00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017 #ifndef AABB_UTIL2
00018 #define AABB_UTIL2
00019
00020 #include "btTransform.h"
00021 #include "btVector3.h"
00022 #include "btMinMax.h"
00023
00024
00025
00026 SIMD_FORCE_INLINE void AabbExpand (btVector3& aabbMin,
00027 btVector3& aabbMax,
00028 const btVector3& expansionMin,
00029 const btVector3& expansionMax)
00030 {
00031 aabbMin = aabbMin + expansionMin;
00032 aabbMax = aabbMax + expansionMax;
00033 }
00034
00036 SIMD_FORCE_INLINE bool TestPointAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1,
00037 const btVector3 &point)
00038 {
00039 bool overlap = true;
00040 overlap = (aabbMin1.getX() > point.getX() || aabbMax1.getX() < point.getX()) ? false : overlap;
00041 overlap = (aabbMin1.getZ() > point.getZ() || aabbMax1.getZ() < point.getZ()) ? false : overlap;
00042 overlap = (aabbMin1.getY() > point.getY() || aabbMax1.getY() < point.getY()) ? false : overlap;
00043 return overlap;
00044 }
00045
00046
00048 SIMD_FORCE_INLINE bool TestAabbAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1,
00049 const btVector3 &aabbMin2, const btVector3 &aabbMax2)
00050 {
00051 bool overlap = true;
00052 overlap = (aabbMin1.getX() > aabbMax2.getX() || aabbMax1.getX() < aabbMin2.getX()) ? false : overlap;
00053 overlap = (aabbMin1.getZ() > aabbMax2.getZ() || aabbMax1.getZ() < aabbMin2.getZ()) ? false : overlap;
00054 overlap = (aabbMin1.getY() > aabbMax2.getY() || aabbMax1.getY() < aabbMin2.getY()) ? false : overlap;
00055 return overlap;
00056 }
00057
00059 SIMD_FORCE_INLINE bool TestTriangleAgainstAabb2(const btVector3 *vertices,
00060 const btVector3 &aabbMin, const btVector3 &aabbMax)
00061 {
00062 const btVector3 &p1 = vertices[0];
00063 const btVector3 &p2 = vertices[1];
00064 const btVector3 &p3 = vertices[2];
00065
00066 if (btMin(btMin(p1[0], p2[0]), p3[0]) > aabbMax[0]) return false;
00067 if (btMax(btMax(p1[0], p2[0]), p3[0]) < aabbMin[0]) return false;
00068
00069 if (btMin(btMin(p1[2], p2[2]), p3[2]) > aabbMax[2]) return false;
00070 if (btMax(btMax(p1[2], p2[2]), p3[2]) < aabbMin[2]) return false;
00071
00072 if (btMin(btMin(p1[1], p2[1]), p3[1]) > aabbMax[1]) return false;
00073 if (btMax(btMax(p1[1], p2[1]), p3[1]) < aabbMin[1]) return false;
00074 return true;
00075 }
00076
00077
00078 SIMD_FORCE_INLINE int btOutcode(const btVector3& p,const btVector3& halfExtent)
00079 {
00080 return (p.getX() < -halfExtent.getX() ? 0x01 : 0x0) |
00081 (p.getX() > halfExtent.getX() ? 0x08 : 0x0) |
00082 (p.getY() < -halfExtent.getY() ? 0x02 : 0x0) |
00083 (p.getY() > halfExtent.getY() ? 0x10 : 0x0) |
00084 (p.getZ() < -halfExtent.getZ() ? 0x4 : 0x0) |
00085 (p.getZ() > halfExtent.getZ() ? 0x20 : 0x0);
00086 }
00087
00088
00089
00090 SIMD_FORCE_INLINE bool btRayAabb2(const btVector3& rayFrom,
00091 const btVector3& rayInvDirection,
00092 const unsigned int raySign[3],
00093 const btVector3 bounds[2],
00094 btScalar& tmin,
00095 btScalar lambda_min,
00096 btScalar lambda_max)
00097 {
00098 btScalar tmax, tymin, tymax, tzmin, tzmax;
00099 tmin = (bounds[raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX();
00100 tmax = (bounds[1-raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX();
00101 tymin = (bounds[raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY();
00102 tymax = (bounds[1-raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY();
00103
00104 if ( (tmin > tymax) || (tymin > tmax) )
00105 return false;
00106
00107 if (tymin > tmin)
00108 tmin = tymin;
00109
00110 if (tymax < tmax)
00111 tmax = tymax;
00112
00113 tzmin = (bounds[raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ();
00114 tzmax = (bounds[1-raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ();
00115
00116 if ( (tmin > tzmax) || (tzmin > tmax) )
00117 return false;
00118 if (tzmin > tmin)
00119 tmin = tzmin;
00120 if (tzmax < tmax)
00121 tmax = tzmax;
00122 return ( (tmin < lambda_max) && (tmax > lambda_min) );
00123 }
00124
00125 SIMD_FORCE_INLINE bool btRayAabb(const btVector3& rayFrom,
00126 const btVector3& rayTo,
00127 const btVector3& aabbMin,
00128 const btVector3& aabbMax,
00129 btScalar& param, btVector3& normal)
00130 {
00131 btVector3 aabbHalfExtent = (aabbMax-aabbMin)* btScalar(0.5);
00132 btVector3 aabbCenter = (aabbMax+aabbMin)* btScalar(0.5);
00133 btVector3 source = rayFrom - aabbCenter;
00134 btVector3 target = rayTo - aabbCenter;
00135 int sourceOutcode = btOutcode(source,aabbHalfExtent);
00136 int targetOutcode = btOutcode(target,aabbHalfExtent);
00137 if ((sourceOutcode & targetOutcode) == 0x0)
00138 {
00139 btScalar lambda_enter = btScalar(0.0);
00140 btScalar lambda_exit = param;
00141 btVector3 r = target - source;
00142 int i;
00143 btScalar normSign = 1;
00144 btVector3 hitNormal(0,0,0);
00145 int bit=1;
00146
00147 for (int j=0;j<2;j++)
00148 {
00149 for (i = 0; i != 3; ++i)
00150 {
00151 if (sourceOutcode & bit)
00152 {
00153 btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i];
00154 if (lambda_enter <= lambda)
00155 {
00156 lambda_enter = lambda;
00157 hitNormal.setValue(0,0,0);
00158 hitNormal[i] = normSign;
00159 }
00160 }
00161 else if (targetOutcode & bit)
00162 {
00163 btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i];
00164 btSetMin(lambda_exit, lambda);
00165 }
00166 bit<<=1;
00167 }
00168 normSign = btScalar(-1.);
00169 }
00170 if (lambda_enter <= lambda_exit)
00171 {
00172 param = lambda_enter;
00173 normal = hitNormal;
00174 return true;
00175 }
00176 }
00177 return false;
00178 }
00179
00180
00181
00182 SIMD_FORCE_INLINE void btTransformAabb(const btVector3& halfExtents, btScalar margin,const btTransform& t,btVector3& aabbMinOut,btVector3& aabbMaxOut)
00183 {
00184 btVector3 halfExtentsWithMargin = halfExtents+btVector3(margin,margin,margin);
00185 btMatrix3x3 abs_b = t.getBasis().absolute();
00186 btVector3 center = t.getOrigin();
00187 btVector3 extent = btVector3(abs_b[0].dot(halfExtentsWithMargin),
00188 abs_b[1].dot(halfExtentsWithMargin),
00189 abs_b[2].dot(halfExtentsWithMargin));
00190 aabbMinOut = center - extent;
00191 aabbMaxOut = center + extent;
00192 }
00193
00194
00195 SIMD_FORCE_INLINE void btTransformAabb(const btVector3& localAabbMin,const btVector3& localAabbMax, btScalar margin,const btTransform& trans,btVector3& aabbMinOut,btVector3& aabbMaxOut)
00196 {
00197 btAssert(localAabbMin.getX() <= localAabbMax.getX());
00198 btAssert(localAabbMin.getY() <= localAabbMax.getY());
00199 btAssert(localAabbMin.getZ() <= localAabbMax.getZ());
00200 btVector3 localHalfExtents = btScalar(0.5)*(localAabbMax-localAabbMin);
00201 localHalfExtents+=btVector3(margin,margin,margin);
00202
00203 btVector3 localCenter = btScalar(0.5)*(localAabbMax+localAabbMin);
00204 btMatrix3x3 abs_b = trans.getBasis().absolute();
00205 btVector3 center = trans(localCenter);
00206 btVector3 extent = btVector3(abs_b[0].dot(localHalfExtents),
00207 abs_b[1].dot(localHalfExtents),
00208 abs_b[2].dot(localHalfExtents));
00209 aabbMinOut = center-extent;
00210 aabbMaxOut = center+extent;
00211 }
00212
00213 #define USE_BANCHLESS 1
00214 #ifdef USE_BANCHLESS
00215
00216 SIMD_FORCE_INLINE unsigned testQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
00217 {
00218 return static_cast<unsigned int>(btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0])
00219 & (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2])
00220 & (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])),
00221 1, 0));
00222 }
00223 #else
00224 SIMD_FORCE_INLINE bool testQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
00225 {
00226 bool overlap = true;
00227 overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap;
00228 overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap;
00229 overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap;
00230 return overlap;
00231 }
00232 #endif //USE_BANCHLESS
00233
00234 #endif
00235
00236