GaussianBayesNet.cpp
Go to the documentation of this file.
1 /* ----------------------------------------------------------------------------
2 
3  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
4  * Atlanta, Georgia 30332-0415
5  * All Rights Reserved
6  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
7 
8  * See LICENSE for the license information
9 
10  * -------------------------------------------------------------------------- */
11 
18 #include <gtsam/base/timing.h>
22 
23 #include <fstream>
24 #include <iterator>
25 
26 using namespace std;
27 using namespace gtsam;
28 
29 // In Wrappers we have no access to this so have a default ready
30 static std::mt19937_64 kRandomNumberGenerator(42);
31 
32 namespace gtsam {
33 
34  // Instantiate base class
35  template class FactorGraph<GaussianConditional>;
36 
37  /* ************************************************************************* */
38  bool GaussianBayesNet::equals(const This& bn, double tol) const
39  {
40  return Base::equals(bn, tol);
41  }
42 
43  /* ************************************************************************ */
45  VectorValues solution; // no missing variables -> create an empty vector
46  return optimize(solution);
47  }
48 
50  VectorValues solution = given;
51  // (R*x)./sigmas = y by solving x=inv(R)*(y.*sigmas)
52  // solve each node in reverse topological sort order (parents first)
53  for (auto it = std::make_reverse_iterator(end()); it != std::make_reverse_iterator(begin()); ++it) {
54  // i^th part of R*x=y, x=inv(R)*y
55  // (Rii*xi + R_i*x(i+1:))./si = yi =>
56  // xi = inv(Rii)*(yi.*si - R_i*x(i+1:))
57  solution.insert((*it)->solve(solution));
58  }
59  return solution;
60  }
61 
62  /* ************************************************************************ */
63  VectorValues GaussianBayesNet::sample(std::mt19937_64* rng) const {
64  VectorValues result; // no missing variables -> create an empty vector
65  return sample(result, rng);
66  }
67 
68  VectorValues GaussianBayesNet::sample(const VectorValues& given,
69  std::mt19937_64* rng) const {
70  VectorValues result(given);
71  // sample each node in reverse topological sort order (parents first)
72  for (auto it = std::make_reverse_iterator(end()); it != std::make_reverse_iterator(begin()); ++it) {
73  const VectorValues sampled = (*it)->sample(result, rng);
74  result.insert(sampled);
75  }
76  return result;
77  }
78 
79  /* ************************************************************************ */
80  VectorValues GaussianBayesNet::sample() const {
81  return sample(&kRandomNumberGenerator);
82  }
83 
84  VectorValues GaussianBayesNet::sample(const VectorValues& given) const {
85  return sample(given, &kRandomNumberGenerator);
86  }
87 
88  /* ************************************************************************ */
89  VectorValues GaussianBayesNet::optimizeGradientSearch() const
90  {
91  gttic(GaussianBayesTree_optimizeGradientSearch);
93  }
94 
95  /* ************************************************************************* */
96  VectorValues GaussianBayesNet::gradient(const VectorValues& x0) const {
97  return GaussianFactorGraph(*this).gradient(x0);
98  }
99 
100  /* ************************************************************************* */
101  VectorValues GaussianBayesNet::gradientAtZero() const {
102  return GaussianFactorGraph(*this).gradientAtZero();
103  }
104 
105  /* ************************************************************************* */
106  double GaussianBayesNet::error(const VectorValues& x) const {
107  double sum = 0.;
108  for (const auto& gc : *this) {
109  if (gc) sum += gc->error(x);
110  }
111  return sum;
112  }
113 
114  /* ************************************************************************* */
115  double GaussianBayesNet::logProbability(const VectorValues& x) const {
116  double sum = 0.;
117  for (const auto& gc : *this) {
118  if (gc) sum += gc->logProbability(x);
119  }
120  return sum;
121  }
122 
123  /* ************************************************************************* */
124  double GaussianBayesNet::evaluate(const VectorValues& x) const {
125  return exp(logProbability(x));
126  }
127 
128  /* ************************************************************************* */
129  VectorValues GaussianBayesNet::backSubstitute(const VectorValues& rhs) const
130  {
132  // TODO this looks pretty sketchy. result is passed as the parents argument
133  // as it's filled up by solving the gaussian conditionals.
134  for (auto it = std::make_reverse_iterator(end()); it != std::make_reverse_iterator(begin()); ++it) {
135  result.insert((*it)->solveOtherRHS(result, rhs));
136  }
137  return result;
138  }
139 
140 
141  /* ************************************************************************* */
142  // gy=inv(L)*gx by solving L*gy=gx.
143  // gy=inv(R'*inv(Sigma))*gx
144  // gz'*R'=gx', gy = gz.*sigmas
145  VectorValues GaussianBayesNet::backSubstituteTranspose(const VectorValues& gx) const
146  {
147  // Initialize gy from gx
148  // TODO: used to insert zeros if gx did not have an entry for a variable in bn
149  VectorValues gy = gx;
150 
151  // we loop from first-eliminated to last-eliminated
152  // i^th part of L*gy=gx is done block-column by block-column of L
153  for(const sharedConditional& cg: *this)
154  cg->solveTransposeInPlace(gy);
155 
156  return gy;
157  }
158 
160  //VectorValues GaussianBayesNet::optimizeGradientSearch() const
161  //{
162  // gttic(Compute_Gradient);
163  // // Compute gradient (call gradientAtZero function, which is defined for various linear systems)
164  // VectorValues grad = gradientAtZero();
165  // double gradientSqNorm = grad.dot(grad);
166  // gttoc(Compute_Gradient);
167 
168  // gttic(Compute_Rg);
169  // // Compute R * g
170  // Errors Rg = GaussianFactorGraph(*this) * grad;
171  // gttoc(Compute_Rg);
172 
173  // gttic(Compute_minimizing_step_size);
174  // // Compute minimizing step size
175  // double step = -gradientSqNorm / dot(Rg, Rg);
176  // gttoc(Compute_minimizing_step_size);
177 
178  // gttic(Compute_point);
179  // // Compute steepest descent point
180  // scal(step, grad);
181  // gttoc(Compute_point);
182 
183  // return grad;
184  //}
185 
186  /* ************************************************************************* */
188  GaussianFactorGraph factorGraph(*this);
189  auto keys = factorGraph.keys();
190  // add frontal keys in order
192  for (const sharedConditional& cg : *this)
193  if (cg) {
194  for (Key key : cg->frontals()) {
195  ordering.push_back(key);
196  keys.erase(key);
197  }
198  }
199  // add remaining keys in case Bayes net is incomplete
200  for (Key key : keys) ordering.push_back(key);
201  return ordering;
202  }
203 
204  /* ************************************************************************* */
205  pair<Matrix, Vector> GaussianBayesNet::matrix(const Ordering& ordering) const {
206  // Convert to a GaussianFactorGraph and use its machinery
207  GaussianFactorGraph factorGraph(*this);
208  return factorGraph.jacobian(ordering);
209  }
210 
211  /* ************************************************************************* */
212  pair<Matrix, Vector> GaussianBayesNet::matrix() const {
213  // recursively call with default ordering
214  const auto defaultOrdering = this->ordering();
215  return matrix(defaultOrdering);
216  }
217 
219  //VectorValues GaussianBayesNet::gradient(const VectorValues& x0) const
220  //{
221  // return GaussianFactorGraph(*this).gradient(x0);
222  //}
223 
225  //VectorValues GaussianBayesNet::gradientAtZero() const
226  //{
227  // return GaussianFactorGraph(*this).gradientAtZero();
228  //}
229 
230  /* ************************************************************************* */
232  {
233  return exp(logDeterminant());
234  }
235 
236  /* ************************************************************************* */
238  double logDet = 0.0;
239  for (const sharedConditional& cg : *this) {
240  logDet += cg->logDeterminant();
241  }
242  return logDet;
243  }
244 
245  /* ************************************************************************* */
246  double GaussianBayesNet::negLogConstant() const {
247  /*
248  normalization constant = 1.0 / sqrt((2*pi)^n*det(Sigma))
249  negLogConstant = -log(normalizationConstant)
250  = 0.5 * n*log(2*pi) + 0.5 * log(det(Sigma))
251 
252  log(det(Sigma)) = -2.0 * logDeterminant()
253  thus, negLogConstant = 0.5*n*log(2*pi) - logDeterminant()
254 
255  BayesNet negLogConstant = sum(0.5*n_i*log(2*pi) - logDeterminant_i())
256  = sum(0.5*n_i*log(2*pi)) + sum(logDeterminant_i())
257  = sum(0.5*n_i*log(2*pi)) + bn->logDeterminant()
258  */
259  double negLogNormConst = 0.0;
260  for (const sharedConditional& cg : *this) {
261  negLogNormConst += cg->negLogConstant();
262  }
263  return negLogNormConst;
264  }
265 
266  /* ************************************************************************* */
267 
268 } // namespace gtsam
timing.h
Timing utilities.
GaussianFactorGraph.h
Linear Factor Graph where all factors are Gaussians.
rng
static std::mt19937 rng
Definition: timeFactorOverhead.cpp:31
gtsam::GaussianFactorGraph::keys
Keys keys() const
Definition: GaussianFactorGraph.cpp:48
optimize
int optimize(const SfmData &db, const NonlinearFactorGraph &graph, const Values &initial, bool separateCalibration=false)
Definition: timeSFMBAL.h:64
keys
const KeyVector keys
Definition: testRegularImplicitSchurFactor.cpp:40
gtsam::VectorValues::insert
iterator insert(const std::pair< Key, Vector > &key_value)
Definition: VectorValues.cpp:90
x
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition: gnuplot_common_settings.hh:12
gtsam::GaussianBayesNet::sharedConditional
std::shared_ptr< ConditionalType > sharedConditional
Definition: GaussianBayesNet.h:43
gtsam::GaussianFactorGraph::jacobian
std::pair< Matrix, Vector > jacobian(const Ordering &ordering) const
Definition: GaussianFactorGraph.cpp:232
GaussianBayesNet.h
Chordal Bayes Net, the result of eliminating a factor graph.
exp
const EIGEN_DEVICE_FUNC ExpReturnType exp() const
Definition: ArrayCwiseUnaryOps.h:97
result
Values result
Definition: OdometryOptimize.cpp:8
determinant
void determinant(const MatrixType &m)
Definition: determinant.cpp:14
FactorGraph-inst.h
Factor Graph Base Class.
gtsam::FactorGraph< GaussianConditional >
gtsam::GaussianFactorGraph::gradient
VectorValues gradient(const VectorValues &x0) const
Definition: GaussianFactorGraph.cpp:357
gtsam::GaussianFactorGraph
Definition: GaussianFactorGraph.h:73
gtsam::VectorValues
Definition: VectorValues.h:74
gtsam::GaussianFactorGraph::gradientAtZero
virtual VectorValues gradientAtZero() const
Definition: GaussianFactorGraph.cpp:369
kRandomNumberGenerator
static std::mt19937_64 kRandomNumberGenerator(42)
gtsam::internal::logDeterminant
double logDeterminant(const typename BAYESTREE::sharedClique &clique)
Definition: GaussianBayesTree-inl.h:42
x0
static Symbol x0('x', 0)
ordering
static enum @1096 ordering
matrix
Map< Matrix< T, Dynamic, Dynamic, ColMajor >, 0, OuterStride<> > matrix(T *data, int rows, int cols, int stride)
Definition: gtsam/3rdparty/Eigen/blas/common.h:110
key
const gtsam::Symbol key('X', 0)
gtsam::GaussianFactorGraph::optimizeGradientSearch
VectorValues optimizeGradientSearch() const
Definition: GaussianFactorGraph.cpp:381
different_sigmas::gc
const auto gc
Definition: testHybridBayesNet.cpp:231
gtsam
traits
Definition: SFMdata.h:40
error
static double error
Definition: testRot3.cpp:37
make_reverse_iterator
std::reverse_iterator< Iterator > make_reverse_iterator(Iterator i)
Definition: stl_iterators.cpp:16
std
Definition: BFloat16.h:88
gtsam::Values::insert
void insert(Key j, const Value &val)
Definition: Values.cpp:156
gtsam::tol
const G double tol
Definition: Group.h:79
Eigen::placeholders::end
static const EIGEN_DEPRECATED end_t end
Definition: IndexedViewHelper.h:181
gtsam::Key
std::uint64_t Key
Integer nonlinear key type.
Definition: types.h:97
gtsam::Ordering
Definition: inference/Ordering.h:33
gtsam::GaussianBayesNet
Definition: GaussianBayesNet.h:35
gttic
#define gttic(label)
Definition: timing.h:295


gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:02:16