$search
00001 00002 /* 00003 - begin : 2005-08-24 00004 - copyright : (C) 2005 by Gunter Winkler, Konstantin Kutzkow 00005 - email : guwi17@gmx.de 00006 00007 This library is free software; you can redistribute it and/or 00008 modify it under the terms of the GNU Lesser General Public 00009 License as published by the Free Software Foundation; either 00010 version 2.1 of the License, or (at your option) any later version. 00011 00012 This library is distributed in the hope that it will be useful, 00013 but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00015 Lesser General Public License for more details. 00016 00017 You should have received a copy of the GNU Lesser General Public 00018 License along with this library; if not, write to the Free Software 00019 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 00020 00021 */ 00022 00023 #ifndef _H_CHOLESKY_HPP_ 00024 #define _H_CHOLESKY_HPP_ 00025 00026 00027 #include <cassert> 00028 00029 #include <boost/numeric/ublas/vector.hpp> 00030 #include <boost/numeric/ublas/vector_proxy.hpp> 00031 00032 #include <boost/numeric/ublas/matrix.hpp> 00033 #include <boost/numeric/ublas/matrix_proxy.hpp> 00034 00035 #include <boost/numeric/ublas/vector_expression.hpp> 00036 #include <boost/numeric/ublas/matrix_expression.hpp> 00037 00038 #include <boost/numeric/ublas/triangular.hpp> 00039 00040 namespace ublas = boost::numeric::ublas; 00041 00042 00051 template < class MATRIX, class TRIA > 00052 size_t cholesky_decompose(const MATRIX& A, TRIA& L) 00053 { 00054 using namespace ublas; 00055 00056 typedef typename MATRIX::value_type T; 00057 00058 assert( A.size1() == A.size2() ); 00059 assert( A.size1() == L.size1() ); 00060 assert( A.size2() == L.size2() ); 00061 00062 const size_t n = A.size1(); 00063 00064 for (size_t k=0 ; k < n; k++) { 00065 00066 double qL_kk = A(k,k) - inner_prod( project( row(L, k), range(0, k) ), 00067 project( row(L, k), range(0, k) ) ); 00068 00069 if (qL_kk <= 0) { 00070 return 1 + k; 00071 } else { 00072 double L_kk = sqrt( qL_kk ); 00073 L(k,k) = L_kk; 00074 00075 matrix_column<TRIA> cLk(L, k); 00076 project( cLk, range(k+1, n) ) 00077 = ( project( column(A, k), range(k+1, n) ) 00078 - prod( project(L, range(k+1, n), range(0, k)), 00079 project(row(L, k), range(0, k) ) ) ) / L_kk; 00080 } 00081 } 00082 return 0; 00083 } 00084 00085 00093 template < class MATRIX > 00094 size_t cholesky_decompose(MATRIX& A) 00095 { 00096 using namespace ublas; 00097 00098 typedef typename MATRIX::value_type T; 00099 00100 const MATRIX& A_c(A); 00101 00102 const size_t n = A.size1(); 00103 00104 for (size_t k=0 ; k < n; k++) { 00105 00106 double qL_kk = A_c(k,k) - inner_prod( project( row(A_c, k), range(0, k) ), 00107 project( row(A_c, k), range(0, k) ) ); 00108 00109 if (qL_kk <= 0) { 00110 return 1 + k; 00111 } else { 00112 double L_kk = sqrt( qL_kk ); 00113 00114 matrix_column<MATRIX> cLk(A, k); 00115 project( cLk, range(k+1, n) ) 00116 = ( project( column(A_c, k), range(k+1, n) ) 00117 - prod( project(A_c, range(k+1, n), range(0, k)), 00118 project(row(A_c, k), range(0, k) ) ) ) / L_kk; 00119 A(k,k) = L_kk; 00120 } 00121 } 00122 return 0; 00123 } 00124 00125 #if 0 00126 using namespace ublas; 00127 00128 // Operations: 00129 // n * (n - 1) / 2 + n = n * (n + 1) / 2 multiplications, 00130 // n * (n - 1) / 2 additions 00131 00132 // Dense (proxy) case 00133 template<class E1, class E2> 00134 void inplace_solve (const matrix_expression<E1> &e1, vector_expression<E2> &e2, 00135 lower_tag, column_major_tag) { 00136 std::cout << " is_lc "; 00137 typedef typename E2::size_type size_type; 00138 typedef typename E2::difference_type difference_type; 00139 typedef typename E2::value_type value_type; 00140 00141 BOOST_UBLAS_CHECK (e1 ().size1 () == e1 ().size2 (), bad_size ()); 00142 BOOST_UBLAS_CHECK (e1 ().size2 () == e2 ().size (), bad_size ()); 00143 size_type size = e2 ().size (); 00144 for (size_type n = 0; n < size; ++ n) { 00145 #ifndef BOOST_UBLAS_SINGULAR_CHECK 00146 BOOST_UBLAS_CHECK (e1 () (n, n) != value_type/*zero*/(), singular ()); 00147 #else 00148 if (e1 () (n, n) == value_type/*zero*/()) 00149 singular ().raise (); 00150 #endif 00151 value_type t = e2 () (n) / e1 () (n, n); 00152 e2 () (n) = t; 00153 if (t != value_type/*zero*/()) { 00154 project( e2 (), range(n+1, size) ) 00155 .minus_assign( t * project( column( e1 (), n), range(n+1, size) ) ); 00156 } 00157 } 00158 } 00159 #endif 00160 00161 00162 00163 00164 00172 template < class MATRIX > 00173 size_t incomplete_cholesky_decompose(MATRIX& A) 00174 { 00175 using namespace ublas; 00176 00177 typedef typename MATRIX::value_type T; 00178 00179 // read access to a const matrix is faster 00180 const MATRIX& A_c(A); 00181 00182 const size_t n = A.size1(); 00183 00184 for (size_t k=0 ; k < n; k++) { 00185 00186 double qL_kk = A_c(k,k) - inner_prod( project( row( A_c, k ), range(0, k) ), 00187 project( row( A_c, k ), range(0, k) ) ); 00188 00189 if (qL_kk <= 0) { 00190 return 1 + k; 00191 } else { 00192 double L_kk = sqrt( qL_kk ); 00193 00194 // aktualisieren 00195 for (size_t i = k+1; i < A.size1(); ++i) { 00196 T* Aik = A.find_element(i, k); 00197 00198 if (Aik != 0) { 00199 *Aik = ( *Aik - inner_prod( project( row( A_c, k ), range(0, k) ), 00200 project( row( A_c, i ), range(0, k) ) ) ) / L_kk; 00201 } 00202 } 00203 00204 A(k,k) = L_kk; 00205 } 00206 } 00207 00208 return 0; 00209 } 00210 00211 00212 00213 00219 template < class TRIA, class VEC > 00220 void 00221 cholesky_solve(const TRIA& L, VEC& x, ublas::lower) 00222 { 00223 using namespace ublas; 00224 // ::inplace_solve(L, x, lower_tag(), typename TRIA::orientation_category () ); 00225 inplace_solve(L, x, lower_tag() ); 00226 inplace_solve(trans(L), x, upper_tag()); 00227 } 00228 00229 00230 #endif