$search
00001 /**************************************************************** 00002 * 00003 * Copyright (c) 2010 00004 * 00005 * Fraunhofer Institute for Manufacturing Engineering 00006 * and Automation (IPA) 00007 * 00008 * +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 00009 * 00010 * Project name: care-o-bot 00011 * ROS stack name: cob_perception_common 00012 * ROS package name: cob_vision_utils 00013 * Description: Utility functions for Fraunhofer IPA vision library. 00014 * 00015 * +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 00016 * 00017 * Author: Jan Fischer, email:jan.fischer@ipa.fhg.de 00018 * Supervised by: Jan Fischer, email:jan.fischer@ipa.fhg.de 00019 * 00020 * Date of creation: July 2008 00021 * ToDo: 00022 * 00023 * +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 00024 * 00025 * Redistribution and use in source and binary forms, with or without 00026 * modification, are permitted provided that the following conditions are met: 00027 * 00028 * * Redistributions of source code must retain the above copyright 00029 * notice, this list of conditions and the following disclaimer. 00030 * * Redistributions in binary form must reproduce the above copyright 00031 * notice, this list of conditions and the following disclaimer in the 00032 * documentation and/or other materials provided with the distribution. 00033 * * Neither the name of the Fraunhofer Institute for Manufacturing 00034 * Engineering and Automation (IPA) nor the names of its 00035 * contributors may be used to endorse or promote products derived from 00036 * this software without specific prior written permission. 00037 * 00038 * This program is free software: you can redistribute it and/or modify 00039 * it under the terms of the GNU Lesser General Public License LGPL as 00040 * published by the Free Software Foundation, either version 3 of the 00041 * License, or (at your option) any later version. 00042 * 00043 * This program is distributed in the hope that it will be useful, 00044 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00045 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00046 * GNU Lesser General Public License LGPL for more details. 00047 * 00048 * You should have received a copy of the GNU Lesser General Public 00049 * License LGPL along with this program. 00050 * If not, see <http://www.gnu.org/licenses/>. 00051 * 00052 ****************************************************************/ 00053 00058 00059 #ifndef __IPA_VISIONUTILS_H__ 00060 #define __IPA_VISIONUTILS_H__ 00061 00062 #ifdef __LINUX__ 00063 #include "cob_vision_utils/GlobalDefines.h" 00064 #else 00065 #include "cob_perception_common/cob_vision_utils/common/include/cob_vision_utils/GlobalDefines.h" 00066 #endif 00067 00068 #include <opencv/cv.h> 00069 #include <iostream> 00070 00071 namespace ipa_Utils { 00072 00073 00077 cv::Mat vstack(const std::vector<cv::Mat> &mats); 00078 00080 void InitUndistortMap( const cv::Mat& A, const cv::Mat& dist_coeffs, 00081 cv::Mat& mapxarr, cv::Mat& mapyarr ); 00082 00090 unsigned long ConvertToShowImage(const cv::Mat& source, cv::Mat& dest, int channel = 1, double min = -1, double max = -1); 00091 00104 unsigned long MaskImage(const cv::Mat& source, cv::Mat& dest, const cv::Mat& mask, cv::Mat& destMask, float minMaskThresh = 0, 00105 float maxMaskTresh = 20000, int sourceChannel = 1, double sourceMin = -1, double sourceMax = -1); 00106 00113 unsigned long EvaluatePolynomial(double x, int degree, double* coefficients, double* y); 00114 00122 unsigned long FilterByAmplitude(cv::Mat& xyzImage, const cv::Mat& greyImage, cv::Mat* mask, cv::Mat* maskColor, float minMaskThresh, float maxMaskThresh); 00123 00132 unsigned long FilterTearOffEdges(cv::Mat& xyzImage, cv::Mat* mask, float piHalfFraction = 6); 00133 00135 unsigned long FilterSpeckles( cv::Mat& img, int maxSpeckleSize, double _maxDiff, cv::Mat& _buf ); 00136 00142 cv::Vec3b GrayColorMap(double value, double min, double max); 00143 00147 cv::Mat GetColorcoded(const cv::Mat& img_32F); 00148 00154 cv::Mat GetColorcoded(const cv::Mat& img_32F, double min, double max); 00155 00160 unsigned long SaveMat(cv::Mat& mat, std::string filename, int type=CV_32F); 00161 00166 unsigned long LoadMat(cv::Mat& mat, std::string filename, int type=CV_32F); 00167 00168 00173 template <typename Distance> 00174 void ClusteringKMeanspp(int k, cv::Mat& dataset, int* indices, int indices_length, int* centers, int& centers_length, int numLocalTries=1) 00175 { 00176 typedef typename Distance::ElementType ElementType; 00177 typedef typename Distance::ResultType DistanceType; 00178 00179 Distance distance = Distance(); 00180 00181 int n = indices_length; 00182 00183 double currentPot = 0; 00184 DistanceType* closestDistSq = new DistanceType[n]; 00185 00186 // Choose one random center and set the closestDistSq values 00187 int index = cvflann::rand_int(n); 00188 assert(index >=0 && index < n); 00189 centers[0] = indices[index]; 00190 00191 for (int i = 0; i < n; i++) { 00192 closestDistSq[i] = distance(dataset.ptr(indices[i]), 00193 dataset.ptr(indices[index]), dataset.cols); 00194 currentPot += closestDistSq[i]; 00195 } 00196 00197 // Choose each center 00198 int centerCount; 00199 for (centerCount = 1; centerCount < k; centerCount++) { 00200 00201 // Repeat several trials 00202 double bestNewPot = -1; 00203 int bestNewIndex = 0; 00204 for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { 00205 00206 // Choose our center - have to be slightly careful to return a valid answer even accounting 00207 // for possible rounding errors 00208 double randVal = cvflann::rand_double(currentPot); 00209 for (index = 0; index < n-1; index++) { 00210 if (randVal <= closestDistSq[index]) break; 00211 else randVal -= closestDistSq[index]; 00212 } 00213 00214 // Compute the new potential 00215 double newPot = 0; 00216 for (int i = 0; i < n; i++) 00217 newPot += std::min( distance(dataset.ptr(indices[i]), 00218 dataset.ptr(indices[index]), dataset.cols), closestDistSq[i] ); 00219 00220 // Store the best result 00221 if ((bestNewPot < 0)||(newPot < bestNewPot)) { 00222 bestNewPot = newPot; 00223 bestNewIndex = index; 00224 } 00225 } 00226 00227 // Add the appropriate center 00228 centers[centerCount] = indices[bestNewIndex]; 00229 currentPot = bestNewPot; 00230 for (int i = 0; i < n; i++) 00231 closestDistSq[i] = std::min( distance(dataset.ptr(indices[i]), 00232 dataset.ptr(indices[bestNewIndex]), dataset.cols), closestDistSq[i] ); 00233 } 00234 00235 centers_length = centerCount; 00236 00237 delete[] closestDistSq; 00238 } 00239 00240 // Generator that yields an increasing sequence of integers 00241 class UniqueNumber { 00242 public: 00243 int current; 00244 UniqueNumber(); 00245 int operator()(); 00246 }; 00247 00248 // Returns random subset of input vector. Will not create duplicates. 00249 // @param v Input vector 00250 // @param n Number of items to return 00251 // @return Vector of same type as input vector (length n) 00252 template<class T> std::vector<T> takeRandomN(const std::vector<T> &v, int n) 00253 { 00254 int current = 0; 00255 std::vector<int> indices(v.size()); 00256 std::generate(indices.begin(), indices.end(), UniqueNumber()); 00257 std::random_shuffle(indices.begin(), indices.end()); 00258 00259 std::vector<T> ret; 00260 for (int i = 0; i < n; i++) 00261 { 00262 ret.push_back(v[indices[i]]); 00263 } 00264 00265 return ret; 00266 } 00267 00268 } // end namespace __IPA_VISIONUTILS_H__ 00269 00270 00271 #endif