$search
00001 //Copyright (C) 2011 by Ivan Fratric 00002 // 00003 //Permission is hereby granted, free of charge, to any person obtaining a copy 00004 //of this software and associated documentation files (the "Software"), to deal 00005 //in the Software without restriction, including without limitation the rights 00006 //to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 00007 //copies of the Software, and to permit persons to whom the Software is 00008 //furnished to do so, subject to the following conditions: 00009 // 00010 //The above copyright notice and this permission notice shall be included in 00011 //all copies or substantial portions of the Software. 00012 // 00013 //THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 00014 //IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 00015 //FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 00016 //AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 00017 //LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 00018 //OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 00019 //THE SOFTWARE. 00020 00021 00022 #include <list> 00023 using namespace std; 00024 00025 typedef double tppl_float; 00026 00027 #define TPPL_CCW 1 00028 #define TPPL_CW -1 00029 00030 //2D point structure 00031 struct TPPLPoint { 00032 tppl_float x; 00033 tppl_float y; 00034 00035 TPPLPoint operator + (const TPPLPoint& p) const { 00036 TPPLPoint r; 00037 r.x = x + p.x; 00038 r.y = y + p.y; 00039 return r; 00040 } 00041 00042 TPPLPoint operator - (const TPPLPoint& p) const { 00043 TPPLPoint r; 00044 r.x = x - p.x; 00045 r.y = y - p.y; 00046 return r; 00047 } 00048 00049 TPPLPoint operator * (const tppl_float f ) const { 00050 TPPLPoint r; 00051 r.x = x*f; 00052 r.y = y*f; 00053 return r; 00054 } 00055 00056 TPPLPoint operator / (const tppl_float f ) const { 00057 TPPLPoint r; 00058 r.x = x/f; 00059 r.y = y/f; 00060 return r; 00061 } 00062 00063 bool operator==(const TPPLPoint& p) const { 00064 if((x == p.x)&&(y==p.y)) return true; 00065 else return false; 00066 } 00067 00068 bool operator!=(const TPPLPoint& p) const { 00069 if((x == p.x)&&(y==p.y)) return false; 00070 else return true; 00071 } 00072 }; 00073 00074 //Polygon implemented as an array of points with a 'hole' flag 00075 class TPPLPoly { 00076 protected: 00077 00078 TPPLPoint *points; 00079 long numpoints; 00080 bool hole; 00081 00082 public: 00083 00084 //constructors/destructors 00085 TPPLPoly(); 00086 ~TPPLPoly(); 00087 00088 TPPLPoly(const TPPLPoly &src); 00089 TPPLPoly& operator=(const TPPLPoly &src); 00090 00091 //getters and setters 00092 long GetNumPoints() { 00093 return numpoints; 00094 } 00095 00096 bool IsHole() { 00097 return hole; 00098 } 00099 00100 void SetHole(bool hole) { 00101 this->hole = hole; 00102 } 00103 00104 TPPLPoint &GetPoint(long i) { 00105 return points[i]; 00106 } 00107 00108 TPPLPoint *GetPoints() { 00109 return points; 00110 } 00111 00112 TPPLPoint& operator[] (int i) { 00113 return points[i]; 00114 } 00115 00116 //clears the polygon points 00117 void Clear(); 00118 00119 //inits the polygon with numpoints vertices 00120 void Init(long numpoints); 00121 00122 //creates a triangle with points p1,p2,p3 00123 void Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3); 00124 00125 //inverts the orfer of vertices 00126 void Invert(); 00127 00128 //returns the orientation of the polygon 00129 //possible values: 00130 // TPPL_CCW : polygon vertices are in counter-clockwise order 00131 // TPPL_CW : polygon vertices are in clockwise order 00132 // 0 : the polygon has no (measurable) area 00133 int GetOrientation(); 00134 00135 //sets the polygon orientation 00136 //orientation can be 00137 // TPPL_CCW : sets vertices in counter-clockwise order 00138 // TPPL_CW : sets vertices in clockwise order 00139 void SetOrientation(int orientation); 00140 }; 00141 00142 class TPPLPartition { 00143 protected: 00144 struct PartitionVertex { 00145 bool isActive; 00146 bool isConvex; 00147 bool isEar; 00148 00149 TPPLPoint p; 00150 tppl_float angle; 00151 PartitionVertex *previous; 00152 PartitionVertex *next; 00153 }; 00154 00155 struct MonotoneVertex { 00156 TPPLPoint p; 00157 long previous; 00158 long next; 00159 }; 00160 00161 class VertexSorter{ 00162 MonotoneVertex *vertices; 00163 public: 00164 VertexSorter(MonotoneVertex *v) : vertices(v) {} 00165 bool operator() (long index1, long index2); 00166 }; 00167 00168 struct Diagonal { 00169 long index1; 00170 long index2; 00171 }; 00172 00173 //dynamic programming state for minimum-weight triangulation 00174 struct DPState { 00175 bool visible; 00176 tppl_float weight; 00177 long bestvertex; 00178 }; 00179 00180 //dynamic programming state for convex partitioning 00181 struct DPState2 { 00182 bool visible; 00183 long weight; 00184 list<Diagonal> pairs; 00185 }; 00186 00187 //edge that intersects the scanline 00188 struct ScanLineEdge { 00189 long index; 00190 TPPLPoint p1; 00191 TPPLPoint p2; 00192 00193 //determines if the edge is to the left of another edge 00194 bool operator< (const ScanLineEdge & other) const; 00195 00196 bool IsConvex(const TPPLPoint& p1, const TPPLPoint& p2, const TPPLPoint& p3) const; 00197 }; 00198 00199 //standard helper functions 00200 bool IsConvex(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3); 00201 bool IsReflex(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3); 00202 bool IsInside(TPPLPoint& p1, TPPLPoint& p2, TPPLPoint& p3, TPPLPoint &p); 00203 00204 bool InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p); 00205 bool InCone(PartitionVertex *v, TPPLPoint &p); 00206 00207 int Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22); 00208 00209 TPPLPoint Normalize(const TPPLPoint &p); 00210 tppl_float Distance(const TPPLPoint &p1, const TPPLPoint &p2); 00211 00212 //helper functions for Triangulate_EC 00213 void UpdateVertexReflexity(PartitionVertex *v); 00214 void UpdateVertex(PartitionVertex *v,PartitionVertex *vertices, long numvertices); 00215 00216 //helper functions for ConvexPartition_OPT 00217 void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates); 00218 void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates); 00219 void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates); 00220 00221 //helper functions for MonotonePartition 00222 bool Below(TPPLPoint &p1, TPPLPoint &p2); 00223 void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2); 00224 00225 //triangulates a monotone polygon, used in Triangulate_MONO 00226 int TriangulateMonotone(TPPLPoly *inPoly, list<TPPLPoly> *triangles); 00227 00228 public: 00229 00230 //simple heuristic procedure for removing holes from a list of polygons 00231 //works by creating a diagonal from the rightmost hole vertex to some visible vertex 00232 //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices 00233 //space complexity: O(n) 00234 //params: 00235 // inpolys : a list of polygons that can contain holes 00236 // vertices of all non-hole polys have to be in counter-clockwise order 00237 // vertices of all hole polys have to be in clockwise order 00238 // outpolys : a list of polygons without holes 00239 //returns 1 on success, 0 on failure 00240 int RemoveHoles(list<TPPLPoly> *inpolys, list<TPPLPoly> *outpolys); 00241 00242 //triangulates a polygon by ear clipping 00243 //time complexity O(n^2), n is the number of vertices 00244 //space complexity: O(n) 00245 //params: 00246 // poly : an input polygon to be triangulated 00247 // vertices have to be in counter-clockwise order 00248 // triangles : a list of triangles (result) 00249 //returns 1 on success, 0 on failure 00250 int Triangulate_EC(TPPLPoly *poly, list<TPPLPoly> *triangles); 00251 00252 //triangulates a list of polygons that may contain holes by ear clipping algorithm 00253 //first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon 00254 //time complexity: O(h*(n^2)), h is the number of holes, n is the number of vertices 00255 //space complexity: O(n) 00256 //params: 00257 // inpolys : a list of polygons to be triangulated (can contain holes) 00258 // vertices of all non-hole polys have to be in counter-clockwise order 00259 // vertices of all hole polys have to be in clockwise order 00260 // triangles : a list of triangles (result) 00261 //returns 1 on success, 0 on failure 00262 int Triangulate_EC(list<TPPLPoly> *inpolys, list<TPPLPoly> *triangles); 00263 00264 //creates an optimal polygon triangulation in terms of minimal edge length 00265 //time complexity: O(n^3), n is the number of vertices 00266 //space complexity: O(n^2) 00267 //params: 00268 // poly : an input polygon to be triangulated 00269 // vertices have to be in counter-clockwise order 00270 // triangles : a list of triangles (result) 00271 //returns 1 on success, 0 on failure 00272 int Triangulate_OPT(TPPLPoly *poly, list<TPPLPoly> *triangles); 00273 00274 //triangulates a polygons by firstly partitioning it into monotone polygons 00275 //time complexity: O(n*log(n)), n is the number of vertices 00276 //space complexity: O(n) 00277 //params: 00278 // poly : an input polygon to be triangulated 00279 // vertices have to be in counter-clockwise order 00280 // triangles : a list of triangles (result) 00281 //returns 1 on success, 0 on failure 00282 int Triangulate_MONO(TPPLPoly *poly, list<TPPLPoly> *triangles); 00283 00284 //triangulates a list of polygons by firstly partitioning them into monotone polygons 00285 //time complexity: O(n*log(n)), n is the number of vertices 00286 //space complexity: O(n) 00287 //params: 00288 // inpolys : a list of polygons to be triangulated (can contain holes) 00289 // vertices of all non-hole polys have to be in counter-clockwise order 00290 // vertices of all hole polys have to be in clockwise order 00291 // triangles : a list of triangles (result) 00292 //returns 1 on success, 0 on failure 00293 int Triangulate_MONO(list<TPPLPoly> *inpolys, list<TPPLPoly> *triangles); 00294 00295 //creates a monotone partition of a list of polygons that can contain holes 00296 //time complexity: O(n*log(n)), n is the number of vertices 00297 //space complexity: O(n) 00298 //params: 00299 // inpolys : a list of polygons to be triangulated (can contain holes) 00300 // vertices of all non-hole polys have to be in counter-clockwise order 00301 // vertices of all hole polys have to be in clockwise order 00302 // monotonePolys : a list of monotone polygons (result) 00303 //returns 1 on success, 0 on failure 00304 int MonotonePartition(list<TPPLPoly> *inpolys, list<TPPLPoly> *monotonePolys); 00305 00306 //partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm 00307 //the algorithm gives at most four times the number of parts as the optimal algorithm 00308 //however, in practice it works much better than that and often gives optimal partition 00309 //uses triangulation obtained by ear clipping as intermediate result 00310 //time complexity O(n^2), n is the number of vertices 00311 //space complexity: O(n) 00312 //params: 00313 // poly : an input polygon to be partitioned 00314 // vertices have to be in counter-clockwise order 00315 // parts : resulting list of convex polygons 00316 //returns 1 on success, 0 on failure 00317 int ConvexPartition_HM(TPPLPoly *poly, list<TPPLPoly> *parts); 00318 00319 //partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm 00320 //the algorithm gives at most four times the number of parts as the optimal algorithm 00321 //however, in practice it works much better than that and often gives optimal partition 00322 //uses triangulation obtained by ear clipping as intermediate result 00323 //time complexity O(n^2), n is the number of vertices 00324 //space complexity: O(n) 00325 //params: 00326 // inpolys : an input list of polygons to be partitioned 00327 // vertices of all non-hole polys have to be in counter-clockwise order 00328 // vertices of all hole polys have to be in clockwise order 00329 // parts : resulting list of convex polygons 00330 //returns 1 on success, 0 on failure 00331 int ConvexPartition_HM(list<TPPLPoly> *inpolys, list<TPPLPoly> *parts); 00332 00333 //optimal convex partitioning (in terms of number of resulting convex polygons) 00334 //using the Keil-Snoeyink algorithm 00335 //M. Keil, J. Snoeyink, "On the time bound for convex decomposition of simple polygons", 1998 00336 //time complexity O(n^3), n is the number of vertices 00337 //space complexity: O(n^3) 00338 // poly : an input polygon to be partitioned 00339 // vertices have to be in counter-clockwise order 00340 // parts : resulting list of convex polygons 00341 //returns 1 on success, 0 on failure 00342 int ConvexPartition_OPT(TPPLPoly *poly, list<TPPLPoly> *parts); 00343 };