$search
00001 00002 00003 00006 00007 00008 // Copyright (C) 1991,2,3,4,9: R B Davies 00009 00010 #define WANT_MATH // include.h will get math fns 00011 00012 //#define WANT_STREAM 00013 00014 #include "include.h" 00015 00016 #include "newmat.h" 00017 #include "newmatrc.h" 00018 00019 #ifdef use_namespace 00020 namespace NEWMAT { 00021 #endif 00022 00023 00024 00025 #ifdef DO_REPORT 00026 #define REPORT { static ExeCounter ExeCount(__LINE__,10); ++ExeCount; } 00027 #else 00028 #define REPORT {} 00029 #endif 00030 00031 static inline int my_min(int x, int y) { return x < y ? x : y; } 00032 static inline int my_max(int x, int y) { return x > y ? x : y; } 00033 00034 00035 BandMatrix::BandMatrix(const BaseMatrix& M) 00036 { 00037 REPORT // CheckConversion(M); 00038 // MatrixConversionCheck mcc; 00039 GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::BM); 00040 GetMatrix(gmx); CornerClear(); 00041 } 00042 00043 void BandMatrix::SetParameters(const GeneralMatrix* gmx) 00044 { 00045 REPORT 00046 MatrixBandWidth bw = gmx->bandwidth(); 00047 lower_val = bw.lower_val; upper_val = bw.upper_val; 00048 } 00049 00050 void BandMatrix::resize(int n, int lb, int ub) 00051 { 00052 REPORT 00053 Tracer tr("BandMatrix::resize"); 00054 if (lb<0 || ub<0) Throw(ProgramException("Undefined bandwidth")); 00055 lower_val = (lb<=n) ? lb : n-1; upper_val = (ub<=n) ? ub : n-1; 00056 GeneralMatrix::resize(n,n,n*(lower_val+1+upper_val)); CornerClear(); 00057 } 00058 00059 // SimpleAddOK shows when we can add etc two matrices by a simple vector add 00060 // and when we can add one matrix into another 00061 // 00062 // *gm must be the same type as *this 00063 // - return 0 if simple add is OK 00064 // - return 1 if we can add into *gm only 00065 // - return 2 if we can add into *this only 00066 // - return 3 if we can't add either way 00067 // 00068 // For SP this will still be valid if we swap 1 and 2 00069 00073 00074 short BandMatrix::SimpleAddOK(const GeneralMatrix* gm) 00075 { 00076 const BandMatrix* bm = (const BandMatrix*)gm; 00077 if (bm->lower_val == lower_val && bm->upper_val == upper_val) 00078 { REPORT return 0; } 00079 else if (bm->lower_val >= lower_val && bm->upper_val >= upper_val) 00080 { REPORT return 1; } 00081 else if (bm->lower_val <= lower_val && bm->upper_val <= upper_val) 00082 { REPORT return 2; } 00083 else { REPORT return 3; } 00084 } 00085 00089 00090 short SymmetricBandMatrix::SimpleAddOK(const GeneralMatrix* gm) 00091 { 00092 const SymmetricBandMatrix* bm = (const SymmetricBandMatrix*)gm; 00093 if (bm->lower_val == lower_val) { REPORT return 0; } 00094 else if (bm->lower_val > lower_val) { REPORT return 1; } 00095 else { REPORT return 2; } 00096 } 00097 00099 void UpperBandMatrix::resize(int n, int lb, int ub) 00100 { 00101 REPORT 00102 if (lb != 0) 00103 { 00104 Tracer tr("UpperBandMatrix::resize"); 00105 Throw(ProgramException("UpperBandMatrix with non-zero lower band" )); 00106 } 00107 BandMatrix::resize(n, lb, ub); 00108 } 00109 00111 void LowerBandMatrix::resize(int n, int lb, int ub) 00112 { 00113 REPORT 00114 if (ub != 0) 00115 { 00116 Tracer tr("LowerBandMatrix::resize"); 00117 Throw(ProgramException("LowerBandMatrix with non-zero upper band" )); 00118 } 00119 BandMatrix::resize(n, lb, ub); 00120 } 00121 00123 void BandMatrix::resize(const GeneralMatrix& A) 00124 { 00125 REPORT 00126 int n = A.Nrows(); 00127 if (n != A.Ncols()) 00128 { 00129 Tracer tr("BandMatrix::resize(GM)"); 00130 Throw(NotSquareException(*this)); 00131 } 00132 MatrixBandWidth mbw = A.bandwidth(); 00133 resize(n, mbw.Lower(), mbw.Upper()); 00134 } 00135 00136 /* 00137 bool BandMatrix::SameStorageType(const GeneralMatrix& A) const 00138 { 00139 if (type() != A.type()) { REPORT return false; } 00140 REPORT 00141 return bandwidth() == A.bandwidth(); 00142 } 00143 00144 void BandMatrix::resizeForAdd(const GeneralMatrix& A, const GeneralMatrix& B) 00145 { 00146 REPORT 00147 Tracer tr("BandMatrix::resizeForAdd"); 00148 MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth(); 00149 if ((A_BW.Lower() < 0) | (A_BW.Upper() < 0) | (B_BW.Lower() < 0) 00150 | (A_BW.Upper() < 0)) 00151 Throw(ProgramException("Can't resize to BandMatrix" )); 00152 // already know A and B are square 00153 resize(A.Nrows(), my_max(A_BW.Lower(), B_BW.Lower()), 00154 my_max(A_BW.Upper(), B_BW.Upper())); 00155 } 00156 00157 void BandMatrix::resizeForSP(const GeneralMatrix& A, const GeneralMatrix& B) 00158 { 00159 REPORT 00160 Tracer tr("BandMatrix::resizeForSP"); 00161 MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth(); 00162 if ((A_BW.Lower() < 0) | (A_BW.Upper() < 0) | (B_BW.Lower() < 0) 00163 | (A_BW.Upper() < 0)) 00164 Throw(ProgramException("Can't resize to BandMatrix" )); 00165 // already know A and B are square 00166 resize(A.Nrows(), my_min(A_BW.Lower(), B_BW.Lower()), 00167 my_min(A_BW.Upper(), B_BW.Upper())); 00168 } 00169 */ 00170 00172 void BandMatrix::operator=(const BaseMatrix& X) 00173 { 00174 REPORT // CheckConversion(X); 00175 // MatrixConversionCheck mcc; 00176 Eq(X,MatrixType::BM); CornerClear(); 00177 } 00178 00180 void BandMatrix::CornerClear() const 00181 { 00182 REPORT 00183 int i = lower_val; Real* s = store; int bw = lower_val + 1 + upper_val; 00184 while (i) 00185 { int j = i--; Real* sj = s; s += bw; while (j--) *sj++ = 0.0; } 00186 i = upper_val; s = store + storage; 00187 while (i) 00188 { int j = i--; Real* sj = s; s -= bw; while (j--) *(--sj) = 0.0; } 00189 } 00190 00191 MatrixBandWidth MatrixBandWidth::operator+(const MatrixBandWidth& bw) const 00192 { 00193 REPORT 00194 int l = bw.lower_val; int u = bw.upper_val; 00195 l = (lower_val < 0 || l < 0) ? -1 : (lower_val > l) ? lower_val : l; 00196 u = (upper_val < 0 || u < 0) ? -1 : (upper_val > u) ? upper_val : u; 00197 return MatrixBandWidth(l,u); 00198 } 00199 00200 MatrixBandWidth MatrixBandWidth::operator*(const MatrixBandWidth& bw) const 00201 { 00202 REPORT 00203 int l = bw.lower_val; int u = bw.upper_val; 00204 l = (lower_val < 0 || l < 0) ? -1 : lower_val+l; 00205 u = (upper_val < 0 || u < 0) ? -1 : upper_val+u; 00206 return MatrixBandWidth(l,u); 00207 } 00208 00209 MatrixBandWidth MatrixBandWidth::minimum(const MatrixBandWidth& bw) const 00210 { 00211 REPORT 00212 int l = bw.lower_val; int u = bw.upper_val; 00213 if ((lower_val >= 0) && ( (l < 0) || (l > lower_val) )) l = lower_val; 00214 if ((upper_val >= 0) && ( (u < 0) || (u > upper_val) )) u = upper_val; 00215 return MatrixBandWidth(l,u); 00216 } 00217 00218 UpperBandMatrix::UpperBandMatrix(const BaseMatrix& M) 00219 { 00220 REPORT // CheckConversion(M); 00221 // MatrixConversionCheck mcc; 00222 GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::UB); 00223 GetMatrix(gmx); CornerClear(); 00224 } 00225 00226 void UpperBandMatrix::operator=(const BaseMatrix& X) 00227 { 00228 REPORT // CheckConversion(X); 00229 // MatrixConversionCheck mcc; 00230 Eq(X,MatrixType::UB); CornerClear(); 00231 } 00232 00233 LowerBandMatrix::LowerBandMatrix(const BaseMatrix& M) 00234 { 00235 REPORT // CheckConversion(M); 00236 // MatrixConversionCheck mcc; 00237 GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::LB); 00238 GetMatrix(gmx); CornerClear(); 00239 } 00240 00241 void LowerBandMatrix::operator=(const BaseMatrix& X) 00242 { 00243 REPORT // CheckConversion(X); 00244 // MatrixConversionCheck mcc; 00245 Eq(X,MatrixType::LB); CornerClear(); 00246 } 00247 00248 BandLUMatrix::BandLUMatrix(const BaseMatrix& m) 00249 { 00250 REPORT 00251 Tracer tr("BandLUMatrix"); 00252 storage2 = 0; store2 = 0; indx = 0; // in event of exception during build 00253 GeneralMatrix* gm = ((BaseMatrix&)m).Evaluate(); 00254 if (gm->nrows() != gm->ncols()) 00255 { gm->tDelete(); Throw(NotSquareException(*this)); } 00256 if (gm->type() == MatrixType::BC) 00257 { REPORT ((BandLUMatrix*)gm)->get_aux(*this); GetMatrix(gm); } 00258 else 00259 { 00260 REPORT 00261 BandMatrix* gm1 = (BandMatrix*)(gm->Evaluate(MatrixType::BM)); 00262 m1 = gm1->lower_val; m2 = gm1->upper_val; 00263 GetMatrix(gm1); 00264 d = true; sing = false; 00265 indx = new int [nrows_val]; MatrixErrorNoSpace(indx); 00266 MONITOR_INT_NEW("Index (BndLUMat)",nrows_val,indx) 00267 storage2 = nrows_val * m1; 00268 store2 = new Real [storage2]; MatrixErrorNoSpace(store2); 00269 MONITOR_REAL_NEW("Make (BandLUMat)",storage2,store2) 00270 ludcmp(); 00271 } 00272 } 00273 00274 GeneralMatrix* BandLUMatrix::Evaluate(MatrixType mt) 00275 { 00276 if (Compare(this->Type(),mt)) { REPORT return this; } 00277 REPORT 00278 Tracer et("BandLUMatrix::Evaluate"); 00279 bool dummy = true; 00280 if (dummy) Throw(ProgramException("Illegal use of BandLUMatrix", *this)); 00281 return this; 00282 } 00283 00284 // could we use SetParameters instead of this 00285 void BandLUMatrix::get_aux(BandLUMatrix& X) 00286 { 00287 X.d = d; X.sing = sing; X.storage2 = storage2; X.m1 = m1; X.m2 = m2; 00288 if (tag_val == 0 || tag_val == 1) // reuse the array 00289 { 00290 REPORT 00291 X.indx = indx; indx = 0; 00292 X.store2 = store2; store2 = 0; 00293 d = true; sing = true; storage2 = 0; m1 = 0; m2 = 0; 00294 return; 00295 } 00296 else if (nrows_val == 0) 00297 { 00298 REPORT 00299 indx = 0; store2 = 0; storage2 = 0; 00300 d = true; sing = true; m1 = m2 = 0; 00301 return; 00302 } 00303 else // copy the array 00304 { 00305 REPORT 00306 Tracer tr("BandLUMatrix::get_aux"); 00307 int *ix = new int [nrows_val]; MatrixErrorNoSpace(ix); 00308 MONITOR_INT_NEW("Index (BLUM::get_aux)", nrows_val, ix) 00309 int n = nrows_val; int* i = ix; int* j = indx; 00310 while(n--) *i++ = *j++; 00311 X.indx = ix; 00312 Real *rx = new Real [storage2]; MatrixErrorNoSpace(indx); 00313 MONITOR_REAL_NEW("Index (BLUM::get_aux)", storage2, rx) 00314 newmat_block_copy(storage2, store2, rx); 00315 X.store2 = rx; 00316 } 00317 } 00318 00319 BandLUMatrix::BandLUMatrix(const BandLUMatrix& gm) : GeneralMatrix() 00320 { 00321 REPORT 00322 Tracer tr("BandLUMatrix(const BandLUMatrix&)"); 00323 ((BandLUMatrix&)gm).get_aux(*this); 00324 GetMatrix(&gm); 00325 } 00326 00327 void BandLUMatrix::operator=(const BandLUMatrix& gm) 00328 { 00329 if (&gm == this) { REPORT tag_val = -1; return; } 00330 REPORT 00331 delete [] indx; indx = 0; 00332 delete [] store2; store2 = 0; storage2 = 0; 00333 ((BandLUMatrix&)gm).get_aux(*this); 00334 Eq(gm); 00335 } 00336 00337 00338 00339 00340 00341 00342 00343 00344 BandLUMatrix::~BandLUMatrix() 00345 { 00346 REPORT 00347 MONITOR_INT_DELETE("Index (BndLUMat)",nrows_val,indx) 00348 MONITOR_REAL_DELETE("Delete (BndLUMt)",storage2,store2) 00349 delete [] indx; delete [] store2; 00350 } 00351 00352 MatrixType BandLUMatrix::type() const { REPORT return MatrixType::BC; } 00353 00354 00355 LogAndSign BandLUMatrix::log_determinant() const 00356 { 00357 REPORT 00358 if (sing) return 0.0; 00359 Real* a = store; int w = m1+1+m2; LogAndSign sum; int i = nrows_val; 00360 // while (i--) { sum *= *a; a += w; } 00361 if (i) for (;;) { sum *= *a; if (!(--i)) break; a += w; } 00362 if (!d) sum.ChangeSign(); return sum; 00363 } 00364 00365 GeneralMatrix* BandMatrix::MakeSolver() 00366 { 00367 REPORT 00368 GeneralMatrix* gm = new BandLUMatrix(*this); 00369 MatrixErrorNoSpace(gm); gm->ReleaseAndDelete(); return gm; 00370 } 00371 00372 00373 void BandLUMatrix::ludcmp() 00374 { 00375 REPORT 00376 Real* a = store2; int i = storage2; 00377 // clear store2 - so unused locations are always zero - 00378 // required by operator== 00379 while (i--) *a++ = 0.0; 00380 a = store; 00381 i = m1; int j = m2; int k; int n = nrows_val; int w = m1 + 1 + m2; 00382 while (i) 00383 { 00384 Real* ai = a + i; 00385 k = ++j; while (k--) *a++ = *ai++; 00386 k = i--; while (k--) *a++ = 0.0; 00387 } 00388 00389 a = store; int l = m1; 00390 for (k=0; k<n; k++) 00391 { 00392 Real x = *a; i = k; Real* aj = a; 00393 if (l < n) l++; 00394 for (j=k+1; j<l; j++) 00395 { aj += w; if (fabs(x) < fabs(*aj)) { x = *aj; i = j; } } 00396 indx[k] = i; 00397 if (x==0) { sing = true; return; } 00398 if (i!=k) 00399 { 00400 d = !d; Real* ak = a; Real* ai = store + i * w; j = w; 00401 while (j--) { x = *ak; *ak++ = *ai; *ai++ = x; } 00402 } 00403 aj = a + w; Real* m = store2 + m1 * k; 00404 for (j=k+1; j<l; j++) 00405 { 00406 *m++ = x = *aj / *a; i = w; Real* ak = a; 00407 while (--i) { Real* aj1 = aj++; *aj1 = *aj - x * *(++ak); } 00408 *aj++ = 0.0; 00409 } 00410 a += w; 00411 } 00412 } 00413 00414 void BandLUMatrix::lubksb(Real* B, int mini) 00415 { 00416 REPORT 00417 Tracer tr("BandLUMatrix::lubksb"); 00418 if (sing) Throw(SingularException(*this)); 00419 int n = nrows_val; int l = m1; int w = m1 + 1 + m2; 00420 00421 for (int k=0; k<n; k++) 00422 { 00423 int i = indx[k]; 00424 if (i!=k) { Real x=B[k]; B[k]=B[i]; B[i]=x; } 00425 if (l<n) l++; 00426 Real* m = store2 + k*m1; Real* b = B+k; Real* bi = b; 00427 for (i=k+1; i<l; i++) *(++bi) -= *m++ * *b; 00428 } 00429 00430 l = -m1; 00431 for (int i = n-1; i>=mini; i--) 00432 { 00433 Real* b = B + i; Real* bk = b; Real x = *bk; 00434 Real* a = store + w*i; Real y = *a; 00435 int k = l+m1; while (k--) x -= *(++a) * *(++bk); 00436 *b = x / y; 00437 if (l < m2) l++; 00438 } 00439 } 00440 00441 void BandLUMatrix::Solver(MatrixColX& mcout, const MatrixColX& mcin) 00442 { 00443 REPORT 00444 int i = mcin.skip; Real* el = mcin.data-i; Real* el1=el; 00445 while (i--) *el++ = 0.0; 00446 el += mcin.storage; i = nrows_val - mcin.skip - mcin.storage; 00447 while (i--) *el++ = 0.0; 00448 lubksb(el1, mcout.skip); 00449 } 00450 00451 // Do we need check for entirely zero output? 00452 00453 00454 void UpperBandMatrix::Solver(MatrixColX& mcout, 00455 const MatrixColX& mcin) 00456 { 00457 REPORT 00458 int i = mcin.skip-mcout.skip; Real* elx = mcin.data-i; 00459 while (i-- > 0) *elx++ = 0.0; 00460 int nr = mcin.skip+mcin.storage; 00461 elx = mcin.data+mcin.storage; Real* el = elx; 00462 int j = mcout.skip+mcout.storage-nr; i = nr-mcout.skip; 00463 while (j-- > 0) *elx++ = 0.0; 00464 00465 Real* Ael = store + (upper_val+1)*(i-1)+1; j = 0; 00466 if (i > 0) for(;;) 00467 { 00468 elx = el; Real sum = 0.0; int jx = j; 00469 while (jx--) sum += *(--Ael) * *(--elx); 00470 elx--; *elx = (*elx - sum) / *(--Ael); 00471 if (--i <= 0) break; 00472 if (j<upper_val) Ael -= upper_val - (++j); else el--; 00473 } 00474 } 00475 00476 void LowerBandMatrix::Solver(MatrixColX& mcout, 00477 const MatrixColX& mcin) 00478 { 00479 REPORT 00480 int i = mcin.skip-mcout.skip; Real* elx = mcin.data-i; 00481 while (i-- > 0) *elx++ = 0.0; 00482 int nc = mcin.skip; i = nc+mcin.storage; elx = mcin.data+mcin.storage; 00483 int nr = mcout.skip+mcout.storage; int j = nr-i; i = nr-nc; 00484 while (j-- > 0) *elx++ = 0.0; 00485 00486 Real* el = mcin.data; 00487 Real* Ael = store + (lower_val+1)*nc + lower_val; 00488 j = 0; 00489 if (i > 0) for(;;) 00490 { 00491 elx = el; Real sum = 0.0; int jx = j; 00492 while (jx--) sum += *Ael++ * *elx++; 00493 *elx = (*elx - sum) / *Ael++; 00494 if (--i <= 0) break; 00495 if (j<lower_val) Ael += lower_val - (++j); else el++; 00496 } 00497 } 00498 00499 00500 LogAndSign BandMatrix::log_determinant() const 00501 { 00502 REPORT 00503 BandLUMatrix C(*this); return C.log_determinant(); 00504 } 00505 00506 LogAndSign LowerBandMatrix::log_determinant() const 00507 { 00508 REPORT 00509 int i = nrows_val; LogAndSign sum; 00510 Real* s = store + lower_val; int j = lower_val + 1; 00511 // while (i--) { sum *= *s; s += j; } 00512 if (i) for (;;) { sum *= *s; if (!(--i)) break; s += j; } 00513 ((GeneralMatrix&)*this).tDelete(); return sum; 00514 } 00515 00516 LogAndSign UpperBandMatrix::log_determinant() const 00517 { 00518 REPORT 00519 int i = nrows_val; LogAndSign sum; Real* s = store; int j = upper_val + 1; 00520 // while (i--) { sum *= *s; s += j; } 00521 if (i) for (;;) { sum *= *s; if (!(--i)) break; s += j; } 00522 ((GeneralMatrix&)*this).tDelete(); return sum; 00523 } 00524 00525 GeneralMatrix* SymmetricBandMatrix::MakeSolver() 00526 { 00527 REPORT 00528 GeneralMatrix* gm = new BandLUMatrix(*this); 00529 MatrixErrorNoSpace(gm); gm->ReleaseAndDelete(); return gm; 00530 } 00531 00532 SymmetricBandMatrix::SymmetricBandMatrix(const BaseMatrix& M) 00533 { 00534 REPORT // CheckConversion(M); 00535 // MatrixConversionCheck mcc; 00536 GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::SB); 00537 GetMatrix(gmx); 00538 } 00539 00540 GeneralMatrix* SymmetricBandMatrix::Transpose(TransposedMatrix*, MatrixType mt) 00541 { REPORT return Evaluate(mt); } 00542 00543 LogAndSign SymmetricBandMatrix::log_determinant() const 00544 { 00545 REPORT 00546 BandLUMatrix C(*this); return C.log_determinant(); 00547 } 00548 00549 void SymmetricBandMatrix::SetParameters(const GeneralMatrix* gmx) 00550 { REPORT lower_val = gmx->bandwidth().lower_val; } 00551 00552 void SymmetricBandMatrix::resize(int n, int lb) 00553 { 00554 REPORT 00555 Tracer tr("SymmetricBandMatrix::resize"); 00556 if (lb<0) Throw(ProgramException("Undefined bandwidth")); 00557 lower_val = (lb<=n) ? lb : n-1; 00558 GeneralMatrix::resize(n,n,n*(lower_val+1)); 00559 } 00560 00561 void SymmetricBandMatrix::resize(const GeneralMatrix& A) 00562 { 00563 REPORT 00564 int n = A.Nrows(); 00565 if (n != A.Ncols()) 00566 { 00567 Tracer tr("SymmetricBandMatrix::resize(GM)"); 00568 Throw(NotSquareException(*this)); 00569 } 00570 MatrixBandWidth mbw = A.bandwidth(); int b = mbw.Lower(); 00571 if (b != mbw.Upper()) 00572 { 00573 Tracer tr("SymmetricBandMatrix::resize(GM)"); 00574 Throw(ProgramException("Upper and lower band-widths not equal")); 00575 } 00576 resize(n, b); 00577 } 00578 /* 00579 bool SymmetricBandMatrix::SameStorageType(const GeneralMatrix& A) const 00580 { 00581 if (type() != A.type()) { REPORT return false; } 00582 REPORT 00583 return bandwidth() == A.bandwidth(); 00584 } 00585 00586 void SymmetricBandMatrix::resizeForAdd(const GeneralMatrix& A, 00587 const GeneralMatrix& B) 00588 { 00589 REPORT 00590 Tracer tr("SymmetricBandMatrix::resizeForAdd"); 00591 MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth(); 00592 if ((A_BW.Lower() < 0) | (B_BW.Lower() < 0)) 00593 Throw(ProgramException("Can't resize to SymmetricBandMatrix" )); 00594 // already know A and B are square 00595 resize(A.Nrows(), my_max(A_BW.Lower(), B_BW.Lower())); 00596 } 00597 00598 void SymmetricBandMatrix::resizeForSP(const GeneralMatrix& A, 00599 const GeneralMatrix& B) 00600 { 00601 REPORT 00602 Tracer tr("SymmetricBandMatrix::resizeForSP"); 00603 MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth(); 00604 if ((A_BW.Lower() < 0) | (B_BW.Lower() < 0)) 00605 Throw(ProgramException("Can't resize to SymmetricBandMatrix" )); 00606 // already know A and B are square 00607 resize(A.Nrows(), my_min(A_BW.Lower(), B_BW.Lower())); 00608 } 00609 */ 00610 00611 void SymmetricBandMatrix::operator=(const BaseMatrix& X) 00612 { 00613 REPORT // CheckConversion(X); 00614 // MatrixConversionCheck mcc; 00615 Eq(X,MatrixType::SB); 00616 } 00617 00618 void SymmetricBandMatrix::CornerClear() const 00619 { 00620 // set unused parts of BandMatrix to zero 00621 REPORT 00622 int i = lower_val; Real* s = store; int bw = lower_val + 1; 00623 if (i) for(;;) 00624 { 00625 int j = i; 00626 Real* sj = s; 00627 while (j--) *sj++ = 0.0; 00628 if (!(--i)) break; 00629 s += bw; 00630 } 00631 } 00632 00633 MatrixBandWidth SymmetricBandMatrix::bandwidth() const 00634 { REPORT return MatrixBandWidth(lower_val,lower_val); } 00635 00636 GeneralMatrix* BandMatrix::Image() const 00637 { 00638 REPORT 00639 GeneralMatrix* gm = new BandMatrix(*this); MatrixErrorNoSpace(gm); 00640 return gm; 00641 } 00642 00643 GeneralMatrix* UpperBandMatrix::Image() const 00644 { 00645 REPORT 00646 GeneralMatrix* gm = new UpperBandMatrix(*this); MatrixErrorNoSpace(gm); 00647 return gm; 00648 } 00649 00650 GeneralMatrix* LowerBandMatrix::Image() const 00651 { 00652 REPORT 00653 GeneralMatrix* gm = new LowerBandMatrix(*this); MatrixErrorNoSpace(gm); 00654 return gm; 00655 } 00656 00657 GeneralMatrix* SymmetricBandMatrix::Image() const 00658 { 00659 REPORT 00660 GeneralMatrix* gm = new SymmetricBandMatrix(*this); MatrixErrorNoSpace(gm); 00661 return gm; 00662 } 00663 00664 GeneralMatrix* BandLUMatrix::Image() const 00665 { 00666 REPORT 00667 GeneralMatrix* gm = new BandLUMatrix(*this); MatrixErrorNoSpace(gm); 00668 return gm; 00669 } 00670 00671 00672 inline Real square(Real x) { return x*x; } 00673 00674 Real SymmetricBandMatrix::sum_square() const 00675 { 00676 REPORT 00677 CornerClear(); 00678 Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows_val; 00679 int l=lower_val; 00680 while (i--) 00681 { int j = l; while (j--) sum2 += square(*s++); sum1 += square(*s++); } 00682 ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2; 00683 } 00684 00685 Real SymmetricBandMatrix::sum_absolute_value() const 00686 { 00687 REPORT 00688 CornerClear(); 00689 Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows_val; 00690 int l=lower_val; 00691 while (i--) 00692 { int j = l; while (j--) sum2 += fabs(*s++); sum1 += fabs(*s++); } 00693 ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2; 00694 } 00695 00696 Real SymmetricBandMatrix::sum() const 00697 { 00698 REPORT 00699 CornerClear(); 00700 Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows_val; 00701 int l=lower_val; 00702 while (i--) 00703 { int j = l; while (j--) sum2 += *s++; sum1 += *s++; } 00704 ((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2; 00705 } 00706 00707 00708 00709 00710 00711 #ifdef use_namespace 00712 } 00713 #endif 00714 00716 00717