00001
00002 #ifndef GRASPIT_INTERFACE_MSGS_SERVICE_TESTGRASP_H
00003 #define GRASPIT_INTERFACE_MSGS_SERVICE_TESTGRASP_H
00004 #include <string>
00005 #include <vector>
00006 #include <map>
00007 #include <ostream>
00008 #include "ros/serialization.h"
00009 #include "ros/builtin_message_traits.h"
00010 #include "ros/message_operations.h"
00011 #include "ros/time.h"
00012
00013 #include "ros/macros.h"
00014
00015 #include "ros/assert.h"
00016
00017 #include "ros/service_traits.h"
00018
00019 #include "object_manipulation_msgs/Grasp.h"
00020
00021
00022
00023 namespace graspit_interface_msgs
00024 {
00025 template <class ContainerAllocator>
00026 struct TestGraspRequest_ {
00027 typedef TestGraspRequest_<ContainerAllocator> Type;
00028
00029 TestGraspRequest_()
00030 : grasp()
00031 , test_type(0)
00032 {
00033 }
00034
00035 TestGraspRequest_(const ContainerAllocator& _alloc)
00036 : grasp(_alloc)
00037 , test_type(0)
00038 {
00039 }
00040
00041 typedef ::object_manipulation_msgs::Grasp_<ContainerAllocator> _grasp_type;
00042 ::object_manipulation_msgs::Grasp_<ContainerAllocator> grasp;
00043
00044 typedef int32_t _test_type_type;
00045 int32_t test_type;
00046
00047 enum { DIRECT = 0 };
00048 enum { COMPLIANT_CLOSE = 1 };
00049 enum { REACTIVE_GRASP = 2 };
00050 enum { ROBUST_REACTIVE_GRASP = 3 };
00051
00052 private:
00053 static const char* __s_getDataType_() { return "graspit_interface_msgs/TestGraspRequest"; }
00054 public:
00055 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00056
00057 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00058
00059 private:
00060 static const char* __s_getMD5Sum_() { return "b01170c5ead03e9e35c4ea61365f4a97"; }
00061 public:
00062 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00063
00064 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00065
00066 private:
00067 static const char* __s_getServerMD5Sum_() { return "9e86d6b70500334e7ac6ed512d72ea5e"; }
00068 public:
00069 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00070
00071 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00072
00073 private:
00074 static const char* __s_getMessageDefinition_() { return "\n\
00075 \n\
00076 \n\
00077 \n\
00078 \n\
00079 object_manipulation_msgs/Grasp grasp\n\
00080 \n\
00081 \n\
00082 \n\
00083 int32 DIRECT = 0\n\
00084 \n\
00085 int32 COMPLIANT_CLOSE = 1\n\
00086 \n\
00087 int32 REACTIVE_GRASP = 2\n\
00088 \n\
00089 int32 ROBUST_REACTIVE_GRASP = 3\n\
00090 int32 test_type\n\
00091 \n\
00092 \n\
00093 ================================================================================\n\
00094 MSG: object_manipulation_msgs/Grasp\n\
00095 \n\
00096 # The internal posture of the hand for the pre-grasp\n\
00097 # only positions are used\n\
00098 sensor_msgs/JointState pre_grasp_posture\n\
00099 \n\
00100 # The internal posture of the hand for the grasp\n\
00101 # positions and efforts are used\n\
00102 sensor_msgs/JointState grasp_posture\n\
00103 \n\
00104 # The position of the end-effector for the grasp relative to a reference frame \n\
00105 # (that is always specified elsewhere, not in this message)\n\
00106 geometry_msgs/Pose grasp_pose\n\
00107 \n\
00108 # The estimated probability of success for this grasp\n\
00109 float64 success_probability\n\
00110 \n\
00111 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00112 bool cluster_rep\n\
00113 \n\
00114 # how far the pre-grasp should ideally be away from the grasp\n\
00115 float32 desired_approach_distance\n\
00116 \n\
00117 # how much distance between pre-grasp and grasp must actually be feasible \n\
00118 # for the grasp not to be rejected\n\
00119 float32 min_approach_distance\n\
00120 \n\
00121 # an optional list of obstacles that we have semantic information about\n\
00122 # and that we expect might move in the course of executing this grasp\n\
00123 # the grasp planner is expected to make sure they move in an OK way; during\n\
00124 # execution, grasp executors will not check for collisions against these objects\n\
00125 GraspableObject[] moved_obstacles\n\
00126 \n\
00127 ================================================================================\n\
00128 MSG: sensor_msgs/JointState\n\
00129 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00130 #\n\
00131 # The state of each joint (revolute or prismatic) is defined by:\n\
00132 # * the position of the joint (rad or m),\n\
00133 # * the velocity of the joint (rad/s or m/s) and \n\
00134 # * the effort that is applied in the joint (Nm or N).\n\
00135 #\n\
00136 # Each joint is uniquely identified by its name\n\
00137 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00138 # in one message have to be recorded at the same time.\n\
00139 #\n\
00140 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00141 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00142 # effort associated with them, you can leave the effort array empty. \n\
00143 #\n\
00144 # All arrays in this message should have the same size, or be empty.\n\
00145 # This is the only way to uniquely associate the joint name with the correct\n\
00146 # states.\n\
00147 \n\
00148 \n\
00149 Header header\n\
00150 \n\
00151 string[] name\n\
00152 float64[] position\n\
00153 float64[] velocity\n\
00154 float64[] effort\n\
00155 \n\
00156 ================================================================================\n\
00157 MSG: std_msgs/Header\n\
00158 # Standard metadata for higher-level stamped data types.\n\
00159 # This is generally used to communicate timestamped data \n\
00160 # in a particular coordinate frame.\n\
00161 # \n\
00162 # sequence ID: consecutively increasing ID \n\
00163 uint32 seq\n\
00164 #Two-integer timestamp that is expressed as:\n\
00165 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00166 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00167 # time-handling sugar is provided by the client library\n\
00168 time stamp\n\
00169 #Frame this data is associated with\n\
00170 # 0: no frame\n\
00171 # 1: global frame\n\
00172 string frame_id\n\
00173 \n\
00174 ================================================================================\n\
00175 MSG: geometry_msgs/Pose\n\
00176 # A representation of pose in free space, composed of postion and orientation. \n\
00177 Point position\n\
00178 Quaternion orientation\n\
00179 \n\
00180 ================================================================================\n\
00181 MSG: geometry_msgs/Point\n\
00182 # This contains the position of a point in free space\n\
00183 float64 x\n\
00184 float64 y\n\
00185 float64 z\n\
00186 \n\
00187 ================================================================================\n\
00188 MSG: geometry_msgs/Quaternion\n\
00189 # This represents an orientation in free space in quaternion form.\n\
00190 \n\
00191 float64 x\n\
00192 float64 y\n\
00193 float64 z\n\
00194 float64 w\n\
00195 \n\
00196 ================================================================================\n\
00197 MSG: object_manipulation_msgs/GraspableObject\n\
00198 # an object that the object_manipulator can work on\n\
00199 \n\
00200 # a graspable object can be represented in multiple ways. This message\n\
00201 # can contain all of them. Which one is actually used is up to the receiver\n\
00202 # of this message. When adding new representations, one must be careful that\n\
00203 # they have reasonable lightweight defaults indicating that that particular\n\
00204 # representation is not available.\n\
00205 \n\
00206 # the tf frame to be used as a reference frame when combining information from\n\
00207 # the different representations below\n\
00208 string reference_frame_id\n\
00209 \n\
00210 # potential recognition results from a database of models\n\
00211 # all poses are relative to the object reference pose\n\
00212 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00213 \n\
00214 # the point cloud itself\n\
00215 sensor_msgs/PointCloud cluster\n\
00216 \n\
00217 # a region of a PointCloud2 of interest\n\
00218 object_manipulation_msgs/SceneRegion region\n\
00219 \n\
00220 # the name that this object has in the collision environment\n\
00221 string collision_name\n\
00222 ================================================================================\n\
00223 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00224 # Informs that a specific model from the Model Database has been \n\
00225 # identified at a certain location\n\
00226 \n\
00227 # the database id of the model\n\
00228 int32 model_id\n\
00229 \n\
00230 # the pose that it can be found in\n\
00231 geometry_msgs/PoseStamped pose\n\
00232 \n\
00233 # a measure of the confidence level in this detection result\n\
00234 float32 confidence\n\
00235 \n\
00236 # the name of the object detector that generated this detection result\n\
00237 string detector_name\n\
00238 \n\
00239 ================================================================================\n\
00240 MSG: geometry_msgs/PoseStamped\n\
00241 # A Pose with reference coordinate frame and timestamp\n\
00242 Header header\n\
00243 Pose pose\n\
00244 \n\
00245 ================================================================================\n\
00246 MSG: sensor_msgs/PointCloud\n\
00247 # This message holds a collection of 3d points, plus optional additional\n\
00248 # information about each point.\n\
00249 \n\
00250 # Time of sensor data acquisition, coordinate frame ID.\n\
00251 Header header\n\
00252 \n\
00253 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00254 # in the frame given in the header.\n\
00255 geometry_msgs/Point32[] points\n\
00256 \n\
00257 # Each channel should have the same number of elements as points array,\n\
00258 # and the data in each channel should correspond 1:1 with each point.\n\
00259 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00260 ChannelFloat32[] channels\n\
00261 \n\
00262 ================================================================================\n\
00263 MSG: geometry_msgs/Point32\n\
00264 # This contains the position of a point in free space(with 32 bits of precision).\n\
00265 # It is recommeded to use Point wherever possible instead of Point32. \n\
00266 # \n\
00267 # This recommendation is to promote interoperability. \n\
00268 #\n\
00269 # This message is designed to take up less space when sending\n\
00270 # lots of points at once, as in the case of a PointCloud. \n\
00271 \n\
00272 float32 x\n\
00273 float32 y\n\
00274 float32 z\n\
00275 ================================================================================\n\
00276 MSG: sensor_msgs/ChannelFloat32\n\
00277 # This message is used by the PointCloud message to hold optional data\n\
00278 # associated with each point in the cloud. The length of the values\n\
00279 # array should be the same as the length of the points array in the\n\
00280 # PointCloud, and each value should be associated with the corresponding\n\
00281 # point.\n\
00282 \n\
00283 # Channel names in existing practice include:\n\
00284 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
00285 # This is opposite to usual conventions but remains for\n\
00286 # historical reasons. The newer PointCloud2 message has no\n\
00287 # such problem.\n\
00288 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
00289 # (R,G,B) values packed into the least significant 24 bits,\n\
00290 # in order.\n\
00291 # \"intensity\" - laser or pixel intensity.\n\
00292 # \"distance\"\n\
00293 \n\
00294 # The channel name should give semantics of the channel (e.g.\n\
00295 # \"intensity\" instead of \"value\").\n\
00296 string name\n\
00297 \n\
00298 # The values array should be 1-1 with the elements of the associated\n\
00299 # PointCloud.\n\
00300 float32[] values\n\
00301 \n\
00302 ================================================================================\n\
00303 MSG: object_manipulation_msgs/SceneRegion\n\
00304 # Point cloud\n\
00305 sensor_msgs/PointCloud2 cloud\n\
00306 \n\
00307 # Indices for the region of interest\n\
00308 int32[] mask\n\
00309 \n\
00310 # One of the corresponding 2D images, if applicable\n\
00311 sensor_msgs/Image image\n\
00312 \n\
00313 # The disparity image, if applicable\n\
00314 sensor_msgs/Image disparity_image\n\
00315 \n\
00316 # Camera info for the camera that took the image\n\
00317 sensor_msgs/CameraInfo cam_info\n\
00318 \n\
00319 # a 3D region of interest for grasp planning\n\
00320 geometry_msgs/PoseStamped roi_box_pose\n\
00321 geometry_msgs/Vector3 roi_box_dims\n\
00322 \n\
00323 ================================================================================\n\
00324 MSG: sensor_msgs/PointCloud2\n\
00325 # This message holds a collection of N-dimensional points, which may\n\
00326 # contain additional information such as normals, intensity, etc. The\n\
00327 # point data is stored as a binary blob, its layout described by the\n\
00328 # contents of the \"fields\" array.\n\
00329 \n\
00330 # The point cloud data may be organized 2d (image-like) or 1d\n\
00331 # (unordered). Point clouds organized as 2d images may be produced by\n\
00332 # camera depth sensors such as stereo or time-of-flight.\n\
00333 \n\
00334 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
00335 # points).\n\
00336 Header header\n\
00337 \n\
00338 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
00339 # 1 and width is the length of the point cloud.\n\
00340 uint32 height\n\
00341 uint32 width\n\
00342 \n\
00343 # Describes the channels and their layout in the binary data blob.\n\
00344 PointField[] fields\n\
00345 \n\
00346 bool is_bigendian # Is this data bigendian?\n\
00347 uint32 point_step # Length of a point in bytes\n\
00348 uint32 row_step # Length of a row in bytes\n\
00349 uint8[] data # Actual point data, size is (row_step*height)\n\
00350 \n\
00351 bool is_dense # True if there are no invalid points\n\
00352 \n\
00353 ================================================================================\n\
00354 MSG: sensor_msgs/PointField\n\
00355 # This message holds the description of one point entry in the\n\
00356 # PointCloud2 message format.\n\
00357 uint8 INT8 = 1\n\
00358 uint8 UINT8 = 2\n\
00359 uint8 INT16 = 3\n\
00360 uint8 UINT16 = 4\n\
00361 uint8 INT32 = 5\n\
00362 uint8 UINT32 = 6\n\
00363 uint8 FLOAT32 = 7\n\
00364 uint8 FLOAT64 = 8\n\
00365 \n\
00366 string name # Name of field\n\
00367 uint32 offset # Offset from start of point struct\n\
00368 uint8 datatype # Datatype enumeration, see above\n\
00369 uint32 count # How many elements in the field\n\
00370 \n\
00371 ================================================================================\n\
00372 MSG: sensor_msgs/Image\n\
00373 # This message contains an uncompressed image\n\
00374 # (0, 0) is at top-left corner of image\n\
00375 #\n\
00376 \n\
00377 Header header # Header timestamp should be acquisition time of image\n\
00378 # Header frame_id should be optical frame of camera\n\
00379 # origin of frame should be optical center of cameara\n\
00380 # +x should point to the right in the image\n\
00381 # +y should point down in the image\n\
00382 # +z should point into to plane of the image\n\
00383 # If the frame_id here and the frame_id of the CameraInfo\n\
00384 # message associated with the image conflict\n\
00385 # the behavior is undefined\n\
00386 \n\
00387 uint32 height # image height, that is, number of rows\n\
00388 uint32 width # image width, that is, number of columns\n\
00389 \n\
00390 # The legal values for encoding are in file src/image_encodings.cpp\n\
00391 # If you want to standardize a new string format, join\n\
00392 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
00393 \n\
00394 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
00395 # taken from the list of strings in src/image_encodings.cpp\n\
00396 \n\
00397 uint8 is_bigendian # is this data bigendian?\n\
00398 uint32 step # Full row length in bytes\n\
00399 uint8[] data # actual matrix data, size is (step * rows)\n\
00400 \n\
00401 ================================================================================\n\
00402 MSG: sensor_msgs/CameraInfo\n\
00403 # This message defines meta information for a camera. It should be in a\n\
00404 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
00405 # image topics named:\n\
00406 #\n\
00407 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
00408 # image - monochrome, distorted\n\
00409 # image_color - color, distorted\n\
00410 # image_rect - monochrome, rectified\n\
00411 # image_rect_color - color, rectified\n\
00412 #\n\
00413 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
00414 # for producing the four processed image topics from image_raw and\n\
00415 # camera_info. The meaning of the camera parameters are described in\n\
00416 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
00417 #\n\
00418 # The image_geometry package provides a user-friendly interface to\n\
00419 # common operations using this meta information. If you want to, e.g.,\n\
00420 # project a 3d point into image coordinates, we strongly recommend\n\
00421 # using image_geometry.\n\
00422 #\n\
00423 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
00424 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
00425 # indicates an uncalibrated camera.\n\
00426 \n\
00427 #######################################################################\n\
00428 # Image acquisition info #\n\
00429 #######################################################################\n\
00430 \n\
00431 # Time of image acquisition, camera coordinate frame ID\n\
00432 Header header # Header timestamp should be acquisition time of image\n\
00433 # Header frame_id should be optical frame of camera\n\
00434 # origin of frame should be optical center of camera\n\
00435 # +x should point to the right in the image\n\
00436 # +y should point down in the image\n\
00437 # +z should point into the plane of the image\n\
00438 \n\
00439 \n\
00440 #######################################################################\n\
00441 # Calibration Parameters #\n\
00442 #######################################################################\n\
00443 # These are fixed during camera calibration. Their values will be the #\n\
00444 # same in all messages until the camera is recalibrated. Note that #\n\
00445 # self-calibrating systems may \"recalibrate\" frequently. #\n\
00446 # #\n\
00447 # The internal parameters can be used to warp a raw (distorted) image #\n\
00448 # to: #\n\
00449 # 1. An undistorted image (requires D and K) #\n\
00450 # 2. A rectified image (requires D, K, R) #\n\
00451 # The projection matrix P projects 3D points into the rectified image.#\n\
00452 #######################################################################\n\
00453 \n\
00454 # The image dimensions with which the camera was calibrated. Normally\n\
00455 # this will be the full camera resolution in pixels.\n\
00456 uint32 height\n\
00457 uint32 width\n\
00458 \n\
00459 # The distortion model used. Supported models are listed in\n\
00460 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
00461 # simple model of radial and tangential distortion - is sufficent.\n\
00462 string distortion_model\n\
00463 \n\
00464 # The distortion parameters, size depending on the distortion model.\n\
00465 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
00466 float64[] D\n\
00467 \n\
00468 # Intrinsic camera matrix for the raw (distorted) images.\n\
00469 # [fx 0 cx]\n\
00470 # K = [ 0 fy cy]\n\
00471 # [ 0 0 1]\n\
00472 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
00473 # coordinates using the focal lengths (fx, fy) and principal point\n\
00474 # (cx, cy).\n\
00475 float64[9] K # 3x3 row-major matrix\n\
00476 \n\
00477 # Rectification matrix (stereo cameras only)\n\
00478 # A rotation matrix aligning the camera coordinate system to the ideal\n\
00479 # stereo image plane so that epipolar lines in both stereo images are\n\
00480 # parallel.\n\
00481 float64[9] R # 3x3 row-major matrix\n\
00482 \n\
00483 # Projection/camera matrix\n\
00484 # [fx' 0 cx' Tx]\n\
00485 # P = [ 0 fy' cy' Ty]\n\
00486 # [ 0 0 1 0]\n\
00487 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
00488 # of the processed (rectified) image. That is, the left 3x3 portion\n\
00489 # is the normal camera intrinsic matrix for the rectified image.\n\
00490 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
00491 # coordinates using the focal lengths (fx', fy') and principal point\n\
00492 # (cx', cy') - these may differ from the values in K.\n\
00493 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
00494 # also have R = the identity and P[1:3,1:3] = K.\n\
00495 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
00496 # position of the optical center of the second camera in the first\n\
00497 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
00498 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
00499 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
00500 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
00501 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
00502 # the rectified image is given by:\n\
00503 # [u v w]' = P * [X Y Z 1]'\n\
00504 # x = u / w\n\
00505 # y = v / w\n\
00506 # This holds for both images of a stereo pair.\n\
00507 float64[12] P # 3x4 row-major matrix\n\
00508 \n\
00509 \n\
00510 #######################################################################\n\
00511 # Operational Parameters #\n\
00512 #######################################################################\n\
00513 # These define the image region actually captured by the camera #\n\
00514 # driver. Although they affect the geometry of the output image, they #\n\
00515 # may be changed freely without recalibrating the camera. #\n\
00516 #######################################################################\n\
00517 \n\
00518 # Binning refers here to any camera setting which combines rectangular\n\
00519 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
00520 # resolution of the output image to\n\
00521 # (width / binning_x) x (height / binning_y).\n\
00522 # The default values binning_x = binning_y = 0 is considered the same\n\
00523 # as binning_x = binning_y = 1 (no subsampling).\n\
00524 uint32 binning_x\n\
00525 uint32 binning_y\n\
00526 \n\
00527 # Region of interest (subwindow of full camera resolution), given in\n\
00528 # full resolution (unbinned) image coordinates. A particular ROI\n\
00529 # always denotes the same window of pixels on the camera sensor,\n\
00530 # regardless of binning settings.\n\
00531 # The default setting of roi (all values 0) is considered the same as\n\
00532 # full resolution (roi.width = width, roi.height = height).\n\
00533 RegionOfInterest roi\n\
00534 \n\
00535 ================================================================================\n\
00536 MSG: sensor_msgs/RegionOfInterest\n\
00537 # This message is used to specify a region of interest within an image.\n\
00538 #\n\
00539 # When used to specify the ROI setting of the camera when the image was\n\
00540 # taken, the height and width fields should either match the height and\n\
00541 # width fields for the associated image; or height = width = 0\n\
00542 # indicates that the full resolution image was captured.\n\
00543 \n\
00544 uint32 x_offset # Leftmost pixel of the ROI\n\
00545 # (0 if the ROI includes the left edge of the image)\n\
00546 uint32 y_offset # Topmost pixel of the ROI\n\
00547 # (0 if the ROI includes the top edge of the image)\n\
00548 uint32 height # Height of ROI\n\
00549 uint32 width # Width of ROI\n\
00550 \n\
00551 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
00552 # ROI in this message. Typically this should be False if the full image\n\
00553 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
00554 # used).\n\
00555 bool do_rectify\n\
00556 \n\
00557 ================================================================================\n\
00558 MSG: geometry_msgs/Vector3\n\
00559 # This represents a vector in free space. \n\
00560 \n\
00561 float64 x\n\
00562 float64 y\n\
00563 float64 z\n\
00564 "; }
00565 public:
00566 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00567
00568 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00569
00570 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00571 {
00572 ros::serialization::OStream stream(write_ptr, 1000000000);
00573 ros::serialization::serialize(stream, grasp);
00574 ros::serialization::serialize(stream, test_type);
00575 return stream.getData();
00576 }
00577
00578 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00579 {
00580 ros::serialization::IStream stream(read_ptr, 1000000000);
00581 ros::serialization::deserialize(stream, grasp);
00582 ros::serialization::deserialize(stream, test_type);
00583 return stream.getData();
00584 }
00585
00586 ROS_DEPRECATED virtual uint32_t serializationLength() const
00587 {
00588 uint32_t size = 0;
00589 size += ros::serialization::serializationLength(grasp);
00590 size += ros::serialization::serializationLength(test_type);
00591 return size;
00592 }
00593
00594 typedef boost::shared_ptr< ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> > Ptr;
00595 typedef boost::shared_ptr< ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> const> ConstPtr;
00596 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00597 };
00598 typedef ::graspit_interface_msgs::TestGraspRequest_<std::allocator<void> > TestGraspRequest;
00599
00600 typedef boost::shared_ptr< ::graspit_interface_msgs::TestGraspRequest> TestGraspRequestPtr;
00601 typedef boost::shared_ptr< ::graspit_interface_msgs::TestGraspRequest const> TestGraspRequestConstPtr;
00602
00603
00604 template <class ContainerAllocator>
00605 struct TestGraspResponse_ {
00606 typedef TestGraspResponse_<ContainerAllocator> Type;
00607
00608 TestGraspResponse_()
00609 : test_performed(0)
00610 , test_result(0)
00611 , hand_object_collision(false)
00612 , hand_environment_collision(false)
00613 , energy_value(0.0)
00614 , energy_value_list()
00615 {
00616 }
00617
00618 TestGraspResponse_(const ContainerAllocator& _alloc)
00619 : test_performed(0)
00620 , test_result(0)
00621 , hand_object_collision(false)
00622 , hand_environment_collision(false)
00623 , energy_value(0.0)
00624 , energy_value_list(_alloc)
00625 {
00626 }
00627
00628 typedef int32_t _test_performed_type;
00629 int32_t test_performed;
00630
00631 typedef int32_t _test_result_type;
00632 int32_t test_result;
00633
00634 typedef uint8_t _hand_object_collision_type;
00635 uint8_t hand_object_collision;
00636
00637 typedef uint8_t _hand_environment_collision_type;
00638 uint8_t hand_environment_collision;
00639
00640 typedef float _energy_value_type;
00641 float energy_value;
00642
00643 typedef std::vector<float, typename ContainerAllocator::template rebind<float>::other > _energy_value_list_type;
00644 std::vector<float, typename ContainerAllocator::template rebind<float>::other > energy_value_list;
00645
00646 enum { TEST_WAS_PERFORMED = 0 };
00647 enum { TEST_WAS_NOT_PERFORMED = 1 };
00648 enum { HAND_COLLISION = 0 };
00649 enum { GRASP_FAILURE = 1 };
00650 enum { GRASP_SUCCESS = 2 };
00651
00652 ROS_DEPRECATED uint32_t get_energy_value_list_size() const { return (uint32_t)energy_value_list.size(); }
00653 ROS_DEPRECATED void set_energy_value_list_size(uint32_t size) { energy_value_list.resize((size_t)size); }
00654 ROS_DEPRECATED void get_energy_value_list_vec(std::vector<float, typename ContainerAllocator::template rebind<float>::other > & vec) const { vec = this->energy_value_list; }
00655 ROS_DEPRECATED void set_energy_value_list_vec(const std::vector<float, typename ContainerAllocator::template rebind<float>::other > & vec) { this->energy_value_list = vec; }
00656 private:
00657 static const char* __s_getDataType_() { return "graspit_interface_msgs/TestGraspResponse"; }
00658 public:
00659 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); }
00660
00661 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); }
00662
00663 private:
00664 static const char* __s_getMD5Sum_() { return "745239a222da348b3e36561caeefd73b"; }
00665 public:
00666 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); }
00667
00668 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); }
00669
00670 private:
00671 static const char* __s_getServerMD5Sum_() { return "9e86d6b70500334e7ac6ed512d72ea5e"; }
00672 public:
00673 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); }
00674
00675 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); }
00676
00677 private:
00678 static const char* __s_getMessageDefinition_() { return "\n\
00679 \n\
00680 int32 TEST_WAS_PERFORMED = 0\n\
00681 int32 TEST_WAS_NOT_PERFORMED = 1\n\
00682 int32 test_performed\n\
00683 \n\
00684 \n\
00685 int32 HAND_COLLISION = 0\n\
00686 int32 GRASP_FAILURE = 1\n\
00687 int32 GRASP_SUCCESS = 2\n\
00688 int32 test_result\n\
00689 \n\
00690 \n\
00691 bool hand_object_collision\n\
00692 bool hand_environment_collision\n\
00693 \n\
00694 \n\
00695 \n\
00696 float32 energy_value\n\
00697 \n\
00698 float32[] energy_value_list\n\
00699 \n\
00700 "; }
00701 public:
00702 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); }
00703
00704 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); }
00705
00706 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const
00707 {
00708 ros::serialization::OStream stream(write_ptr, 1000000000);
00709 ros::serialization::serialize(stream, test_performed);
00710 ros::serialization::serialize(stream, test_result);
00711 ros::serialization::serialize(stream, hand_object_collision);
00712 ros::serialization::serialize(stream, hand_environment_collision);
00713 ros::serialization::serialize(stream, energy_value);
00714 ros::serialization::serialize(stream, energy_value_list);
00715 return stream.getData();
00716 }
00717
00718 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr)
00719 {
00720 ros::serialization::IStream stream(read_ptr, 1000000000);
00721 ros::serialization::deserialize(stream, test_performed);
00722 ros::serialization::deserialize(stream, test_result);
00723 ros::serialization::deserialize(stream, hand_object_collision);
00724 ros::serialization::deserialize(stream, hand_environment_collision);
00725 ros::serialization::deserialize(stream, energy_value);
00726 ros::serialization::deserialize(stream, energy_value_list);
00727 return stream.getData();
00728 }
00729
00730 ROS_DEPRECATED virtual uint32_t serializationLength() const
00731 {
00732 uint32_t size = 0;
00733 size += ros::serialization::serializationLength(test_performed);
00734 size += ros::serialization::serializationLength(test_result);
00735 size += ros::serialization::serializationLength(hand_object_collision);
00736 size += ros::serialization::serializationLength(hand_environment_collision);
00737 size += ros::serialization::serializationLength(energy_value);
00738 size += ros::serialization::serializationLength(energy_value_list);
00739 return size;
00740 }
00741
00742 typedef boost::shared_ptr< ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> > Ptr;
00743 typedef boost::shared_ptr< ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> const> ConstPtr;
00744 boost::shared_ptr<std::map<std::string, std::string> > __connection_header;
00745 };
00746 typedef ::graspit_interface_msgs::TestGraspResponse_<std::allocator<void> > TestGraspResponse;
00747
00748 typedef boost::shared_ptr< ::graspit_interface_msgs::TestGraspResponse> TestGraspResponsePtr;
00749 typedef boost::shared_ptr< ::graspit_interface_msgs::TestGraspResponse const> TestGraspResponseConstPtr;
00750
00751 struct TestGrasp
00752 {
00753
00754 typedef TestGraspRequest Request;
00755 typedef TestGraspResponse Response;
00756 Request request;
00757 Response response;
00758
00759 typedef Request RequestType;
00760 typedef Response ResponseType;
00761 };
00762 }
00763
00764 namespace ros
00765 {
00766 namespace message_traits
00767 {
00768 template<class ContainerAllocator> struct IsMessage< ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> > : public TrueType {};
00769 template<class ContainerAllocator> struct IsMessage< ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> const> : public TrueType {};
00770 template<class ContainerAllocator>
00771 struct MD5Sum< ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> > {
00772 static const char* value()
00773 {
00774 return "b01170c5ead03e9e35c4ea61365f4a97";
00775 }
00776
00777 static const char* value(const ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> &) { return value(); }
00778 static const uint64_t static_value1 = 0xb01170c5ead03e9eULL;
00779 static const uint64_t static_value2 = 0x35c4ea61365f4a97ULL;
00780 };
00781
00782 template<class ContainerAllocator>
00783 struct DataType< ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> > {
00784 static const char* value()
00785 {
00786 return "graspit_interface_msgs/TestGraspRequest";
00787 }
00788
00789 static const char* value(const ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> &) { return value(); }
00790 };
00791
00792 template<class ContainerAllocator>
00793 struct Definition< ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> > {
00794 static const char* value()
00795 {
00796 return "\n\
00797 \n\
00798 \n\
00799 \n\
00800 \n\
00801 object_manipulation_msgs/Grasp grasp\n\
00802 \n\
00803 \n\
00804 \n\
00805 int32 DIRECT = 0\n\
00806 \n\
00807 int32 COMPLIANT_CLOSE = 1\n\
00808 \n\
00809 int32 REACTIVE_GRASP = 2\n\
00810 \n\
00811 int32 ROBUST_REACTIVE_GRASP = 3\n\
00812 int32 test_type\n\
00813 \n\
00814 \n\
00815 ================================================================================\n\
00816 MSG: object_manipulation_msgs/Grasp\n\
00817 \n\
00818 # The internal posture of the hand for the pre-grasp\n\
00819 # only positions are used\n\
00820 sensor_msgs/JointState pre_grasp_posture\n\
00821 \n\
00822 # The internal posture of the hand for the grasp\n\
00823 # positions and efforts are used\n\
00824 sensor_msgs/JointState grasp_posture\n\
00825 \n\
00826 # The position of the end-effector for the grasp relative to a reference frame \n\
00827 # (that is always specified elsewhere, not in this message)\n\
00828 geometry_msgs/Pose grasp_pose\n\
00829 \n\
00830 # The estimated probability of success for this grasp\n\
00831 float64 success_probability\n\
00832 \n\
00833 # Debug flag to indicate that this grasp would be the best in its cluster\n\
00834 bool cluster_rep\n\
00835 \n\
00836 # how far the pre-grasp should ideally be away from the grasp\n\
00837 float32 desired_approach_distance\n\
00838 \n\
00839 # how much distance between pre-grasp and grasp must actually be feasible \n\
00840 # for the grasp not to be rejected\n\
00841 float32 min_approach_distance\n\
00842 \n\
00843 # an optional list of obstacles that we have semantic information about\n\
00844 # and that we expect might move in the course of executing this grasp\n\
00845 # the grasp planner is expected to make sure they move in an OK way; during\n\
00846 # execution, grasp executors will not check for collisions against these objects\n\
00847 GraspableObject[] moved_obstacles\n\
00848 \n\
00849 ================================================================================\n\
00850 MSG: sensor_msgs/JointState\n\
00851 # This is a message that holds data to describe the state of a set of torque controlled joints. \n\
00852 #\n\
00853 # The state of each joint (revolute or prismatic) is defined by:\n\
00854 # * the position of the joint (rad or m),\n\
00855 # * the velocity of the joint (rad/s or m/s) and \n\
00856 # * the effort that is applied in the joint (Nm or N).\n\
00857 #\n\
00858 # Each joint is uniquely identified by its name\n\
00859 # The header specifies the time at which the joint states were recorded. All the joint states\n\
00860 # in one message have to be recorded at the same time.\n\
00861 #\n\
00862 # This message consists of a multiple arrays, one for each part of the joint state. \n\
00863 # The goal is to make each of the fields optional. When e.g. your joints have no\n\
00864 # effort associated with them, you can leave the effort array empty. \n\
00865 #\n\
00866 # All arrays in this message should have the same size, or be empty.\n\
00867 # This is the only way to uniquely associate the joint name with the correct\n\
00868 # states.\n\
00869 \n\
00870 \n\
00871 Header header\n\
00872 \n\
00873 string[] name\n\
00874 float64[] position\n\
00875 float64[] velocity\n\
00876 float64[] effort\n\
00877 \n\
00878 ================================================================================\n\
00879 MSG: std_msgs/Header\n\
00880 # Standard metadata for higher-level stamped data types.\n\
00881 # This is generally used to communicate timestamped data \n\
00882 # in a particular coordinate frame.\n\
00883 # \n\
00884 # sequence ID: consecutively increasing ID \n\
00885 uint32 seq\n\
00886 #Two-integer timestamp that is expressed as:\n\
00887 # * stamp.secs: seconds (stamp_secs) since epoch\n\
00888 # * stamp.nsecs: nanoseconds since stamp_secs\n\
00889 # time-handling sugar is provided by the client library\n\
00890 time stamp\n\
00891 #Frame this data is associated with\n\
00892 # 0: no frame\n\
00893 # 1: global frame\n\
00894 string frame_id\n\
00895 \n\
00896 ================================================================================\n\
00897 MSG: geometry_msgs/Pose\n\
00898 # A representation of pose in free space, composed of postion and orientation. \n\
00899 Point position\n\
00900 Quaternion orientation\n\
00901 \n\
00902 ================================================================================\n\
00903 MSG: geometry_msgs/Point\n\
00904 # This contains the position of a point in free space\n\
00905 float64 x\n\
00906 float64 y\n\
00907 float64 z\n\
00908 \n\
00909 ================================================================================\n\
00910 MSG: geometry_msgs/Quaternion\n\
00911 # This represents an orientation in free space in quaternion form.\n\
00912 \n\
00913 float64 x\n\
00914 float64 y\n\
00915 float64 z\n\
00916 float64 w\n\
00917 \n\
00918 ================================================================================\n\
00919 MSG: object_manipulation_msgs/GraspableObject\n\
00920 # an object that the object_manipulator can work on\n\
00921 \n\
00922 # a graspable object can be represented in multiple ways. This message\n\
00923 # can contain all of them. Which one is actually used is up to the receiver\n\
00924 # of this message. When adding new representations, one must be careful that\n\
00925 # they have reasonable lightweight defaults indicating that that particular\n\
00926 # representation is not available.\n\
00927 \n\
00928 # the tf frame to be used as a reference frame when combining information from\n\
00929 # the different representations below\n\
00930 string reference_frame_id\n\
00931 \n\
00932 # potential recognition results from a database of models\n\
00933 # all poses are relative to the object reference pose\n\
00934 household_objects_database_msgs/DatabaseModelPose[] potential_models\n\
00935 \n\
00936 # the point cloud itself\n\
00937 sensor_msgs/PointCloud cluster\n\
00938 \n\
00939 # a region of a PointCloud2 of interest\n\
00940 object_manipulation_msgs/SceneRegion region\n\
00941 \n\
00942 # the name that this object has in the collision environment\n\
00943 string collision_name\n\
00944 ================================================================================\n\
00945 MSG: household_objects_database_msgs/DatabaseModelPose\n\
00946 # Informs that a specific model from the Model Database has been \n\
00947 # identified at a certain location\n\
00948 \n\
00949 # the database id of the model\n\
00950 int32 model_id\n\
00951 \n\
00952 # the pose that it can be found in\n\
00953 geometry_msgs/PoseStamped pose\n\
00954 \n\
00955 # a measure of the confidence level in this detection result\n\
00956 float32 confidence\n\
00957 \n\
00958 # the name of the object detector that generated this detection result\n\
00959 string detector_name\n\
00960 \n\
00961 ================================================================================\n\
00962 MSG: geometry_msgs/PoseStamped\n\
00963 # A Pose with reference coordinate frame and timestamp\n\
00964 Header header\n\
00965 Pose pose\n\
00966 \n\
00967 ================================================================================\n\
00968 MSG: sensor_msgs/PointCloud\n\
00969 # This message holds a collection of 3d points, plus optional additional\n\
00970 # information about each point.\n\
00971 \n\
00972 # Time of sensor data acquisition, coordinate frame ID.\n\
00973 Header header\n\
00974 \n\
00975 # Array of 3d points. Each Point32 should be interpreted as a 3d point\n\
00976 # in the frame given in the header.\n\
00977 geometry_msgs/Point32[] points\n\
00978 \n\
00979 # Each channel should have the same number of elements as points array,\n\
00980 # and the data in each channel should correspond 1:1 with each point.\n\
00981 # Channel names in common practice are listed in ChannelFloat32.msg.\n\
00982 ChannelFloat32[] channels\n\
00983 \n\
00984 ================================================================================\n\
00985 MSG: geometry_msgs/Point32\n\
00986 # This contains the position of a point in free space(with 32 bits of precision).\n\
00987 # It is recommeded to use Point wherever possible instead of Point32. \n\
00988 # \n\
00989 # This recommendation is to promote interoperability. \n\
00990 #\n\
00991 # This message is designed to take up less space when sending\n\
00992 # lots of points at once, as in the case of a PointCloud. \n\
00993 \n\
00994 float32 x\n\
00995 float32 y\n\
00996 float32 z\n\
00997 ================================================================================\n\
00998 MSG: sensor_msgs/ChannelFloat32\n\
00999 # This message is used by the PointCloud message to hold optional data\n\
01000 # associated with each point in the cloud. The length of the values\n\
01001 # array should be the same as the length of the points array in the\n\
01002 # PointCloud, and each value should be associated with the corresponding\n\
01003 # point.\n\
01004 \n\
01005 # Channel names in existing practice include:\n\
01006 # \"u\", \"v\" - row and column (respectively) in the left stereo image.\n\
01007 # This is opposite to usual conventions but remains for\n\
01008 # historical reasons. The newer PointCloud2 message has no\n\
01009 # such problem.\n\
01010 # \"rgb\" - For point clouds produced by color stereo cameras. uint8\n\
01011 # (R,G,B) values packed into the least significant 24 bits,\n\
01012 # in order.\n\
01013 # \"intensity\" - laser or pixel intensity.\n\
01014 # \"distance\"\n\
01015 \n\
01016 # The channel name should give semantics of the channel (e.g.\n\
01017 # \"intensity\" instead of \"value\").\n\
01018 string name\n\
01019 \n\
01020 # The values array should be 1-1 with the elements of the associated\n\
01021 # PointCloud.\n\
01022 float32[] values\n\
01023 \n\
01024 ================================================================================\n\
01025 MSG: object_manipulation_msgs/SceneRegion\n\
01026 # Point cloud\n\
01027 sensor_msgs/PointCloud2 cloud\n\
01028 \n\
01029 # Indices for the region of interest\n\
01030 int32[] mask\n\
01031 \n\
01032 # One of the corresponding 2D images, if applicable\n\
01033 sensor_msgs/Image image\n\
01034 \n\
01035 # The disparity image, if applicable\n\
01036 sensor_msgs/Image disparity_image\n\
01037 \n\
01038 # Camera info for the camera that took the image\n\
01039 sensor_msgs/CameraInfo cam_info\n\
01040 \n\
01041 # a 3D region of interest for grasp planning\n\
01042 geometry_msgs/PoseStamped roi_box_pose\n\
01043 geometry_msgs/Vector3 roi_box_dims\n\
01044 \n\
01045 ================================================================================\n\
01046 MSG: sensor_msgs/PointCloud2\n\
01047 # This message holds a collection of N-dimensional points, which may\n\
01048 # contain additional information such as normals, intensity, etc. The\n\
01049 # point data is stored as a binary blob, its layout described by the\n\
01050 # contents of the \"fields\" array.\n\
01051 \n\
01052 # The point cloud data may be organized 2d (image-like) or 1d\n\
01053 # (unordered). Point clouds organized as 2d images may be produced by\n\
01054 # camera depth sensors such as stereo or time-of-flight.\n\
01055 \n\
01056 # Time of sensor data acquisition, and the coordinate frame ID (for 3d\n\
01057 # points).\n\
01058 Header header\n\
01059 \n\
01060 # 2D structure of the point cloud. If the cloud is unordered, height is\n\
01061 # 1 and width is the length of the point cloud.\n\
01062 uint32 height\n\
01063 uint32 width\n\
01064 \n\
01065 # Describes the channels and their layout in the binary data blob.\n\
01066 PointField[] fields\n\
01067 \n\
01068 bool is_bigendian # Is this data bigendian?\n\
01069 uint32 point_step # Length of a point in bytes\n\
01070 uint32 row_step # Length of a row in bytes\n\
01071 uint8[] data # Actual point data, size is (row_step*height)\n\
01072 \n\
01073 bool is_dense # True if there are no invalid points\n\
01074 \n\
01075 ================================================================================\n\
01076 MSG: sensor_msgs/PointField\n\
01077 # This message holds the description of one point entry in the\n\
01078 # PointCloud2 message format.\n\
01079 uint8 INT8 = 1\n\
01080 uint8 UINT8 = 2\n\
01081 uint8 INT16 = 3\n\
01082 uint8 UINT16 = 4\n\
01083 uint8 INT32 = 5\n\
01084 uint8 UINT32 = 6\n\
01085 uint8 FLOAT32 = 7\n\
01086 uint8 FLOAT64 = 8\n\
01087 \n\
01088 string name # Name of field\n\
01089 uint32 offset # Offset from start of point struct\n\
01090 uint8 datatype # Datatype enumeration, see above\n\
01091 uint32 count # How many elements in the field\n\
01092 \n\
01093 ================================================================================\n\
01094 MSG: sensor_msgs/Image\n\
01095 # This message contains an uncompressed image\n\
01096 # (0, 0) is at top-left corner of image\n\
01097 #\n\
01098 \n\
01099 Header header # Header timestamp should be acquisition time of image\n\
01100 # Header frame_id should be optical frame of camera\n\
01101 # origin of frame should be optical center of cameara\n\
01102 # +x should point to the right in the image\n\
01103 # +y should point down in the image\n\
01104 # +z should point into to plane of the image\n\
01105 # If the frame_id here and the frame_id of the CameraInfo\n\
01106 # message associated with the image conflict\n\
01107 # the behavior is undefined\n\
01108 \n\
01109 uint32 height # image height, that is, number of rows\n\
01110 uint32 width # image width, that is, number of columns\n\
01111 \n\
01112 # The legal values for encoding are in file src/image_encodings.cpp\n\
01113 # If you want to standardize a new string format, join\n\
01114 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\
01115 \n\
01116 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\
01117 # taken from the list of strings in src/image_encodings.cpp\n\
01118 \n\
01119 uint8 is_bigendian # is this data bigendian?\n\
01120 uint32 step # Full row length in bytes\n\
01121 uint8[] data # actual matrix data, size is (step * rows)\n\
01122 \n\
01123 ================================================================================\n\
01124 MSG: sensor_msgs/CameraInfo\n\
01125 # This message defines meta information for a camera. It should be in a\n\
01126 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\
01127 # image topics named:\n\
01128 #\n\
01129 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\
01130 # image - monochrome, distorted\n\
01131 # image_color - color, distorted\n\
01132 # image_rect - monochrome, rectified\n\
01133 # image_rect_color - color, rectified\n\
01134 #\n\
01135 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\
01136 # for producing the four processed image topics from image_raw and\n\
01137 # camera_info. The meaning of the camera parameters are described in\n\
01138 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\
01139 #\n\
01140 # The image_geometry package provides a user-friendly interface to\n\
01141 # common operations using this meta information. If you want to, e.g.,\n\
01142 # project a 3d point into image coordinates, we strongly recommend\n\
01143 # using image_geometry.\n\
01144 #\n\
01145 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\
01146 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\
01147 # indicates an uncalibrated camera.\n\
01148 \n\
01149 #######################################################################\n\
01150 # Image acquisition info #\n\
01151 #######################################################################\n\
01152 \n\
01153 # Time of image acquisition, camera coordinate frame ID\n\
01154 Header header # Header timestamp should be acquisition time of image\n\
01155 # Header frame_id should be optical frame of camera\n\
01156 # origin of frame should be optical center of camera\n\
01157 # +x should point to the right in the image\n\
01158 # +y should point down in the image\n\
01159 # +z should point into the plane of the image\n\
01160 \n\
01161 \n\
01162 #######################################################################\n\
01163 # Calibration Parameters #\n\
01164 #######################################################################\n\
01165 # These are fixed during camera calibration. Their values will be the #\n\
01166 # same in all messages until the camera is recalibrated. Note that #\n\
01167 # self-calibrating systems may \"recalibrate\" frequently. #\n\
01168 # #\n\
01169 # The internal parameters can be used to warp a raw (distorted) image #\n\
01170 # to: #\n\
01171 # 1. An undistorted image (requires D and K) #\n\
01172 # 2. A rectified image (requires D, K, R) #\n\
01173 # The projection matrix P projects 3D points into the rectified image.#\n\
01174 #######################################################################\n\
01175 \n\
01176 # The image dimensions with which the camera was calibrated. Normally\n\
01177 # this will be the full camera resolution in pixels.\n\
01178 uint32 height\n\
01179 uint32 width\n\
01180 \n\
01181 # The distortion model used. Supported models are listed in\n\
01182 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\
01183 # simple model of radial and tangential distortion - is sufficent.\n\
01184 string distortion_model\n\
01185 \n\
01186 # The distortion parameters, size depending on the distortion model.\n\
01187 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\
01188 float64[] D\n\
01189 \n\
01190 # Intrinsic camera matrix for the raw (distorted) images.\n\
01191 # [fx 0 cx]\n\
01192 # K = [ 0 fy cy]\n\
01193 # [ 0 0 1]\n\
01194 # Projects 3D points in the camera coordinate frame to 2D pixel\n\
01195 # coordinates using the focal lengths (fx, fy) and principal point\n\
01196 # (cx, cy).\n\
01197 float64[9] K # 3x3 row-major matrix\n\
01198 \n\
01199 # Rectification matrix (stereo cameras only)\n\
01200 # A rotation matrix aligning the camera coordinate system to the ideal\n\
01201 # stereo image plane so that epipolar lines in both stereo images are\n\
01202 # parallel.\n\
01203 float64[9] R # 3x3 row-major matrix\n\
01204 \n\
01205 # Projection/camera matrix\n\
01206 # [fx' 0 cx' Tx]\n\
01207 # P = [ 0 fy' cy' Ty]\n\
01208 # [ 0 0 1 0]\n\
01209 # By convention, this matrix specifies the intrinsic (camera) matrix\n\
01210 # of the processed (rectified) image. That is, the left 3x3 portion\n\
01211 # is the normal camera intrinsic matrix for the rectified image.\n\
01212 # It projects 3D points in the camera coordinate frame to 2D pixel\n\
01213 # coordinates using the focal lengths (fx', fy') and principal point\n\
01214 # (cx', cy') - these may differ from the values in K.\n\
01215 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\
01216 # also have R = the identity and P[1:3,1:3] = K.\n\
01217 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\
01218 # position of the optical center of the second camera in the first\n\
01219 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\
01220 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\
01221 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\
01222 # Tx = -fx' * B, where B is the baseline between the cameras.\n\
01223 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\
01224 # the rectified image is given by:\n\
01225 # [u v w]' = P * [X Y Z 1]'\n\
01226 # x = u / w\n\
01227 # y = v / w\n\
01228 # This holds for both images of a stereo pair.\n\
01229 float64[12] P # 3x4 row-major matrix\n\
01230 \n\
01231 \n\
01232 #######################################################################\n\
01233 # Operational Parameters #\n\
01234 #######################################################################\n\
01235 # These define the image region actually captured by the camera #\n\
01236 # driver. Although they affect the geometry of the output image, they #\n\
01237 # may be changed freely without recalibrating the camera. #\n\
01238 #######################################################################\n\
01239 \n\
01240 # Binning refers here to any camera setting which combines rectangular\n\
01241 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\
01242 # resolution of the output image to\n\
01243 # (width / binning_x) x (height / binning_y).\n\
01244 # The default values binning_x = binning_y = 0 is considered the same\n\
01245 # as binning_x = binning_y = 1 (no subsampling).\n\
01246 uint32 binning_x\n\
01247 uint32 binning_y\n\
01248 \n\
01249 # Region of interest (subwindow of full camera resolution), given in\n\
01250 # full resolution (unbinned) image coordinates. A particular ROI\n\
01251 # always denotes the same window of pixels on the camera sensor,\n\
01252 # regardless of binning settings.\n\
01253 # The default setting of roi (all values 0) is considered the same as\n\
01254 # full resolution (roi.width = width, roi.height = height).\n\
01255 RegionOfInterest roi\n\
01256 \n\
01257 ================================================================================\n\
01258 MSG: sensor_msgs/RegionOfInterest\n\
01259 # This message is used to specify a region of interest within an image.\n\
01260 #\n\
01261 # When used to specify the ROI setting of the camera when the image was\n\
01262 # taken, the height and width fields should either match the height and\n\
01263 # width fields for the associated image; or height = width = 0\n\
01264 # indicates that the full resolution image was captured.\n\
01265 \n\
01266 uint32 x_offset # Leftmost pixel of the ROI\n\
01267 # (0 if the ROI includes the left edge of the image)\n\
01268 uint32 y_offset # Topmost pixel of the ROI\n\
01269 # (0 if the ROI includes the top edge of the image)\n\
01270 uint32 height # Height of ROI\n\
01271 uint32 width # Width of ROI\n\
01272 \n\
01273 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\
01274 # ROI in this message. Typically this should be False if the full image\n\
01275 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\
01276 # used).\n\
01277 bool do_rectify\n\
01278 \n\
01279 ================================================================================\n\
01280 MSG: geometry_msgs/Vector3\n\
01281 # This represents a vector in free space. \n\
01282 \n\
01283 float64 x\n\
01284 float64 y\n\
01285 float64 z\n\
01286 ";
01287 }
01288
01289 static const char* value(const ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> &) { return value(); }
01290 };
01291
01292 }
01293 }
01294
01295
01296 namespace ros
01297 {
01298 namespace message_traits
01299 {
01300 template<class ContainerAllocator> struct IsMessage< ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> > : public TrueType {};
01301 template<class ContainerAllocator> struct IsMessage< ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> const> : public TrueType {};
01302 template<class ContainerAllocator>
01303 struct MD5Sum< ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> > {
01304 static const char* value()
01305 {
01306 return "745239a222da348b3e36561caeefd73b";
01307 }
01308
01309 static const char* value(const ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> &) { return value(); }
01310 static const uint64_t static_value1 = 0x745239a222da348bULL;
01311 static const uint64_t static_value2 = 0x3e36561caeefd73bULL;
01312 };
01313
01314 template<class ContainerAllocator>
01315 struct DataType< ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> > {
01316 static const char* value()
01317 {
01318 return "graspit_interface_msgs/TestGraspResponse";
01319 }
01320
01321 static const char* value(const ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> &) { return value(); }
01322 };
01323
01324 template<class ContainerAllocator>
01325 struct Definition< ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> > {
01326 static const char* value()
01327 {
01328 return "\n\
01329 \n\
01330 int32 TEST_WAS_PERFORMED = 0\n\
01331 int32 TEST_WAS_NOT_PERFORMED = 1\n\
01332 int32 test_performed\n\
01333 \n\
01334 \n\
01335 int32 HAND_COLLISION = 0\n\
01336 int32 GRASP_FAILURE = 1\n\
01337 int32 GRASP_SUCCESS = 2\n\
01338 int32 test_result\n\
01339 \n\
01340 \n\
01341 bool hand_object_collision\n\
01342 bool hand_environment_collision\n\
01343 \n\
01344 \n\
01345 \n\
01346 float32 energy_value\n\
01347 \n\
01348 float32[] energy_value_list\n\
01349 \n\
01350 ";
01351 }
01352
01353 static const char* value(const ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> &) { return value(); }
01354 };
01355
01356 }
01357 }
01358
01359 namespace ros
01360 {
01361 namespace serialization
01362 {
01363
01364 template<class ContainerAllocator> struct Serializer< ::graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> >
01365 {
01366 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01367 {
01368 stream.next(m.grasp);
01369 stream.next(m.test_type);
01370 }
01371
01372 ROS_DECLARE_ALLINONE_SERIALIZER;
01373 };
01374 }
01375 }
01376
01377
01378 namespace ros
01379 {
01380 namespace serialization
01381 {
01382
01383 template<class ContainerAllocator> struct Serializer< ::graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> >
01384 {
01385 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m)
01386 {
01387 stream.next(m.test_performed);
01388 stream.next(m.test_result);
01389 stream.next(m.hand_object_collision);
01390 stream.next(m.hand_environment_collision);
01391 stream.next(m.energy_value);
01392 stream.next(m.energy_value_list);
01393 }
01394
01395 ROS_DECLARE_ALLINONE_SERIALIZER;
01396 };
01397 }
01398 }
01399
01400 namespace ros
01401 {
01402 namespace service_traits
01403 {
01404 template<>
01405 struct MD5Sum<graspit_interface_msgs::TestGrasp> {
01406 static const char* value()
01407 {
01408 return "9e86d6b70500334e7ac6ed512d72ea5e";
01409 }
01410
01411 static const char* value(const graspit_interface_msgs::TestGrasp&) { return value(); }
01412 };
01413
01414 template<>
01415 struct DataType<graspit_interface_msgs::TestGrasp> {
01416 static const char* value()
01417 {
01418 return "graspit_interface_msgs/TestGrasp";
01419 }
01420
01421 static const char* value(const graspit_interface_msgs::TestGrasp&) { return value(); }
01422 };
01423
01424 template<class ContainerAllocator>
01425 struct MD5Sum<graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> > {
01426 static const char* value()
01427 {
01428 return "9e86d6b70500334e7ac6ed512d72ea5e";
01429 }
01430
01431 static const char* value(const graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> &) { return value(); }
01432 };
01433
01434 template<class ContainerAllocator>
01435 struct DataType<graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> > {
01436 static const char* value()
01437 {
01438 return "graspit_interface_msgs/TestGrasp";
01439 }
01440
01441 static const char* value(const graspit_interface_msgs::TestGraspRequest_<ContainerAllocator> &) { return value(); }
01442 };
01443
01444 template<class ContainerAllocator>
01445 struct MD5Sum<graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> > {
01446 static const char* value()
01447 {
01448 return "9e86d6b70500334e7ac6ed512d72ea5e";
01449 }
01450
01451 static const char* value(const graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> &) { return value(); }
01452 };
01453
01454 template<class ContainerAllocator>
01455 struct DataType<graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> > {
01456 static const char* value()
01457 {
01458 return "graspit_interface_msgs/TestGrasp";
01459 }
01460
01461 static const char* value(const graspit_interface_msgs::TestGraspResponse_<ContainerAllocator> &) { return value(); }
01462 };
01463
01464 }
01465 }
01466
01467 #endif // GRASPIT_INTERFACE_MSGS_SERVICE_TESTGRASP_H
01468