REPORT return false; } 01007 N /= F; 01008 if (N % F != 0) Q++; else { N /= F; P++; } 01009 } 01010 01011 return true; // can factorise 01012 01013 } 01014 01015 bool FFT_Controller::OnlyOldFFT; // static variable 01016 01017 // **************************** multi radix counter ********************** 01018 01019 MultiRadixCounter::MultiRadixCounter(int nx, const SimpleIntArray& rx, 01020 SimpleIntArray& vx) 01021 : Radix(rx), Value(vx), n(nx), reverse(0), 01022 product(1), counter(0), finish(false) 01023 { 01024 REPORT for (int k = 0; k < n; k++) { Value[k] = 0; product *= Radix[k]; } 01025 } 01026 01027 void MultiRadixCounter::operator++() 01028 { 01029 REPORT 01030 counter++; int p = product; 01031 for (int k = 0; k < n; k++) 01032 { 01033 Value[k]++; int p1 = p / Radix[k]; reverse += p1; 01034 if (Value[k] == Radix[k]) { REPORT Value[k] = 0; reverse -= p; p = p1; } 01035 else { REPORT return; } 01036 } 01037 finish = true; 01038 } 01039 01040 01041 static int BitReverse(int x, int prod, int n, const SimpleIntArray& f) 01042 { 01043 // x = c[0]+f[0]*(c[1]+f[1]*(c[2]+... 01044 // return c[n-1]+f[n-1]*(c[n-2]+f[n-2]*(c[n-3]+... 01045 // prod is the product of the f[i] 01046 // n is the number of f[i] (don't assume f has the correct length) 01047 01048 REPORT 01049 const int* d = f.Data() + n; int sum = 0; int q = 1; 01050 while (n--) 01051 { 01052 prod /= *(--d); 01053 int c = x / prod; x-= c * prod; 01054 sum += q * c; q *= *d; 01055 } 01056 return sum; 01057 } 01058 01059 01060 #ifdef use_namespace 01061 } 01062 #endif 01063 01065