$search
00001 /* Auto-generated by genmsg_cpp for file /home/rosbuild/hudson/workspace/doc-electric-freiburg_tools/doc_stacks/2013-03-05_11-55-21.944454/freiburg_tools/checkerboard_detector2/srv/Detect.srv */ 00002 #ifndef CHECKERBOARD_DETECTOR2_SERVICE_DETECT_H 00003 #define CHECKERBOARD_DETECTOR2_SERVICE_DETECT_H 00004 #include <string> 00005 #include <vector> 00006 #include <map> 00007 #include <ostream> 00008 #include "ros/serialization.h" 00009 #include "ros/builtin_message_traits.h" 00010 #include "ros/message_operations.h" 00011 #include "ros/time.h" 00012 00013 #include "ros/macros.h" 00014 00015 #include "ros/assert.h" 00016 00017 #include "ros/service_traits.h" 00018 00019 #include "sensor_msgs/Image.h" 00020 #include "sensor_msgs/CameraInfo.h" 00021 00022 00023 #include "checkerboard_detector2/ObjectDetection.h" 00024 00025 namespace checkerboard_detector2 00026 { 00027 template <class ContainerAllocator> 00028 struct DetectRequest_ { 00029 typedef DetectRequest_<ContainerAllocator> Type; 00030 00031 DetectRequest_() 00032 : image() 00033 , camera_info() 00034 { 00035 } 00036 00037 DetectRequest_(const ContainerAllocator& _alloc) 00038 : image(_alloc) 00039 , camera_info(_alloc) 00040 { 00041 } 00042 00043 typedef ::sensor_msgs::Image_<ContainerAllocator> _image_type; 00044 ::sensor_msgs::Image_<ContainerAllocator> image; 00045 00046 typedef ::sensor_msgs::CameraInfo_<ContainerAllocator> _camera_info_type; 00047 ::sensor_msgs::CameraInfo_<ContainerAllocator> camera_info; 00048 00049 00050 private: 00051 static const char* __s_getDataType_() { return "checkerboard_detector2/DetectRequest"; } 00052 public: 00053 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00054 00055 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00056 00057 private: 00058 static const char* __s_getMD5Sum_() { return "bfee1901edaf2aa4d9f0844a03ff634f"; } 00059 public: 00060 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00061 00062 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00063 00064 private: 00065 static const char* __s_getServerMD5Sum_() { return "7d2841c5eef2578fbb718be68316c081"; } 00066 public: 00067 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00068 00069 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00070 00071 private: 00072 static const char* __s_getMessageDefinition_() { return "\n\ 00073 sensor_msgs/Image image\n\ 00074 sensor_msgs/CameraInfo camera_info\n\ 00075 \n\ 00076 ================================================================================\n\ 00077 MSG: sensor_msgs/Image\n\ 00078 # This message contains an uncompressed image\n\ 00079 # (0, 0) is at top-left corner of image\n\ 00080 #\n\ 00081 \n\ 00082 Header header # Header timestamp should be acquisition time of image\n\ 00083 # Header frame_id should be optical frame of camera\n\ 00084 # origin of frame should be optical center of cameara\n\ 00085 # +x should point to the right in the image\n\ 00086 # +y should point down in the image\n\ 00087 # +z should point into to plane of the image\n\ 00088 # If the frame_id here and the frame_id of the CameraInfo\n\ 00089 # message associated with the image conflict\n\ 00090 # the behavior is undefined\n\ 00091 \n\ 00092 uint32 height # image height, that is, number of rows\n\ 00093 uint32 width # image width, that is, number of columns\n\ 00094 \n\ 00095 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00096 # If you want to standardize a new string format, join\n\ 00097 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00098 \n\ 00099 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00100 # taken from the list of strings in src/image_encodings.cpp\n\ 00101 \n\ 00102 uint8 is_bigendian # is this data bigendian?\n\ 00103 uint32 step # Full row length in bytes\n\ 00104 uint8[] data # actual matrix data, size is (step * rows)\n\ 00105 \n\ 00106 ================================================================================\n\ 00107 MSG: std_msgs/Header\n\ 00108 # Standard metadata for higher-level stamped data types.\n\ 00109 # This is generally used to communicate timestamped data \n\ 00110 # in a particular coordinate frame.\n\ 00111 # \n\ 00112 # sequence ID: consecutively increasing ID \n\ 00113 uint32 seq\n\ 00114 #Two-integer timestamp that is expressed as:\n\ 00115 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00116 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00117 # time-handling sugar is provided by the client library\n\ 00118 time stamp\n\ 00119 #Frame this data is associated with\n\ 00120 # 0: no frame\n\ 00121 # 1: global frame\n\ 00122 string frame_id\n\ 00123 \n\ 00124 ================================================================================\n\ 00125 MSG: sensor_msgs/CameraInfo\n\ 00126 # This message defines meta information for a camera. It should be in a\n\ 00127 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00128 # image topics named:\n\ 00129 #\n\ 00130 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00131 # image - monochrome, distorted\n\ 00132 # image_color - color, distorted\n\ 00133 # image_rect - monochrome, rectified\n\ 00134 # image_rect_color - color, rectified\n\ 00135 #\n\ 00136 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00137 # for producing the four processed image topics from image_raw and\n\ 00138 # camera_info. The meaning of the camera parameters are described in\n\ 00139 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00140 #\n\ 00141 # The image_geometry package provides a user-friendly interface to\n\ 00142 # common operations using this meta information. If you want to, e.g.,\n\ 00143 # project a 3d point into image coordinates, we strongly recommend\n\ 00144 # using image_geometry.\n\ 00145 #\n\ 00146 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00147 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00148 # indicates an uncalibrated camera.\n\ 00149 \n\ 00150 #######################################################################\n\ 00151 # Image acquisition info #\n\ 00152 #######################################################################\n\ 00153 \n\ 00154 # Time of image acquisition, camera coordinate frame ID\n\ 00155 Header header # Header timestamp should be acquisition time of image\n\ 00156 # Header frame_id should be optical frame of camera\n\ 00157 # origin of frame should be optical center of camera\n\ 00158 # +x should point to the right in the image\n\ 00159 # +y should point down in the image\n\ 00160 # +z should point into the plane of the image\n\ 00161 \n\ 00162 \n\ 00163 #######################################################################\n\ 00164 # Calibration Parameters #\n\ 00165 #######################################################################\n\ 00166 # These are fixed during camera calibration. Their values will be the #\n\ 00167 # same in all messages until the camera is recalibrated. Note that #\n\ 00168 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00169 # #\n\ 00170 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00171 # to: #\n\ 00172 # 1. An undistorted image (requires D and K) #\n\ 00173 # 2. A rectified image (requires D, K, R) #\n\ 00174 # The projection matrix P projects 3D points into the rectified image.#\n\ 00175 #######################################################################\n\ 00176 \n\ 00177 # The image dimensions with which the camera was calibrated. Normally\n\ 00178 # this will be the full camera resolution in pixels.\n\ 00179 uint32 height\n\ 00180 uint32 width\n\ 00181 \n\ 00182 # The distortion model used. Supported models are listed in\n\ 00183 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00184 # simple model of radial and tangential distortion - is sufficent.\n\ 00185 string distortion_model\n\ 00186 \n\ 00187 # The distortion parameters, size depending on the distortion model.\n\ 00188 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00189 float64[] D\n\ 00190 \n\ 00191 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00192 # [fx 0 cx]\n\ 00193 # K = [ 0 fy cy]\n\ 00194 # [ 0 0 1]\n\ 00195 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00196 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00197 # (cx, cy).\n\ 00198 float64[9] K # 3x3 row-major matrix\n\ 00199 \n\ 00200 # Rectification matrix (stereo cameras only)\n\ 00201 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00202 # stereo image plane so that epipolar lines in both stereo images are\n\ 00203 # parallel.\n\ 00204 float64[9] R # 3x3 row-major matrix\n\ 00205 \n\ 00206 # Projection/camera matrix\n\ 00207 # [fx' 0 cx' Tx]\n\ 00208 # P = [ 0 fy' cy' Ty]\n\ 00209 # [ 0 0 1 0]\n\ 00210 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00211 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00212 # is the normal camera intrinsic matrix for the rectified image.\n\ 00213 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00214 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00215 # (cx', cy') - these may differ from the values in K.\n\ 00216 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00217 # also have R = the identity and P[1:3,1:3] = K.\n\ 00218 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00219 # position of the optical center of the second camera in the first\n\ 00220 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00221 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00222 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00223 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00224 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00225 # the rectified image is given by:\n\ 00226 # [u v w]' = P * [X Y Z 1]'\n\ 00227 # x = u / w\n\ 00228 # y = v / w\n\ 00229 # This holds for both images of a stereo pair.\n\ 00230 float64[12] P # 3x4 row-major matrix\n\ 00231 \n\ 00232 \n\ 00233 #######################################################################\n\ 00234 # Operational Parameters #\n\ 00235 #######################################################################\n\ 00236 # These define the image region actually captured by the camera #\n\ 00237 # driver. Although they affect the geometry of the output image, they #\n\ 00238 # may be changed freely without recalibrating the camera. #\n\ 00239 #######################################################################\n\ 00240 \n\ 00241 # Binning refers here to any camera setting which combines rectangular\n\ 00242 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00243 # resolution of the output image to\n\ 00244 # (width / binning_x) x (height / binning_y).\n\ 00245 # The default values binning_x = binning_y = 0 is considered the same\n\ 00246 # as binning_x = binning_y = 1 (no subsampling).\n\ 00247 uint32 binning_x\n\ 00248 uint32 binning_y\n\ 00249 \n\ 00250 # Region of interest (subwindow of full camera resolution), given in\n\ 00251 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00252 # always denotes the same window of pixels on the camera sensor,\n\ 00253 # regardless of binning settings.\n\ 00254 # The default setting of roi (all values 0) is considered the same as\n\ 00255 # full resolution (roi.width = width, roi.height = height).\n\ 00256 RegionOfInterest roi\n\ 00257 \n\ 00258 ================================================================================\n\ 00259 MSG: sensor_msgs/RegionOfInterest\n\ 00260 # This message is used to specify a region of interest within an image.\n\ 00261 #\n\ 00262 # When used to specify the ROI setting of the camera when the image was\n\ 00263 # taken, the height and width fields should either match the height and\n\ 00264 # width fields for the associated image; or height = width = 0\n\ 00265 # indicates that the full resolution image was captured.\n\ 00266 \n\ 00267 uint32 x_offset # Leftmost pixel of the ROI\n\ 00268 # (0 if the ROI includes the left edge of the image)\n\ 00269 uint32 y_offset # Topmost pixel of the ROI\n\ 00270 # (0 if the ROI includes the top edge of the image)\n\ 00271 uint32 height # Height of ROI\n\ 00272 uint32 width # Width of ROI\n\ 00273 \n\ 00274 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00275 # ROI in this message. Typically this should be False if the full image\n\ 00276 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00277 # used).\n\ 00278 bool do_rectify\n\ 00279 \n\ 00280 "; } 00281 public: 00282 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00283 00284 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00285 00286 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00287 { 00288 ros::serialization::OStream stream(write_ptr, 1000000000); 00289 ros::serialization::serialize(stream, image); 00290 ros::serialization::serialize(stream, camera_info); 00291 return stream.getData(); 00292 } 00293 00294 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00295 { 00296 ros::serialization::IStream stream(read_ptr, 1000000000); 00297 ros::serialization::deserialize(stream, image); 00298 ros::serialization::deserialize(stream, camera_info); 00299 return stream.getData(); 00300 } 00301 00302 ROS_DEPRECATED virtual uint32_t serializationLength() const 00303 { 00304 uint32_t size = 0; 00305 size += ros::serialization::serializationLength(image); 00306 size += ros::serialization::serializationLength(camera_info); 00307 return size; 00308 } 00309 00310 typedef boost::shared_ptr< ::checkerboard_detector2::DetectRequest_<ContainerAllocator> > Ptr; 00311 typedef boost::shared_ptr< ::checkerboard_detector2::DetectRequest_<ContainerAllocator> const> ConstPtr; 00312 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00313 }; // struct DetectRequest 00314 typedef ::checkerboard_detector2::DetectRequest_<std::allocator<void> > DetectRequest; 00315 00316 typedef boost::shared_ptr< ::checkerboard_detector2::DetectRequest> DetectRequestPtr; 00317 typedef boost::shared_ptr< ::checkerboard_detector2::DetectRequest const> DetectRequestConstPtr; 00318 00319 00320 template <class ContainerAllocator> 00321 struct DetectResponse_ { 00322 typedef DetectResponse_<ContainerAllocator> Type; 00323 00324 DetectResponse_() 00325 : object_detection() 00326 { 00327 } 00328 00329 DetectResponse_(const ContainerAllocator& _alloc) 00330 : object_detection(_alloc) 00331 { 00332 } 00333 00334 typedef ::checkerboard_detector2::ObjectDetection_<ContainerAllocator> _object_detection_type; 00335 ::checkerboard_detector2::ObjectDetection_<ContainerAllocator> object_detection; 00336 00337 00338 private: 00339 static const char* __s_getDataType_() { return "checkerboard_detector2/DetectResponse"; } 00340 public: 00341 ROS_DEPRECATED static const std::string __s_getDataType() { return __s_getDataType_(); } 00342 00343 ROS_DEPRECATED const std::string __getDataType() const { return __s_getDataType_(); } 00344 00345 private: 00346 static const char* __s_getMD5Sum_() { return "fa5565282e26025bb768b1b949144e94"; } 00347 public: 00348 ROS_DEPRECATED static const std::string __s_getMD5Sum() { return __s_getMD5Sum_(); } 00349 00350 ROS_DEPRECATED const std::string __getMD5Sum() const { return __s_getMD5Sum_(); } 00351 00352 private: 00353 static const char* __s_getServerMD5Sum_() { return "7d2841c5eef2578fbb718be68316c081"; } 00354 public: 00355 ROS_DEPRECATED static const std::string __s_getServerMD5Sum() { return __s_getServerMD5Sum_(); } 00356 00357 ROS_DEPRECATED const std::string __getServerMD5Sum() const { return __s_getServerMD5Sum_(); } 00358 00359 private: 00360 static const char* __s_getMessageDefinition_() { return "ObjectDetection object_detection\n\ 00361 \n\ 00362 \n\ 00363 ================================================================================\n\ 00364 MSG: checkerboard_detector2/ObjectDetection\n\ 00365 Header header\n\ 00366 Object6DPose[] objects\n\ 00367 # unique image id these objects were taken from\n\ 00368 \n\ 00369 ================================================================================\n\ 00370 MSG: std_msgs/Header\n\ 00371 # Standard metadata for higher-level stamped data types.\n\ 00372 # This is generally used to communicate timestamped data \n\ 00373 # in a particular coordinate frame.\n\ 00374 # \n\ 00375 # sequence ID: consecutively increasing ID \n\ 00376 uint32 seq\n\ 00377 #Two-integer timestamp that is expressed as:\n\ 00378 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00379 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00380 # time-handling sugar is provided by the client library\n\ 00381 time stamp\n\ 00382 #Frame this data is associated with\n\ 00383 # 0: no frame\n\ 00384 # 1: global frame\n\ 00385 string frame_id\n\ 00386 \n\ 00387 ================================================================================\n\ 00388 MSG: checkerboard_detector2/Object6DPose\n\ 00389 # 6D pose of object\n\ 00390 geometry_msgs/Pose pose\n\ 00391 \n\ 00392 # type of object, usually contains the filename of the object that allows the receiving side to visualize it\n\ 00393 # can also be used as a unique type id\n\ 00394 string type \n\ 00395 uint32 id\n\ 00396 ================================================================================\n\ 00397 MSG: geometry_msgs/Pose\n\ 00398 # A representation of pose in free space, composed of postion and orientation. \n\ 00399 Point position\n\ 00400 Quaternion orientation\n\ 00401 \n\ 00402 ================================================================================\n\ 00403 MSG: geometry_msgs/Point\n\ 00404 # This contains the position of a point in free space\n\ 00405 float64 x\n\ 00406 float64 y\n\ 00407 float64 z\n\ 00408 \n\ 00409 ================================================================================\n\ 00410 MSG: geometry_msgs/Quaternion\n\ 00411 # This represents an orientation in free space in quaternion form.\n\ 00412 \n\ 00413 float64 x\n\ 00414 float64 y\n\ 00415 float64 z\n\ 00416 float64 w\n\ 00417 \n\ 00418 "; } 00419 public: 00420 ROS_DEPRECATED static const std::string __s_getMessageDefinition() { return __s_getMessageDefinition_(); } 00421 00422 ROS_DEPRECATED const std::string __getMessageDefinition() const { return __s_getMessageDefinition_(); } 00423 00424 ROS_DEPRECATED virtual uint8_t *serialize(uint8_t *write_ptr, uint32_t seq) const 00425 { 00426 ros::serialization::OStream stream(write_ptr, 1000000000); 00427 ros::serialization::serialize(stream, object_detection); 00428 return stream.getData(); 00429 } 00430 00431 ROS_DEPRECATED virtual uint8_t *deserialize(uint8_t *read_ptr) 00432 { 00433 ros::serialization::IStream stream(read_ptr, 1000000000); 00434 ros::serialization::deserialize(stream, object_detection); 00435 return stream.getData(); 00436 } 00437 00438 ROS_DEPRECATED virtual uint32_t serializationLength() const 00439 { 00440 uint32_t size = 0; 00441 size += ros::serialization::serializationLength(object_detection); 00442 return size; 00443 } 00444 00445 typedef boost::shared_ptr< ::checkerboard_detector2::DetectResponse_<ContainerAllocator> > Ptr; 00446 typedef boost::shared_ptr< ::checkerboard_detector2::DetectResponse_<ContainerAllocator> const> ConstPtr; 00447 boost::shared_ptr<std::map<std::string, std::string> > __connection_header; 00448 }; // struct DetectResponse 00449 typedef ::checkerboard_detector2::DetectResponse_<std::allocator<void> > DetectResponse; 00450 00451 typedef boost::shared_ptr< ::checkerboard_detector2::DetectResponse> DetectResponsePtr; 00452 typedef boost::shared_ptr< ::checkerboard_detector2::DetectResponse const> DetectResponseConstPtr; 00453 00454 struct Detect 00455 { 00456 00457 typedef DetectRequest Request; 00458 typedef DetectResponse Response; 00459 Request request; 00460 Response response; 00461 00462 typedef Request RequestType; 00463 typedef Response ResponseType; 00464 }; // struct Detect 00465 } // namespace checkerboard_detector2 00466 00467 namespace ros 00468 { 00469 namespace message_traits 00470 { 00471 template<class ContainerAllocator> struct IsMessage< ::checkerboard_detector2::DetectRequest_<ContainerAllocator> > : public TrueType {}; 00472 template<class ContainerAllocator> struct IsMessage< ::checkerboard_detector2::DetectRequest_<ContainerAllocator> const> : public TrueType {}; 00473 template<class ContainerAllocator> 00474 struct MD5Sum< ::checkerboard_detector2::DetectRequest_<ContainerAllocator> > { 00475 static const char* value() 00476 { 00477 return "bfee1901edaf2aa4d9f0844a03ff634f"; 00478 } 00479 00480 static const char* value(const ::checkerboard_detector2::DetectRequest_<ContainerAllocator> &) { return value(); } 00481 static const uint64_t static_value1 = 0xbfee1901edaf2aa4ULL; 00482 static const uint64_t static_value2 = 0xd9f0844a03ff634fULL; 00483 }; 00484 00485 template<class ContainerAllocator> 00486 struct DataType< ::checkerboard_detector2::DetectRequest_<ContainerAllocator> > { 00487 static const char* value() 00488 { 00489 return "checkerboard_detector2/DetectRequest"; 00490 } 00491 00492 static const char* value(const ::checkerboard_detector2::DetectRequest_<ContainerAllocator> &) { return value(); } 00493 }; 00494 00495 template<class ContainerAllocator> 00496 struct Definition< ::checkerboard_detector2::DetectRequest_<ContainerAllocator> > { 00497 static const char* value() 00498 { 00499 return "\n\ 00500 sensor_msgs/Image image\n\ 00501 sensor_msgs/CameraInfo camera_info\n\ 00502 \n\ 00503 ================================================================================\n\ 00504 MSG: sensor_msgs/Image\n\ 00505 # This message contains an uncompressed image\n\ 00506 # (0, 0) is at top-left corner of image\n\ 00507 #\n\ 00508 \n\ 00509 Header header # Header timestamp should be acquisition time of image\n\ 00510 # Header frame_id should be optical frame of camera\n\ 00511 # origin of frame should be optical center of cameara\n\ 00512 # +x should point to the right in the image\n\ 00513 # +y should point down in the image\n\ 00514 # +z should point into to plane of the image\n\ 00515 # If the frame_id here and the frame_id of the CameraInfo\n\ 00516 # message associated with the image conflict\n\ 00517 # the behavior is undefined\n\ 00518 \n\ 00519 uint32 height # image height, that is, number of rows\n\ 00520 uint32 width # image width, that is, number of columns\n\ 00521 \n\ 00522 # The legal values for encoding are in file src/image_encodings.cpp\n\ 00523 # If you want to standardize a new string format, join\n\ 00524 # ros-users@lists.sourceforge.net and send an email proposing a new encoding.\n\ 00525 \n\ 00526 string encoding # Encoding of pixels -- channel meaning, ordering, size\n\ 00527 # taken from the list of strings in src/image_encodings.cpp\n\ 00528 \n\ 00529 uint8 is_bigendian # is this data bigendian?\n\ 00530 uint32 step # Full row length in bytes\n\ 00531 uint8[] data # actual matrix data, size is (step * rows)\n\ 00532 \n\ 00533 ================================================================================\n\ 00534 MSG: std_msgs/Header\n\ 00535 # Standard metadata for higher-level stamped data types.\n\ 00536 # This is generally used to communicate timestamped data \n\ 00537 # in a particular coordinate frame.\n\ 00538 # \n\ 00539 # sequence ID: consecutively increasing ID \n\ 00540 uint32 seq\n\ 00541 #Two-integer timestamp that is expressed as:\n\ 00542 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00543 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00544 # time-handling sugar is provided by the client library\n\ 00545 time stamp\n\ 00546 #Frame this data is associated with\n\ 00547 # 0: no frame\n\ 00548 # 1: global frame\n\ 00549 string frame_id\n\ 00550 \n\ 00551 ================================================================================\n\ 00552 MSG: sensor_msgs/CameraInfo\n\ 00553 # This message defines meta information for a camera. It should be in a\n\ 00554 # camera namespace on topic \"camera_info\" and accompanied by up to five\n\ 00555 # image topics named:\n\ 00556 #\n\ 00557 # image_raw - raw data from the camera driver, possibly Bayer encoded\n\ 00558 # image - monochrome, distorted\n\ 00559 # image_color - color, distorted\n\ 00560 # image_rect - monochrome, rectified\n\ 00561 # image_rect_color - color, rectified\n\ 00562 #\n\ 00563 # The image_pipeline contains packages (image_proc, stereo_image_proc)\n\ 00564 # for producing the four processed image topics from image_raw and\n\ 00565 # camera_info. The meaning of the camera parameters are described in\n\ 00566 # detail at http://www.ros.org/wiki/image_pipeline/CameraInfo.\n\ 00567 #\n\ 00568 # The image_geometry package provides a user-friendly interface to\n\ 00569 # common operations using this meta information. If you want to, e.g.,\n\ 00570 # project a 3d point into image coordinates, we strongly recommend\n\ 00571 # using image_geometry.\n\ 00572 #\n\ 00573 # If the camera is uncalibrated, the matrices D, K, R, P should be left\n\ 00574 # zeroed out. In particular, clients may assume that K[0] == 0.0\n\ 00575 # indicates an uncalibrated camera.\n\ 00576 \n\ 00577 #######################################################################\n\ 00578 # Image acquisition info #\n\ 00579 #######################################################################\n\ 00580 \n\ 00581 # Time of image acquisition, camera coordinate frame ID\n\ 00582 Header header # Header timestamp should be acquisition time of image\n\ 00583 # Header frame_id should be optical frame of camera\n\ 00584 # origin of frame should be optical center of camera\n\ 00585 # +x should point to the right in the image\n\ 00586 # +y should point down in the image\n\ 00587 # +z should point into the plane of the image\n\ 00588 \n\ 00589 \n\ 00590 #######################################################################\n\ 00591 # Calibration Parameters #\n\ 00592 #######################################################################\n\ 00593 # These are fixed during camera calibration. Their values will be the #\n\ 00594 # same in all messages until the camera is recalibrated. Note that #\n\ 00595 # self-calibrating systems may \"recalibrate\" frequently. #\n\ 00596 # #\n\ 00597 # The internal parameters can be used to warp a raw (distorted) image #\n\ 00598 # to: #\n\ 00599 # 1. An undistorted image (requires D and K) #\n\ 00600 # 2. A rectified image (requires D, K, R) #\n\ 00601 # The projection matrix P projects 3D points into the rectified image.#\n\ 00602 #######################################################################\n\ 00603 \n\ 00604 # The image dimensions with which the camera was calibrated. Normally\n\ 00605 # this will be the full camera resolution in pixels.\n\ 00606 uint32 height\n\ 00607 uint32 width\n\ 00608 \n\ 00609 # The distortion model used. Supported models are listed in\n\ 00610 # sensor_msgs/distortion_models.h. For most cameras, \"plumb_bob\" - a\n\ 00611 # simple model of radial and tangential distortion - is sufficent.\n\ 00612 string distortion_model\n\ 00613 \n\ 00614 # The distortion parameters, size depending on the distortion model.\n\ 00615 # For \"plumb_bob\", the 5 parameters are: (k1, k2, t1, t2, k3).\n\ 00616 float64[] D\n\ 00617 \n\ 00618 # Intrinsic camera matrix for the raw (distorted) images.\n\ 00619 # [fx 0 cx]\n\ 00620 # K = [ 0 fy cy]\n\ 00621 # [ 0 0 1]\n\ 00622 # Projects 3D points in the camera coordinate frame to 2D pixel\n\ 00623 # coordinates using the focal lengths (fx, fy) and principal point\n\ 00624 # (cx, cy).\n\ 00625 float64[9] K # 3x3 row-major matrix\n\ 00626 \n\ 00627 # Rectification matrix (stereo cameras only)\n\ 00628 # A rotation matrix aligning the camera coordinate system to the ideal\n\ 00629 # stereo image plane so that epipolar lines in both stereo images are\n\ 00630 # parallel.\n\ 00631 float64[9] R # 3x3 row-major matrix\n\ 00632 \n\ 00633 # Projection/camera matrix\n\ 00634 # [fx' 0 cx' Tx]\n\ 00635 # P = [ 0 fy' cy' Ty]\n\ 00636 # [ 0 0 1 0]\n\ 00637 # By convention, this matrix specifies the intrinsic (camera) matrix\n\ 00638 # of the processed (rectified) image. That is, the left 3x3 portion\n\ 00639 # is the normal camera intrinsic matrix for the rectified image.\n\ 00640 # It projects 3D points in the camera coordinate frame to 2D pixel\n\ 00641 # coordinates using the focal lengths (fx', fy') and principal point\n\ 00642 # (cx', cy') - these may differ from the values in K.\n\ 00643 # For monocular cameras, Tx = Ty = 0. Normally, monocular cameras will\n\ 00644 # also have R = the identity and P[1:3,1:3] = K.\n\ 00645 # For a stereo pair, the fourth column [Tx Ty 0]' is related to the\n\ 00646 # position of the optical center of the second camera in the first\n\ 00647 # camera's frame. We assume Tz = 0 so both cameras are in the same\n\ 00648 # stereo image plane. The first camera always has Tx = Ty = 0. For\n\ 00649 # the right (second) camera of a horizontal stereo pair, Ty = 0 and\n\ 00650 # Tx = -fx' * B, where B is the baseline between the cameras.\n\ 00651 # Given a 3D point [X Y Z]', the projection (x, y) of the point onto\n\ 00652 # the rectified image is given by:\n\ 00653 # [u v w]' = P * [X Y Z 1]'\n\ 00654 # x = u / w\n\ 00655 # y = v / w\n\ 00656 # This holds for both images of a stereo pair.\n\ 00657 float64[12] P # 3x4 row-major matrix\n\ 00658 \n\ 00659 \n\ 00660 #######################################################################\n\ 00661 # Operational Parameters #\n\ 00662 #######################################################################\n\ 00663 # These define the image region actually captured by the camera #\n\ 00664 # driver. Although they affect the geometry of the output image, they #\n\ 00665 # may be changed freely without recalibrating the camera. #\n\ 00666 #######################################################################\n\ 00667 \n\ 00668 # Binning refers here to any camera setting which combines rectangular\n\ 00669 # neighborhoods of pixels into larger \"super-pixels.\" It reduces the\n\ 00670 # resolution of the output image to\n\ 00671 # (width / binning_x) x (height / binning_y).\n\ 00672 # The default values binning_x = binning_y = 0 is considered the same\n\ 00673 # as binning_x = binning_y = 1 (no subsampling).\n\ 00674 uint32 binning_x\n\ 00675 uint32 binning_y\n\ 00676 \n\ 00677 # Region of interest (subwindow of full camera resolution), given in\n\ 00678 # full resolution (unbinned) image coordinates. A particular ROI\n\ 00679 # always denotes the same window of pixels on the camera sensor,\n\ 00680 # regardless of binning settings.\n\ 00681 # The default setting of roi (all values 0) is considered the same as\n\ 00682 # full resolution (roi.width = width, roi.height = height).\n\ 00683 RegionOfInterest roi\n\ 00684 \n\ 00685 ================================================================================\n\ 00686 MSG: sensor_msgs/RegionOfInterest\n\ 00687 # This message is used to specify a region of interest within an image.\n\ 00688 #\n\ 00689 # When used to specify the ROI setting of the camera when the image was\n\ 00690 # taken, the height and width fields should either match the height and\n\ 00691 # width fields for the associated image; or height = width = 0\n\ 00692 # indicates that the full resolution image was captured.\n\ 00693 \n\ 00694 uint32 x_offset # Leftmost pixel of the ROI\n\ 00695 # (0 if the ROI includes the left edge of the image)\n\ 00696 uint32 y_offset # Topmost pixel of the ROI\n\ 00697 # (0 if the ROI includes the top edge of the image)\n\ 00698 uint32 height # Height of ROI\n\ 00699 uint32 width # Width of ROI\n\ 00700 \n\ 00701 # True if a distinct rectified ROI should be calculated from the \"raw\"\n\ 00702 # ROI in this message. Typically this should be False if the full image\n\ 00703 # is captured (ROI not used), and True if a subwindow is captured (ROI\n\ 00704 # used).\n\ 00705 bool do_rectify\n\ 00706 \n\ 00707 "; 00708 } 00709 00710 static const char* value(const ::checkerboard_detector2::DetectRequest_<ContainerAllocator> &) { return value(); } 00711 }; 00712 00713 } // namespace message_traits 00714 } // namespace ros 00715 00716 00717 namespace ros 00718 { 00719 namespace message_traits 00720 { 00721 template<class ContainerAllocator> struct IsMessage< ::checkerboard_detector2::DetectResponse_<ContainerAllocator> > : public TrueType {}; 00722 template<class ContainerAllocator> struct IsMessage< ::checkerboard_detector2::DetectResponse_<ContainerAllocator> const> : public TrueType {}; 00723 template<class ContainerAllocator> 00724 struct MD5Sum< ::checkerboard_detector2::DetectResponse_<ContainerAllocator> > { 00725 static const char* value() 00726 { 00727 return "fa5565282e26025bb768b1b949144e94"; 00728 } 00729 00730 static const char* value(const ::checkerboard_detector2::DetectResponse_<ContainerAllocator> &) { return value(); } 00731 static const uint64_t static_value1 = 0xfa5565282e26025bULL; 00732 static const uint64_t static_value2 = 0xb768b1b949144e94ULL; 00733 }; 00734 00735 template<class ContainerAllocator> 00736 struct DataType< ::checkerboard_detector2::DetectResponse_<ContainerAllocator> > { 00737 static const char* value() 00738 { 00739 return "checkerboard_detector2/DetectResponse"; 00740 } 00741 00742 static const char* value(const ::checkerboard_detector2::DetectResponse_<ContainerAllocator> &) { return value(); } 00743 }; 00744 00745 template<class ContainerAllocator> 00746 struct Definition< ::checkerboard_detector2::DetectResponse_<ContainerAllocator> > { 00747 static const char* value() 00748 { 00749 return "ObjectDetection object_detection\n\ 00750 \n\ 00751 \n\ 00752 ================================================================================\n\ 00753 MSG: checkerboard_detector2/ObjectDetection\n\ 00754 Header header\n\ 00755 Object6DPose[] objects\n\ 00756 # unique image id these objects were taken from\n\ 00757 \n\ 00758 ================================================================================\n\ 00759 MSG: std_msgs/Header\n\ 00760 # Standard metadata for higher-level stamped data types.\n\ 00761 # This is generally used to communicate timestamped data \n\ 00762 # in a particular coordinate frame.\n\ 00763 # \n\ 00764 # sequence ID: consecutively increasing ID \n\ 00765 uint32 seq\n\ 00766 #Two-integer timestamp that is expressed as:\n\ 00767 # * stamp.secs: seconds (stamp_secs) since epoch\n\ 00768 # * stamp.nsecs: nanoseconds since stamp_secs\n\ 00769 # time-handling sugar is provided by the client library\n\ 00770 time stamp\n\ 00771 #Frame this data is associated with\n\ 00772 # 0: no frame\n\ 00773 # 1: global frame\n\ 00774 string frame_id\n\ 00775 \n\ 00776 ================================================================================\n\ 00777 MSG: checkerboard_detector2/Object6DPose\n\ 00778 # 6D pose of object\n\ 00779 geometry_msgs/Pose pose\n\ 00780 \n\ 00781 # type of object, usually contains the filename of the object that allows the receiving side to visualize it\n\ 00782 # can also be used as a unique type id\n\ 00783 string type \n\ 00784 uint32 id\n\ 00785 ================================================================================\n\ 00786 MSG: geometry_msgs/Pose\n\ 00787 # A representation of pose in free space, composed of postion and orientation. \n\ 00788 Point position\n\ 00789 Quaternion orientation\n\ 00790 \n\ 00791 ================================================================================\n\ 00792 MSG: geometry_msgs/Point\n\ 00793 # This contains the position of a point in free space\n\ 00794 float64 x\n\ 00795 float64 y\n\ 00796 float64 z\n\ 00797 \n\ 00798 ================================================================================\n\ 00799 MSG: geometry_msgs/Quaternion\n\ 00800 # This represents an orientation in free space in quaternion form.\n\ 00801 \n\ 00802 float64 x\n\ 00803 float64 y\n\ 00804 float64 z\n\ 00805 float64 w\n\ 00806 \n\ 00807 "; 00808 } 00809 00810 static const char* value(const ::checkerboard_detector2::DetectResponse_<ContainerAllocator> &) { return value(); } 00811 }; 00812 00813 } // namespace message_traits 00814 } // namespace ros 00815 00816 namespace ros 00817 { 00818 namespace serialization 00819 { 00820 00821 template<class ContainerAllocator> struct Serializer< ::checkerboard_detector2::DetectRequest_<ContainerAllocator> > 00822 { 00823 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00824 { 00825 stream.next(m.image); 00826 stream.next(m.camera_info); 00827 } 00828 00829 ROS_DECLARE_ALLINONE_SERIALIZER; 00830 }; // struct DetectRequest_ 00831 } // namespace serialization 00832 } // namespace ros 00833 00834 00835 namespace ros 00836 { 00837 namespace serialization 00838 { 00839 00840 template<class ContainerAllocator> struct Serializer< ::checkerboard_detector2::DetectResponse_<ContainerAllocator> > 00841 { 00842 template<typename Stream, typename T> inline static void allInOne(Stream& stream, T m) 00843 { 00844 stream.next(m.object_detection); 00845 } 00846 00847 ROS_DECLARE_ALLINONE_SERIALIZER; 00848 }; // struct DetectResponse_ 00849 } // namespace serialization 00850 } // namespace ros 00851 00852 namespace ros 00853 { 00854 namespace service_traits 00855 { 00856 template<> 00857 struct MD5Sum<checkerboard_detector2::Detect> { 00858 static const char* value() 00859 { 00860 return "7d2841c5eef2578fbb718be68316c081"; 00861 } 00862 00863 static const char* value(const checkerboard_detector2::Detect&) { return value(); } 00864 }; 00865 00866 template<> 00867 struct DataType<checkerboard_detector2::Detect> { 00868 static const char* value() 00869 { 00870 return "checkerboard_detector2/Detect"; 00871 } 00872 00873 static const char* value(const checkerboard_detector2::Detect&) { return value(); } 00874 }; 00875 00876 template<class ContainerAllocator> 00877 struct MD5Sum<checkerboard_detector2::DetectRequest_<ContainerAllocator> > { 00878 static const char* value() 00879 { 00880 return "7d2841c5eef2578fbb718be68316c081"; 00881 } 00882 00883 static const char* value(const checkerboard_detector2::DetectRequest_<ContainerAllocator> &) { return value(); } 00884 }; 00885 00886 template<class ContainerAllocator> 00887 struct DataType<checkerboard_detector2::DetectRequest_<ContainerAllocator> > { 00888 static const char* value() 00889 { 00890 return "checkerboard_detector2/Detect"; 00891 } 00892 00893 static const char* value(const checkerboard_detector2::DetectRequest_<ContainerAllocator> &) { return value(); } 00894 }; 00895 00896 template<class ContainerAllocator> 00897 struct MD5Sum<checkerboard_detector2::DetectResponse_<ContainerAllocator> > { 00898 static const char* value() 00899 { 00900 return "7d2841c5eef2578fbb718be68316c081"; 00901 } 00902 00903 static const char* value(const checkerboard_detector2::DetectResponse_<ContainerAllocator> &) { return value(); } 00904 }; 00905 00906 template<class ContainerAllocator> 00907 struct DataType<checkerboard_detector2::DetectResponse_<ContainerAllocator> > { 00908 static const char* value() 00909 { 00910 return "checkerboard_detector2/Detect"; 00911 } 00912 00913 static const char* value(const checkerboard_detector2::DetectResponse_<ContainerAllocator> &) { return value(); } 00914 }; 00915 00916 } // namespace service_traits 00917 } // namespace ros 00918 00919 #endif // CHECKERBOARD_DETECTOR2_SERVICE_DETECT_H 00920