$search
00001 /********************************************************************* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2009, Willow Garage 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of the Willow Garage nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 *********************************************************************/ 00034 00035 #include <ias_descriptors_3d/generic/neighborhood_feature.h> 00036 00037 using namespace std; 00038 00039 // -------------------------------------------------------------- 00040 /* See function definition */ 00041 // -------------------------------------------------------------- 00042 NeighborhoodFeature::NeighborhoodFeature() 00043 { 00044 neighborhood_radius_ = -1.0; 00045 neighborhood_radius_defined_ = false; 00046 } 00047 00048 // -------------------------------------------------------------- 00049 /* See function definition */ 00050 // -------------------------------------------------------------- 00051 NeighborhoodFeature::~NeighborhoodFeature() 00052 { 00053 } 00054 00055 // -------------------------------------------------------------- 00056 /* See function definition */ 00057 // -------------------------------------------------------------- 00058 void NeighborhoodFeature::doComputation(const sensor_msgs::PointCloud& data, 00059 cloud_kdtree::KdTree& data_kdtree, 00060 const std::vector<const geometry_msgs::Point32*>& interest_pts, 00061 std::vector<std::vector<float> >& results) 00062 { 00063 // ---------------------------------------- 00064 ROS_INFO("myComputation"); 00065 if (neighborhood_radius_defined_ == false) 00066 { 00067 ROS_ERROR("NeighborhoodFeature::doComputation() radius not defined yet"); 00068 return; 00069 } 00070 if (neighborhood_radius_ < 1e-6) 00071 { 00072 ROS_ERROR("NeighborhoodFeature::doComputation() radius is negative: %f", neighborhood_radius_); 00073 } 00074 00075 // ---------------------------------------- 00076 // Iterate over each interest point, compute local neighborhood, compute feature 00077 int nbr_interest_pts = interest_pts.size(); 00078 #pragma omp parallel for 00079 for (int i = 0 ; i < nbr_interest_pts ; i++) 00080 { 00081 // Retrieve interest point 00082 const geometry_msgs::Point32* curr_interest_pt = interest_pts[static_cast<size_t> (i)]; 00083 if (curr_interest_pt == NULL) 00084 { 00085 ROS_WARN("NeighborhoodFeature::doComputation() passed NULL interest point"); 00086 } 00087 else 00088 { 00089 // Grab neighbors around interest point 00090 vector<int> neighbor_indices; 00091 vector<float> neighbor_distances; // unused 00092 // radiusSearch returning false (0 points) is handled in inherited class 00093 data_kdtree.radiusSearch(*curr_interest_pt, neighborhood_radius_, neighbor_indices, neighbor_distances); 00094 00095 computeNeighborhoodFeature(data, neighbor_indices, i, results[static_cast<size_t> (i)]); 00096 } 00097 } 00098 } 00099 00100 // -------------------------------------------------------------- 00101 /* See function definition */ 00102 // -------------------------------------------------------------- 00103 void NeighborhoodFeature::doComputation(const sensor_msgs::PointCloud& data, 00104 cloud_kdtree::KdTree& data_kdtree, 00105 const std::vector<const vector<int>*>& interest_region_indices, 00106 std::vector<std::vector<float> >& results) 00107 { 00108 // ---------------------------------------- 00109 if (neighborhood_radius_defined_ == false) 00110 { 00111 ROS_ERROR("NeighborhoodFeature::doComputation() radius not defined yet"); 00112 return; 00113 } 00114 00115 // ---------------------------------------- 00116 // Iterate over each interest region, compute local neighborhood, compute feature 00117 int nbr_interest_regions = interest_region_indices.size(); 00118 #pragma omp parallel for 00119 for (int i = 0 ; i < nbr_interest_regions ; i++) 00120 { 00121 // Retrieve interest region 00122 const vector<int>* curr_interest_region = interest_region_indices[static_cast<size_t> (i)]; 00123 if (curr_interest_region == NULL) 00124 { 00125 ROS_WARN("NeighborhoodFeature::doComputation() passed NULL interest region"); 00126 } 00127 else 00128 { 00129 // Find the neighborhood around the region's centroid if indicated to. 00130 vector<int> neighbor_indices; 00131 if (neighborhood_radius_ > 1e-6) 00132 { 00133 // Compute centroid of interest region 00134 geometry_msgs::Point32 region_centroid; 00135 cloud_geometry::nearest::computeCentroid(data, *curr_interest_region, region_centroid); 00136 00137 vector<float> neighbor_distances; // unused 00138 // radiusSearch returning false (0 points) is handled in inherited class 00139 data_kdtree.radiusSearch(region_centroid, neighborhood_radius_, neighbor_indices, neighbor_distances); 00140 00141 // Now point to the neighboring points from radiusSearch 00142 curr_interest_region = &neighbor_indices; 00143 } 00144 00145 computeNeighborhoodFeature(data, *curr_interest_region, i, results[static_cast<size_t> (i)]); 00146 } 00147 } 00148 }