$search
00001 00002 00003 00006 00007 00008 // Copyright (C) 1991,2,3,4,8: R B Davies 00009 00010 00011 #define WANT_MATH 00012 // #define WANT_STREAM 00013 00014 #include "include.h" 00015 00016 #include "newmatap.h" 00017 00018 // #include "newmatio.h" 00019 00020 #ifdef use_namespace 00021 namespace NEWMAT { 00022 #endif 00023 00024 #ifdef DO_REPORT 00025 #define REPORT { static ExeCounter ExeCount(__LINE__,19); ++ExeCount; } 00026 #else 00027 #define REPORT {} 00028 #endif 00029 00030 static void cossin(int n, int d, Real& c, Real& s) 00031 // calculate cos(twopi*n/d) and sin(twopi*n/d) 00032 // minimise roundoff error 00033 { 00034 REPORT 00035 long n4 = n * 4; int sector = (int)floor( (Real)n4 / (Real)d + 0.5 ); 00036 n4 -= sector * d; 00037 if (sector < 0) { REPORT sector = 3 - (3 - sector) % 4; } 00038 else { REPORT sector %= 4; } 00039 Real ratio = 1.5707963267948966192 * (Real)n4 / (Real)d; 00040 00041 switch (sector) 00042 { 00043 case 0: REPORT c = cos(ratio); s = sin(ratio); break; 00044 case 1: REPORT c = -sin(ratio); s = cos(ratio); break; 00045 case 2: REPORT c = -cos(ratio); s = -sin(ratio); break; 00046 case 3: REPORT c = sin(ratio); s = -cos(ratio); break; 00047 } 00048 } 00049 00050 static void fftstep(ColumnVector& A, ColumnVector& B, ColumnVector& X, 00051 ColumnVector& Y, int after, int now, int before) 00052 { 00053 REPORT 00054 Tracer trace("FFT(step)"); 00055 // const Real twopi = 6.2831853071795864769; 00056 const int gamma = after * before; const int delta = now * after; 00057 // const Real angle = twopi / delta; Real temp; 00058 // Real r_omega = cos(angle); Real i_omega = -sin(angle); 00059 Real r_arg = 1.0; Real i_arg = 0.0; 00060 Real* x = X.Store(); Real* y = Y.Store(); // pointers to array storage 00061 const int m = A.Nrows() - gamma; 00062 00063 for (int j = 0; j < now; j++) 00064 { 00065 Real* a = A.Store(); Real* b = B.Store(); // pointers to array storage 00066 Real* x1 = x; Real* y1 = y; x += after; y += after; 00067 for (int ia = 0; ia < after; ia++) 00068 { 00069 // generate sins & cosines explicitly rather than iteratively 00070 // for more accuracy; but slower 00071 cossin(-(j*after+ia), delta, r_arg, i_arg); 00072 00073 Real* a1 = a++; Real* b1 = b++; Real* x2 = x1++; Real* y2 = y1++; 00074 if (now==2) 00075 { 00076 REPORT int ib = before; 00077 if (ib) for (;;) 00078 { 00079 REPORT 00080 Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after; 00081 Real r_value = *a2; Real i_value = *b2; 00082 *x2 = r_value * r_arg - i_value * i_arg + *(a2-gamma); 00083 *y2 = r_value * i_arg + i_value * r_arg + *(b2-gamma); 00084 if (!(--ib)) break; 00085 x2 += delta; y2 += delta; 00086 } 00087 } 00088 else 00089 { 00090 REPORT int ib = before; 00091 if (ib) for (;;) 00092 { 00093 REPORT 00094 Real* a2 = m + a1; Real* b2 = m + b1; a1 += after; b1 += after; 00095 Real r_value = *a2; Real i_value = *b2; 00096 int in = now-1; while (in--) 00097 { 00098 // it should be possible to make this faster 00099 // hand code for now = 2,3,4,5,8 00100 // use symmetry to halve number of operations 00101 a2 -= gamma; b2 -= gamma; Real temp = r_value; 00102 r_value = r_value * r_arg - i_value * i_arg + *a2; 00103 i_value = temp * i_arg + i_value * r_arg + *b2; 00104 } 00105 *x2 = r_value; *y2 = i_value; 00106 if (!(--ib)) break; 00107 x2 += delta; y2 += delta; 00108 } 00109 } 00110 00111 // temp = r_arg; 00112 // r_arg = r_arg * r_omega - i_arg * i_omega; 00113 // i_arg = temp * i_omega + i_arg * r_omega; 00114 00115 } 00116 } 00117 } 00118 00119 00120 void FFTI(const ColumnVector& U, const ColumnVector& V, 00121 ColumnVector& X, ColumnVector& Y) 00122 { 00123 // Inverse transform 00124 Tracer trace("FFTI"); 00125 REPORT 00126 FFT(U,-V,X,Y); 00127 const Real n = X.Nrows(); X /= n; Y /= (-n); 00128 } 00129 00130 void RealFFT(const ColumnVector& U, ColumnVector& X, ColumnVector& Y) 00131 { 00132 // Fourier transform of a real series 00133 Tracer trace("RealFFT"); 00134 REPORT 00135 const int n = U.Nrows(); // length of arrays 00136 const int n2 = n / 2; 00137 if (n != 2 * n2) 00138 Throw(ProgramException("Vector length not multiple of 2", U)); 00139 ColumnVector A(n2), B(n2); 00140 Real* a = A.Store(); Real* b = B.Store(); Real* u = U.Store(); int i = n2; 00141 while (i--) { *a++ = *u++; *b++ = *u++; } 00142 FFT(A,B,A,B); 00143 int n21 = n2 + 1; 00144 X.resize(n21); Y.resize(n21); 00145 i = n2 - 1; 00146 a = A.Store(); b = B.Store(); // first els of A and B 00147 Real* an = a + i; Real* bn = b + i; // last els of A and B 00148 Real* x = X.Store(); Real* y = Y.Store(); // first els of X and Y 00149 Real* xn = x + n2; Real* yn = y + n2; // last els of X and Y 00150 00151 *x++ = *a + *b; *y++ = 0.0; // first complex element 00152 *xn-- = *a++ - *b++; *yn-- = 0.0; // last complex element 00153 00154 int j = -1; i = n2/2; 00155 while (i--) 00156 { 00157 Real c,s; cossin(j--,n,c,s); 00158 Real am = *a - *an; Real ap = *a++ + *an--; 00159 Real bm = *b - *bn; Real bp = *b++ + *bn--; 00160 Real samcbp = s * am + c * bp; Real sbpcam = s * bp - c * am; 00161 *x++ = 0.5 * ( ap + samcbp); *y++ = 0.5 * ( bm + sbpcam); 00162 *xn-- = 0.5 * ( ap - samcbp); *yn-- = 0.5 * (-bm + sbpcam); 00163 } 00164 } 00165 00166 void RealFFTI(const ColumnVector& A, const ColumnVector& B, ColumnVector& U) 00167 { 00168 // inverse of a Fourier transform of a real series 00169 Tracer trace("RealFFTI"); 00170 REPORT 00171 const int n21 = A.Nrows(); // length of arrays 00172 if (n21 != B.Nrows() || n21 == 0) 00173 Throw(ProgramException("Vector lengths unequal or zero", A, B)); 00174 const int n2 = n21 - 1; const int n = 2 * n2; int i = n2 - 1; 00175 00176 ColumnVector X(n2), Y(n2); 00177 Real* a = A.Store(); Real* b = B.Store(); // first els of A and B 00178 Real* an = a + n2; Real* bn = b + n2; // last els of A and B 00179 Real* x = X.Store(); Real* y = Y.Store(); // first els of X and Y 00180 Real* xn = x + i; Real* yn = y + i; // last els of X and Y 00181 00182 Real hn = 0.5 / n2; 00183 *x++ = hn * (*a + *an); *y++ = - hn * (*a - *an); 00184 a++; an--; b++; bn--; 00185 int j = -1; i = n2/2; 00186 while (i--) 00187 { 00188 Real c,s; cossin(j--,n,c,s); 00189 Real am = *a - *an; Real ap = *a++ + *an--; 00190 Real bm = *b - *bn; Real bp = *b++ + *bn--; 00191 Real samcbp = s * am - c * bp; Real sbpcam = s * bp + c * am; 00192 *x++ = hn * ( ap + samcbp); *y++ = - hn * ( bm + sbpcam); 00193 *xn-- = hn * ( ap - samcbp); *yn-- = - hn * (-bm + sbpcam); 00194 } 00195 FFT(X,Y,X,Y); // have done inverting elsewhere 00196 U.resize(n); i = n2; 00197 x = X.Store(); y = Y.Store(); Real* u = U.Store(); 00198 while (i--) { *u++ = *x++; *u++ = - *y++; } 00199 } 00200 00201 void FFT(const ColumnVector& U, const ColumnVector& V, 00202 ColumnVector& X, ColumnVector& Y) 00203 { 00204 // from Carl de Boor (1980), Siam J Sci Stat Comput, 1 173-8 00205 // but first try Sande and Gentleman 00206 Tracer trace("FFT"); 00207 REPORT 00208 const int n = U.Nrows(); // length of arrays 00209 if (n != V.Nrows() || n == 0) 00210 Throw(ProgramException("Vector lengths unequal or zero", U, V)); 00211 if (n == 1) { REPORT X = U; Y = V; return; } 00212 00213 // see if we can use the newfft routine 00214 if (!FFT_Controller::OnlyOldFFT && FFT_Controller::CanFactor(n)) 00215 { 00216 REPORT 00217 X = U; Y = V; 00218 if ( FFT_Controller::ar_1d_ft(n,X.Store(),Y.Store()) ) return; 00219 } 00220 00221 ColumnVector B = V; 00222 ColumnVector A = U; 00223 X.resize(n); Y.resize(n); 00224 const int nextmx = 8; 00225 int prime[8] = { 2,3,5,7,11,13,17,19 }; 00226 int after = 1; int before = n; int next = 0; bool inzee = true; 00227 int now = 0; int b1; // initialised to keep gnu happy 00228 00229 do 00230 { 00231 for (;;) 00232 { 00233 if (next < nextmx) { REPORT now = prime[next]; } 00234 b1 = before / now; if (b1 * now == before) { REPORT break; } 00235 next++; now += 2; 00236 } 00237 before = b1; 00238 00239 if (inzee) { REPORT fftstep(A, B, X, Y, after, now, before); } 00240 else { REPORT fftstep(X, Y, A, B, after, now, before); } 00241 00242 inzee = !inzee; after *= now; 00243 } 00244 while (before != 1); 00245 00246 if (inzee) { REPORT A.release(); X = A; B.release(); Y = B; } 00247 } 00248 00249 // Trigonometric transforms 00250 // see Charles Van Loan (1992) "Computational frameworks for the fast 00251 // Fourier transform" published by SIAM; section 4.4. 00252 00253 void DCT_II(const ColumnVector& U, ColumnVector& V) 00254 { 00255 // Discrete cosine transform, type II, of a real series 00256 Tracer trace("DCT_II"); 00257 REPORT 00258 const int n = U.Nrows(); // length of arrays 00259 const int n2 = n / 2; const int n4 = n * 4; 00260 if (n != 2 * n2) 00261 Throw(ProgramException("Vector length not multiple of 2", U)); 00262 ColumnVector A(n); 00263 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); 00264 int i = n2; 00265 while (i--) { *a++ = *u++; *(--b) = *u++; } 00266 ColumnVector X, Y; 00267 RealFFT(A, X, Y); A.cleanup(); 00268 V.resize(n); 00269 Real* x = X.Store(); Real* y = Y.Store(); 00270 Real* v = V.Store(); Real* w = v + n; 00271 *v = *x; 00272 int k = 0; i = n2; 00273 while (i--) 00274 { 00275 Real c, s; cossin(++k, n4, c, s); 00276 Real xi = *(++x); Real yi = *(++y); 00277 *(++v) = xi * c + yi * s; *(--w) = xi * s - yi * c; 00278 } 00279 } 00280 00281 void DCT_II_inverse(const ColumnVector& V, ColumnVector& U) 00282 { 00283 // Inverse of discrete cosine transform, type II 00284 Tracer trace("DCT_II_inverse"); 00285 REPORT 00286 const int n = V.Nrows(); // length of array 00287 const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1; 00288 if (n != 2 * n2) 00289 Throw(ProgramException("Vector length not multiple of 2", V)); 00290 ColumnVector X(n21), Y(n21); 00291 Real* x = X.Store(); Real* y = Y.Store(); 00292 Real* v = V.Store(); Real* w = v + n; 00293 *x = *v; *y = 0.0; 00294 int i = n2; int k = 0; 00295 while (i--) 00296 { 00297 Real c, s; cossin(++k, n4, c, s); 00298 Real vi = *(++v); Real wi = *(--w); 00299 *(++x) = vi * c + wi * s; *(++y) = vi * s - wi * c; 00300 } 00301 ColumnVector A; RealFFTI(X, Y, A); 00302 X.cleanup(); Y.cleanup(); U.resize(n); 00303 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); 00304 i = n2; 00305 while (i--) { *u++ = *a++; *u++ = *(--b); } 00306 } 00307 00308 void DST_II(const ColumnVector& U, ColumnVector& V) 00309 { 00310 // Discrete sine transform, type II, of a real series 00311 Tracer trace("DST_II"); 00312 REPORT 00313 const int n = U.Nrows(); // length of arrays 00314 const int n2 = n / 2; const int n4 = n * 4; 00315 if (n != 2 * n2) 00316 Throw(ProgramException("Vector length not multiple of 2", U)); 00317 ColumnVector A(n); 00318 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); 00319 int i = n2; 00320 while (i--) { *a++ = *u++; *(--b) = -(*u++); } 00321 ColumnVector X, Y; 00322 RealFFT(A, X, Y); A.cleanup(); 00323 V.resize(n); 00324 Real* x = X.Store(); Real* y = Y.Store(); 00325 Real* v = V.Store(); Real* w = v + n; 00326 *(--w) = *x; 00327 int k = 0; i = n2; 00328 while (i--) 00329 { 00330 Real c, s; cossin(++k, n4, c, s); 00331 Real xi = *(++x); Real yi = *(++y); 00332 *v++ = xi * s - yi * c; *(--w) = xi * c + yi * s; 00333 } 00334 } 00335 00336 void DST_II_inverse(const ColumnVector& V, ColumnVector& U) 00337 { 00338 // Inverse of discrete sine transform, type II 00339 Tracer trace("DST_II_inverse"); 00340 REPORT 00341 const int n = V.Nrows(); // length of array 00342 const int n2 = n / 2; const int n4 = n * 4; const int n21 = n2 + 1; 00343 if (n != 2 * n2) 00344 Throw(ProgramException("Vector length not multiple of 2", V)); 00345 ColumnVector X(n21), Y(n21); 00346 Real* x = X.Store(); Real* y = Y.Store(); 00347 Real* v = V.Store(); Real* w = v + n; 00348 *x = *(--w); *y = 0.0; 00349 int i = n2; int k = 0; 00350 while (i--) 00351 { 00352 Real c, s; cossin(++k, n4, c, s); 00353 Real vi = *v++; Real wi = *(--w); 00354 *(++x) = vi * s + wi * c; *(++y) = - vi * c + wi * s; 00355 } 00356 ColumnVector A; RealFFTI(X, Y, A); 00357 X.cleanup(); Y.cleanup(); U.resize(n); 00358 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); 00359 i = n2; 00360 while (i--) { *u++ = *a++; *u++ = -(*(--b)); } 00361 } 00362 00363 void DCT_inverse(const ColumnVector& V, ColumnVector& U) 00364 { 00365 // Inverse of discrete cosine transform, type I 00366 Tracer trace("DCT_inverse"); 00367 REPORT 00368 const int n = V.Nrows()-1; // length of transform 00369 const int n2 = n / 2; const int n21 = n2 + 1; 00370 if (n != 2 * n2) 00371 Throw(ProgramException("Vector length not multiple of 2", V)); 00372 ColumnVector X(n21), Y(n21); 00373 Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store(); 00374 Real vi = *v++; *x++ = vi; *y++ = 0.0; 00375 Real sum1 = vi / 2.0; Real sum2 = sum1; vi = *v++; 00376 int i = n2-1; 00377 while (i--) 00378 { 00379 Real vi2 = *v++; sum1 += vi2 + vi; sum2 += vi2 - vi; 00380 *x++ = vi2; vi2 = *v++; *y++ = vi - vi2; vi = vi2; 00381 } 00382 sum1 += vi; sum2 -= vi; 00383 vi = *v; *x = vi; *y = 0.0; vi /= 2.0; sum1 += vi; sum2 += vi; 00384 ColumnVector A; RealFFTI(X, Y, A); 00385 X.cleanup(); Y.cleanup(); U.resize(n+1); 00386 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n; 00387 i = n2; int k = 0; *u++ = sum1 / n2; *v-- = sum2 / n2; 00388 while (i--) 00389 { 00390 Real s = sin(1.5707963267948966192 * (++k) / n2); 00391 Real ai = *(++a); Real bi = *(--b); 00392 Real bz = (ai - bi) / 4 / s; Real az = (ai + bi) / 2; 00393 *u++ = az - bz; *v-- = az + bz; 00394 } 00395 } 00396 00397 void DCT(const ColumnVector& U, ColumnVector& V) 00398 { 00399 // Discrete cosine transform, type I 00400 Tracer trace("DCT"); 00401 REPORT 00402 DCT_inverse(U, V); 00403 V *= (V.Nrows()-1)/2; 00404 } 00405 00406 void DST_inverse(const ColumnVector& V, ColumnVector& U) 00407 { 00408 // Inverse of discrete sine transform, type I 00409 Tracer trace("DST_inverse"); 00410 REPORT 00411 const int n = V.Nrows()-1; // length of transform 00412 const int n2 = n / 2; const int n21 = n2 + 1; 00413 if (n != 2 * n2) 00414 Throw(ProgramException("Vector length not multiple of 2", V)); 00415 ColumnVector X(n21), Y(n21); 00416 Real* x = X.Store(); Real* y = Y.Store(); Real* v = V.Store(); 00417 Real vi = *(++v); *x++ = 2 * vi; *y++ = 0.0; 00418 int i = n2-1; 00419 while (i--) { *y++ = *(++v); Real vi2 = *(++v); *x++ = vi2 - vi; vi = vi2; } 00420 *x = -2 * vi; *y = 0.0; 00421 ColumnVector A; RealFFTI(X, Y, A); 00422 X.cleanup(); Y.cleanup(); U.resize(n+1); 00423 Real* a = A.Store(); Real* b = a + n; Real* u = U.Store(); v = u + n; 00424 i = n2; int k = 0; *u++ = 0.0; *v-- = 0.0; 00425 while (i--) 00426 { 00427 Real s = sin(1.5707963267948966192 * (++k) / n2); 00428 Real ai = *(++a); Real bi = *(--b); 00429 Real az = (ai + bi) / 4 / s; Real bz = (ai - bi) / 2; 00430 *u++ = az - bz; *v-- = az + bz; 00431 } 00432 } 00433 00434 void DST(const ColumnVector& U, ColumnVector& V) 00435 { 00436 // Discrete sine transform, type I 00437 Tracer trace("DST"); 00438 REPORT 00439 DST_inverse(U, V); 00440 V *= (V.Nrows()-1)/2; 00441 } 00442 00443 // Two dimensional FFT 00444 void FFT2(const Matrix& U, const Matrix& V, Matrix& X, Matrix& Y) 00445 { 00446 Tracer trace("FFT2"); 00447 REPORT 00448 int m = U.Nrows(); int n = U.Ncols(); 00449 if (m != V.Nrows() || n != V.Ncols() || m == 0 || n == 0) 00450 Throw(ProgramException("Matrix dimensions unequal or zero", U, V)); 00451 X = U; Y = V; 00452 int i; ColumnVector CVR; ColumnVector CVI; 00453 for (i = 1; i <= m; ++i) 00454 { 00455 FFT(X.Row(i).t(), Y.Row(i).t(), CVR, CVI); 00456 X.Row(i) = CVR.t(); Y.Row(i) = CVI.t(); 00457 } 00458 for (i = 1; i <= n; ++i) 00459 { 00460 FFT(X.Column(i), Y.Column(i), CVR, CVI); 00461 X.Column(i) = CVR; Y.Column(i) = CVI; 00462 } 00463 } 00464 00465 void FFT2I(const Matrix& U, const Matrix& V, Matrix& X, Matrix& Y) 00466 { 00467 // Inverse transform 00468 Tracer trace("FFT2I"); 00469 REPORT 00470 FFT2(U,-V,X,Y); 00471 const Real n = X.Nrows() * X.Ncols(); X /= n; Y /= (-n); 00472 } 00473 00474 00475 #ifdef use_namespace 00476 } 00477 #endif 00478 00479