00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031 #ifndef _OPENCV_SIMPLEX_DOWNHILL_H_
00032 #define _OPENCV_SIMPLEX_DOWNHILL_H_
00033
00034 namespace cvflann
00035 {
00036
00040 template <typename T>
00041 void addValue(int pos, float val, float* vals, T* point, T* points, int n)
00042 {
00043 vals[pos] = val;
00044 for (int i=0;i<n;++i) {
00045 points[pos*n+i] = point[i];
00046 }
00047
00048
00049 int j=pos;
00050 while (j>0 && vals[j]<vals[j-1]) {
00051 swap(vals[j],vals[j-1]);
00052 for (int i=0;i<n;++i) {
00053 swap(points[j*n+i],points[(j-1)*n+i]);
00054 }
00055 --j;
00056 }
00057 }
00058
00059
00068 template <typename T, typename F>
00069 float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
00070 {
00071 const int MAX_ITERATIONS = 10;
00072
00073 assert(n>0);
00074
00075 T* p_o = new T[n];
00076 T* p_r = new T[n];
00077 T* p_e = new T[n];
00078
00079 int alpha = 1;
00080
00081 int iterations = 0;
00082
00083 bool ownVals = false;
00084 if (vals == NULL) {
00085 ownVals = true;
00086 vals = new float[n+1];
00087 for (int i=0;i<n+1;++i) {
00088 float val = func(points+i*n);
00089 addValue(i, val, vals, points+i*n, points, n);
00090 }
00091 }
00092 int nn = n*n;
00093
00094 while (true) {
00095
00096 if (iterations++ > MAX_ITERATIONS) break;
00097
00098
00099 for (int j=0;j<n;++j) {
00100 p_o[j] = 0;
00101 for (int i=0;i<n;++i) {
00102 p_o[i] += points[j*n+i];
00103 }
00104 }
00105 for (int i=0;i<n;++i) {
00106 p_o[i] /= n;
00107 }
00108
00109 bool converged = true;
00110 for (int i=0;i<n;++i) {
00111 if (p_o[i] != points[nn+i]) {
00112 converged = false;
00113 }
00114 }
00115 if (converged) break;
00116
00117
00118 for (int i=0;i<n;++i) {
00119 p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
00120 }
00121 float val_r = func(p_r);
00122
00123 if (val_r>=vals[0] && val_r<vals[n]) {
00124
00125
00126 logger().info("Choosing reflection\n");
00127 addValue(n, val_r,vals, p_r, points, n);
00128 continue;
00129 }
00130
00131 if (val_r<vals[0]) {
00132
00133
00134
00135 for (int i=0;i<n;++i) {
00136 p_e[i] = 2*p_r[i]-p_o[i];
00137 }
00138 float val_e = func(p_e);
00139
00140 if (val_e<val_r) {
00141 logger().info("Choosing reflection and expansion\n");
00142 addValue(n, val_e,vals,p_e,points,n);
00143 }
00144 else {
00145 logger().info("Choosing reflection\n");
00146 addValue(n, val_r,vals,p_r,points,n);
00147 }
00148 continue;
00149 }
00150 if (val_r>=vals[n]) {
00151 for (int i=0;i<n;++i) {
00152 p_e[i] = (p_o[i]+points[nn+i])/2;
00153 }
00154 float val_e = func(p_e);
00155
00156 if (val_e<vals[n]) {
00157 logger().info("Choosing contraction\n");
00158 addValue(n,val_e,vals,p_e,points,n);
00159 continue;
00160 }
00161 }
00162 {
00163 logger().info("Full contraction\n");
00164 for (int j=1;j<=n;++j) {
00165 for (int i=0;i<n;++i) {
00166 points[j*n+i] = (points[j*n+i]+points[i])/2;
00167 }
00168 float val = func(points+j*n);
00169 addValue(j,val,vals,points+j*n,points,n);
00170 }
00171 }
00172 }
00173
00174 float bestVal = vals[0];
00175
00176 delete[] p_r;
00177 delete[] p_o;
00178 delete[] p_e;
00179 if (ownVals) delete[] vals;
00180
00181 return bestVal;
00182 }
00183
00184 }
00185
00186 #endif //_OPENCV_SIMPLEX_DOWNHILL_H_