$search
00001 # Software License Agreement (BSD License) 00002 # 00003 # Copyright (c) 2008, Willow Garage, Inc. 00004 # All rights reserved. 00005 # 00006 # Redistribution and use in source and binary forms, with or without 00007 # modification, are permitted provided that the following conditions 00008 # are met: 00009 # 00010 # * Redistributions of source code must retain the above copyright 00011 # notice, this list of conditions and the following disclaimer. 00012 # * Redistributions in binary form must reproduce the above 00013 # copyright notice, this list of conditions and the following 00014 # disclaimer in the documentation and/or other materials provided 00015 # with the distribution. 00016 # * Neither the name of Willow Garage, Inc. nor the names of its 00017 # contributors may be used to endorse or promote products derived 00018 # from this software without specific prior written permission. 00019 # 00020 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00021 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00022 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00023 # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00024 # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00025 # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00026 # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00027 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00028 # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00029 # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00030 # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00031 # POSSIBILITY OF SUCH DAMAGE. 00032 00033 # author: Vijay Pradeep 00034 00035 # Define a camera sensor attached to a chain 00036 # 00037 # before_chain_Ts -- camera_chain -- after_chain_Ts -- camera 00038 # / 00039 # root 00040 # \ 00041 # checkerboard 00042 00043 00044 import numpy 00045 from numpy import matrix, reshape, array, zeros, diag, real 00046 00047 import roslib; roslib.load_manifest('cob_robot_calibration_est') 00048 import rospy 00049 from cob_robot_calibration_est.full_chain import FullChainRobotParams 00050 from sensor_msgs.msg import JointState 00051 00052 class CameraChainBundler: 00053 """ 00054 Tool used to generate a list of CameraChain sensors from a single calibration sample message 00055 """ 00056 def __init__(self, valid_configs): 00057 """ 00058 Inputs: 00059 - valid_configs: A list of dictionaries, where each list elem stores the configuration of a potential 00060 camera chain that we might encounter. 00061 Example (in yaml format): 00062 - camera_id: forearm_right_rect 00063 sensor_id: forearm_right_rect 00064 chain: 00065 before_chain: [r_shoulder_pan_joint] 00066 chain_id: right_arm_chain 00067 after_chain: [r_forearm_roll_adj, r_forearm_cam_frame_joint, 00068 r_forearm_cam_optical_frame_joint] 00069 dh_link_num: 4 00070 """ 00071 self._valid_configs = valid_configs 00072 00073 # Construct a CameraChainSensor for every camera chain sensor that exists in the given robot measurement 00074 def build_blocks(self, M_robot): 00075 """ 00076 Input: 00077 - M_robot: A calibration sample of type calibration_msgs/RobotMeasurement 00078 Returns: 00079 - sensors: A list of CameraChainSensor objects that corresponds to all camera chain sensors found 00080 in the calibration message that was passed in. 00081 """ 00082 sensors = [] 00083 for cur_config in self._valid_configs: 00084 if cur_config["camera_id"] in [ x.camera_id for x in M_robot.M_cam ]: 00085 if cur_config["chain"]["chain_id"] in [ x.chain_id for x in M_robot.M_chain ] : 00086 # print "if cur_config[chain][chain_id]: ", cur_config["chain"]["chain_id"] 00087 M_cam = M_robot.M_cam [ [ x.camera_id for x in M_robot.M_cam ].index(cur_config["camera_id"])] 00088 M_chain = M_robot.M_chain[ [ x.chain_id for x in M_robot.M_chain ].index(cur_config["chain"]["chain_id"]) ] 00089 # elif cur_config["chain"]["chain_id"] == 'NULL': 00090 elif cur_config["chain"]["chain_id"] == None: 00091 # print "elif cur_config[chain][chain_id]: ", cur_config["chain"]["chain_id"] 00092 M_cam = M_robot.M_cam [ [ x.camera_id for x in M_robot.M_cam ].index(cur_config["camera_id"])] 00093 M_chain = None 00094 else: 00095 print "else cur_config[chain][chain_id]: ", cur_config["chain"]["chain_id"] 00096 break 00097 cur_sensor = CameraChainSensor(cur_config, M_cam, M_chain) 00098 sensors.append(cur_sensor) 00099 else: 00100 rospy.logdebug(" Didn't find block") 00101 return sensors 00102 00103 class CameraChainSensor: 00104 def __init__(self, config_dict, M_cam, M_chain): 00105 """ 00106 Generates a single sensor block for a single configuration 00107 Inputs: 00108 - config_dict: The configuration for this specific sensor. This looks exactly like 00109 a single element from the valid_configs list passed into CameraChainBundler.__init__ 00110 - M_cam: The camera measurement of type calibration_msgs/CameraMeasurement 00111 - M_chain: The chain measurement of type calibration_msgs/ChainMeasurement 00112 """ 00113 00114 self.sensor_type = "camera" 00115 self.sensor_id = config_dict["camera_id"] 00116 00117 self._config_dict = config_dict 00118 self._M_cam = M_cam 00119 self._M_chain = M_chain 00120 00121 self._chain = FullChainRobotParams(config_dict["chain"]) 00122 00123 self.terms_per_sample = 2 00124 00125 def update_config(self, robot_params): 00126 """ 00127 On each optimization cycle the set of system parameters that we're optimizing over will change. Thus, 00128 after each change in parameters we must call update_config to ensure that our calculated residual reflects 00129 the newest set of system parameters. 00130 """ 00131 self._camera = robot_params.rectified_cams[ self._config_dict["camera_id"] ] 00132 00133 if self._chain is not None: 00134 self._chain.update_config(robot_params) 00135 00136 def compute_residual(self, target_pts): 00137 """ 00138 Computes the measurement residual for the current set of system parameters and target points 00139 Input: 00140 - target_pts: 4XN matrix, storing features point locations in world cartesian homogenous coordinates. 00141 Output: 00142 - r: 2N long vector, storing pixel residuals for the target points in the form [u1, v1, u2, v2, ..., uN, vN] 00143 """ 00144 z_mat = self.get_measurement() 00145 h_mat = self.compute_expected(target_pts) 00146 assert(z_mat.shape[1] == 2) 00147 assert(h_mat.shape[1] == 2) 00148 assert(z_mat.shape[0] == z_mat.shape[0]) 00149 r = array(reshape(h_mat - z_mat, [-1,1]))[:,0] 00150 return r 00151 00152 00153 def compute_residual_scaled(self, target_pts): 00154 """ 00155 Computes the residual, and then scales it by sqrt(Gamma), where Gamma 00156 is the information matrix for this measurement (Cov^-1). 00157 """ 00158 r = self.compute_residual(target_pts) 00159 gamma_sqrt = self.compute_marginal_gamma_sqrt(target_pts) 00160 r_scaled = gamma_sqrt * matrix(r).T 00161 return array(r_scaled.T)[0] 00162 00163 def compute_marginal_gamma_sqrt(self, target_pts): 00164 """ 00165 Calculates the square root of the information matrix for the measurement of the 00166 current set of system parameters at the passed in set of target points. 00167 """ 00168 import scipy.linalg 00169 cov = self.compute_cov(target_pts) 00170 gamma = matrix(zeros(cov.shape)) 00171 num_pts = self.get_residual_length()/2 00172 00173 for k in range(num_pts): 00174 #print "k=%u" % k 00175 first = 2*k 00176 last = 2*k+2 00177 sub_cov = matrix(cov[first:last, first:last]) 00178 sub_gamma_sqrt_full = matrix(scipy.linalg.sqrtm(sub_cov.I)) 00179 sub_gamma_sqrt = real(sub_gamma_sqrt_full) 00180 assert(scipy.linalg.norm(sub_gamma_sqrt_full - sub_gamma_sqrt) < 1e-6) 00181 gamma[first:last, first:last] = sub_gamma_sqrt 00182 return gamma 00183 00184 def get_residual_length(self): 00185 N = len(self._M_cam.image_points) 00186 return N*2 00187 00188 # Get the observed measurement in a Nx2 Matrix 00189 def get_measurement(self): 00190 """ 00191 Get the target's pixel coordinates as measured by the actual sensor 00192 """ 00193 camera_pix = numpy.matrix([[pt.x, pt.y] for pt in self._M_cam.image_points]) 00194 return camera_pix 00195 00196 def compute_expected(self, target_pts): 00197 """ 00198 Compute the expected pixel coordinates for a set of target points. 00199 target_pts: 4xN matrix, storing feature points of the target, in homogeneous coords 00200 Returns: target points projected into pixel coordinates, in a Nx2 matrix 00201 """ 00202 if self._M_chain is not None: 00203 return self._compute_expected(self._M_chain.chain_state, target_pts) 00204 else: 00205 return self._compute_expected(None, target_pts) 00206 def _compute_expected(self, chain_state, target_pts): 00207 """ 00208 Compute what measurement we would expect to see, based on the current system parameters 00209 and the specified target point locations. 00210 00211 Inputs: 00212 - chain_state: The joint angles of this sensor's chain of type sensor_msgs/JointState. 00213 - target_pts: 4XN matrix, storing features point locations in world cartesian homogenous coordinates. 00214 00215 Returns: target points projected into pixel coordinates, in a Nx2 matrix 00216 """ 00217 # Camera pose in root frame 00218 camera_pose_root = self._chain.calc_block.fk(chain_state) 00219 cam_frame_pts = camera_pose_root.I * target_pts 00220 # Do the camera projection 00221 pixel_pts = self._camera.project(self._M_cam.cam_info.P, cam_frame_pts) 00222 00223 return pixel_pts.T 00224 00225 def compute_expected_J(self, target_pts): 00226 """ 00227 The output Jacobian J shows how moving target_pts in cartesian space affects 00228 the expected measurement in (u,v) camera coordinates. 00229 For n points in target_pts, J is a 2nx3n matrix 00230 Note: This doesn't seem to be used anywhere, except maybe in some drawing code 00231 """ 00232 epsilon = 1e-8 00233 N = len(self._M_cam.image_points) 00234 Jt = zeros([N*3, N*2]) 00235 for k in range(N): 00236 # Compute jacobian for point k 00237 sub_Jt = zeros([3,2]) 00238 x = target_pts[:,k].copy() 00239 f0 = self.compute_expected(x) 00240 for i in [0,1,2]: 00241 x[i,0] += epsilon 00242 fTest = self.compute_expected(x) 00243 sub_Jt[i,:] = array((fTest - f0) / epsilon) 00244 x[i,0] -= epsilon 00245 Jt[k*3:(k+1)*3, k*2:(k+1)*2] = sub_Jt 00246 return Jt.T 00247 00248 00249 def compute_cov(self, target_pts): 00250 ''' 00251 Computes the measurement covariance in pixel coordinates for the given 00252 set of target points (target_pts) 00253 Input: 00254 - target_pts: 4xN matrix, storing N feature points of the target, in homogeneous coords 00255 ''' 00256 epsilon = 1e-8 00257 00258 if self._M_chain is not None: 00259 num_joints = len(self._M_chain.chain_state.position) 00260 Jt = zeros([num_joints, self.get_residual_length()]) 00261 00262 x = JointState() 00263 x.position = self._M_chain.chain_state.position[:] 00264 00265 # Compute the Jacobian from the chain's joint angles to pixel residuals 00266 f0 = reshape(array(self._compute_expected(x, target_pts)), [-1]) 00267 for i in range(num_joints): 00268 x.position = [cur_pos for cur_pos in self._M_chain.chain_state.position] 00269 x.position[i] += epsilon 00270 fTest = reshape(array(self._compute_expected(x, target_pts)), [-1]) 00271 Jt[i] = (fTest - f0)/epsilon 00272 cov_angles = [x*x for x in self._chain.calc_block._chain._cov_dict['joint_angles']] 00273 00274 # Transform the chain's covariance from joint angle space into pixel space using the just calculated jacobian 00275 chain_cov = matrix(Jt).T * matrix(diag(cov_angles)) * matrix(Jt) 00276 00277 cam_cov = matrix(zeros([self.get_residual_length(), self.get_residual_length()])) 00278 00279 # Convert StdDev into variance 00280 var_u = self._camera._cov_dict['u'] * self._camera._cov_dict['u'] 00281 var_v = self._camera._cov_dict['v'] * self._camera._cov_dict['v'] 00282 for k in range(cam_cov.shape[0]/2): 00283 cam_cov[2*k , 2*k] = var_u 00284 cam_cov[2*k+1, 2*k+1] = var_v 00285 00286 # Both chain and camera covariances are now in measurement space, so we can simply add them together 00287 if self._M_chain is not None: 00288 cov = chain_cov + cam_cov 00289 else: 00290 cov = cam_cov 00291 return cov 00292 00293 def build_sparsity_dict(self): 00294 """ 00295 Build a dictionary that defines which parameters will in fact affect this measurement. 00296 00297 Returned dictionary should be of the following form: 00298 transforms: 00299 my_transformA: [1, 1, 1, 1, 1, 1] 00300 my_transformB: [1, 1, 1, 1, 1, 1] 00301 dh_chains: 00302 my_chain: 00303 dh: 00304 - [1, 1, 1, 1] 00305 - [1, 1, 1, 1] 00306 | 00307 - [1, 1, 1, 1] 00308 gearing: [1, 1, ---, 1] 00309 rectified_cams: 00310 my_cam: 00311 baseline_shift: 1 00312 f_shift: 1 00313 cx_shift: 1 00314 cy_shift: 1 00315 """ 00316 sparsity = dict() 00317 sparsity['transforms'] = {} 00318 for cur_transform_name in ( self._config_dict['chain']['before_chain'] + self._config_dict['chain']['after_chain'] ): 00319 sparsity['transforms'][cur_transform_name] = [1, 1, 1, 1, 1, 1] 00320 00321 sparsity['dh_chains'] = {} 00322 if self._M_chain is not None: 00323 chain_id = self._config_dict['chain']['chain_id'] 00324 num_links = self._chain.calc_block._chain._M 00325 assert(num_links == len(self._M_chain.chain_state.position)) 00326 sparsity['dh_chains'][chain_id] = {} 00327 sparsity['dh_chains'][chain_id]['dh'] = [ [1,1,1,1] ] * num_links 00328 sparsity['dh_chains'][chain_id]['gearing'] = [1] * num_links 00329 00330 sparsity['rectified_cams'] = {} 00331 sparsity['rectified_cams'][self.sensor_id] = dict( [(x,1) for x in self._camera.get_param_names()] ) 00332 00333 return sparsity 00334 00335