bloaty/third_party/abseil-cpp/absl/random/distributions_test.cc
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/distributions.h"
16 
17 #include <cmath>
18 #include <cstdint>
19 #include <random>
20 #include <vector>
21 
22 #include "gtest/gtest.h"
23 #include "absl/random/internal/distribution_test_util.h"
24 #include "absl/random/random.h"
25 
26 namespace {
27 
28 constexpr int kSize = 400000;
29 
30 class RandomDistributionsTest : public testing::Test {};
31 
32 
33 struct Invalid {};
34 
35 template <typename A, typename B>
36 auto InferredUniformReturnT(int)
37  -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
38  std::declval<A>(), std::declval<B>()));
39 
40 template <typename, typename>
41 Invalid InferredUniformReturnT(...);
42 
43 template <typename TagType, typename A, typename B>
44 auto InferredTaggedUniformReturnT(int)
45  -> decltype(absl::Uniform(std::declval<TagType>(),
46  std::declval<absl::InsecureBitGen&>(),
47  std::declval<A>(), std::declval<B>()));
48 
49 template <typename, typename, typename>
50 Invalid InferredTaggedUniformReturnT(...);
51 
52 // Given types <A, B, Expect>, CheckArgsInferType() verifies that
53 //
54 // absl::Uniform(gen, A{}, B{})
55 //
56 // returns the type "Expect".
57 //
58 // This interface can also be used to assert that a given absl::Uniform()
59 // overload does not exist / will not compile. Given types <A, B>, the
60 // expression
61 //
62 // decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
63 //
64 // will not compile, leaving the definition of InferredUniformReturnT<A, B> to
65 // resolve (via SFINAE) to the overload which returns type "Invalid". This
66 // allows tests to assert that an invocation such as
67 //
68 // absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
69 //
70 // should not compile, since neither type, float nor int, can precisely
71 // represent both endpoint-values. Writing:
72 //
73 // CheckArgsInferType<float, int, Invalid>()
74 //
75 // will assert that this overload does not exist.
76 template <typename A, typename B, typename Expect>
77 void CheckArgsInferType() {
78  static_assert(
80  std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
81  std::is_same<Expect,
82  decltype(InferredUniformReturnT<B, A>(0))>>::value,
83  "");
84  static_assert(
86  std::is_same<Expect, decltype(InferredTaggedUniformReturnT<
87  absl::IntervalOpenOpenTag, A, B>(0))>,
88  std::is_same<Expect,
89  decltype(InferredTaggedUniformReturnT<
90  absl::IntervalOpenOpenTag, B, A>(0))>>::value,
91  "");
92 }
93 
94 template <typename A, typename B, typename ExplicitRet>
95 auto ExplicitUniformReturnT(int) -> decltype(
96  absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),
97  std::declval<A>(), std::declval<B>()));
98 
99 template <typename, typename, typename ExplicitRet>
100 Invalid ExplicitUniformReturnT(...);
101 
102 template <typename TagType, typename A, typename B, typename ExplicitRet>
103 auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
104  std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),
105  std::declval<A>(), std::declval<B>()));
106 
107 template <typename, typename, typename, typename ExplicitRet>
108 Invalid ExplicitTaggedUniformReturnT(...);
109 
110 // Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
111 //
112 // absl::Uniform<Expect>(gen, A{}, B{})
113 //
114 // returns the type "Expect", and that the function-overload has the signature
115 //
116 // Expect(URBG&, Expect, Expect)
117 template <typename A, typename B, typename Expect>
118 void CheckArgsReturnExpectedType() {
119  static_assert(
121  std::is_same<Expect,
122  decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
123  std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
124  0))>>::value,
125  "");
126  static_assert(
128  std::is_same<Expect,
129  decltype(ExplicitTaggedUniformReturnT<
131  std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<
133  Expect>(0))>>::value,
134  "");
135 }
136 
137 TEST_F(RandomDistributionsTest, UniformTypeInference) {
138  // Infers common types.
139  CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
140  CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
141  CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
142  CheckArgsInferType<int16_t, int16_t, int16_t>();
143  CheckArgsInferType<int32_t, int32_t, int32_t>();
144  CheckArgsInferType<int64_t, int64_t, int64_t>();
145  CheckArgsInferType<float, float, float>();
146  CheckArgsInferType<double, double, double>();
147 
148  // Explicitly-specified return-values override inferences.
149  CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
150  CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
151  CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
152  CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
153  CheckArgsReturnExpectedType<int16_t, int32_t, double>();
154  CheckArgsReturnExpectedType<float, float, double>();
155  CheckArgsReturnExpectedType<int, int, int16_t>();
156 
157  // Properly promotes uint16_t.
158  CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
159  CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
160  CheckArgsInferType<uint16_t, int32_t, int32_t>();
161  CheckArgsInferType<uint16_t, int64_t, int64_t>();
162  CheckArgsInferType<uint16_t, float, float>();
163  CheckArgsInferType<uint16_t, double, double>();
164 
165  // Properly promotes int16_t.
166  CheckArgsInferType<int16_t, int32_t, int32_t>();
167  CheckArgsInferType<int16_t, int64_t, int64_t>();
168  CheckArgsInferType<int16_t, float, float>();
169  CheckArgsInferType<int16_t, double, double>();
170 
171  // Invalid (u)int16_t-pairings do not compile.
172  // See "CheckArgsInferType" comments above, for how this is achieved.
173  CheckArgsInferType<uint16_t, int16_t, Invalid>();
174  CheckArgsInferType<int16_t, uint32_t, Invalid>();
175  CheckArgsInferType<int16_t, uint64_t, Invalid>();
176 
177  // Properly promotes uint32_t.
178  CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
179  CheckArgsInferType<uint32_t, int64_t, int64_t>();
180  CheckArgsInferType<uint32_t, double, double>();
181 
182  // Properly promotes int32_t.
183  CheckArgsInferType<int32_t, int64_t, int64_t>();
184  CheckArgsInferType<int32_t, double, double>();
185 
186  // Invalid (u)int32_t-pairings do not compile.
187  CheckArgsInferType<uint32_t, int32_t, Invalid>();
188  CheckArgsInferType<int32_t, uint64_t, Invalid>();
189  CheckArgsInferType<int32_t, float, Invalid>();
190  CheckArgsInferType<uint32_t, float, Invalid>();
191 
192  // Invalid (u)int64_t-pairings do not compile.
193  CheckArgsInferType<uint64_t, int64_t, Invalid>();
194  CheckArgsInferType<int64_t, float, Invalid>();
195  CheckArgsInferType<int64_t, double, Invalid>();
196 
197  // Properly promotes float.
198  CheckArgsInferType<float, double, double>();
199 }
200 
201 TEST_F(RandomDistributionsTest, UniformExamples) {
202  // Examples.
204  EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
205  EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
206  EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
207  static_cast<uint16_t>(0), 1.0f));
208  EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
209  EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
210  EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
211  EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
212  EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
213 }
214 
215 TEST_F(RandomDistributionsTest, UniformNoBounds) {
217 
218  absl::Uniform<uint8_t>(gen);
219  absl::Uniform<uint16_t>(gen);
220  absl::Uniform<uint32_t>(gen);
221  absl::Uniform<uint64_t>(gen);
222 }
223 
224 TEST_F(RandomDistributionsTest, UniformNonsenseRanges) {
225  // The ranges used in this test are undefined behavior.
226  // The results are arbitrary and subject to future changes.
228 
229  // <uint>
230  EXPECT_EQ(0, absl::Uniform<uint64_t>(gen, 0, 0));
231  EXPECT_EQ(1, absl::Uniform<uint64_t>(gen, 1, 0));
232  EXPECT_EQ(0, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 0, 0));
233  EXPECT_EQ(1, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 1, 0));
234 
235  constexpr auto m = (std::numeric_limits<uint64_t>::max)();
236 
238  EXPECT_EQ(m, absl::Uniform(gen, m, m - 1));
239  EXPECT_EQ(m - 1, absl::Uniform(gen, m - 1, m));
240  EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m));
241  EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m - 1));
242  EXPECT_EQ(m - 1, absl::Uniform(absl::IntervalOpenOpen, gen, m - 1, m));
243 
244  // <int>
245  EXPECT_EQ(0, absl::Uniform<int64_t>(gen, 0, 0));
246  EXPECT_EQ(1, absl::Uniform<int64_t>(gen, 1, 0));
247  EXPECT_EQ(0, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 0, 0));
248  EXPECT_EQ(1, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 1, 0));
249 
250  constexpr auto l = (std::numeric_limits<int64_t>::min)();
251  constexpr auto r = (std::numeric_limits<int64_t>::max)();
252 
255  EXPECT_EQ(r, absl::Uniform(gen, r, r - 1));
256  EXPECT_EQ(r - 1, absl::Uniform(gen, r - 1, r));
257  EXPECT_EQ(l, absl::Uniform(absl::IntervalOpenOpen, gen, l, l));
258  EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r));
259  EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r - 1));
260  EXPECT_EQ(r - 1, absl::Uniform(absl::IntervalOpenOpen, gen, r - 1, r));
261 
262  // <double>
263  const double e = std::nextafter(1.0, 2.0); // 1 + epsilon
264  const double f = std::nextafter(1.0, 0.0); // 1 - epsilon
265  const double g = std::numeric_limits<double>::denorm_min();
266 
267  EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, e));
268  EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, f));
269  EXPECT_EQ(0.0, absl::Uniform(gen, 0.0, g));
270 
271  EXPECT_EQ(e, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, e));
272  EXPECT_EQ(f, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, f));
273  EXPECT_EQ(g, absl::Uniform(absl::IntervalOpenOpen, gen, 0.0, g));
274 }
275 
276 // TODO(lar): Validate properties of non-default interval-semantics.
277 TEST_F(RandomDistributionsTest, UniformReal) {
278  std::vector<double> values(kSize);
279 
281  for (int i = 0; i < kSize; i++) {
282  values[i] = absl::Uniform(gen, 0, 1.0);
283  }
284 
285  const auto moments =
287  EXPECT_NEAR(0.5, moments.mean, 0.02);
288  EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
289  EXPECT_NEAR(0.0, moments.skewness, 0.02);
290  EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
291 }
292 
293 TEST_F(RandomDistributionsTest, UniformInt) {
294  std::vector<double> values(kSize);
295 
297  for (int i = 0; i < kSize; i++) {
298  const int64_t kMax = 1000000000000ll;
299  int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
300  // convert to double.
301  values[i] = static_cast<double>(j) / static_cast<double>(kMax);
302  }
303 
304  const auto moments =
306  EXPECT_NEAR(0.5, moments.mean, 0.02);
307  EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
308  EXPECT_NEAR(0.0, moments.skewness, 0.02);
309  EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
310 
311  /*
312  // NOTE: These are not supported by absl::Uniform, which is specialized
313  // on integer and real valued types.
314 
315  enum E { E0, E1 }; // enum
316  enum S : int { S0, S1 }; // signed enum
317  enum U : unsigned int { U0, U1 }; // unsigned enum
318 
319  absl::Uniform(gen, E0, E1);
320  absl::Uniform(gen, S0, S1);
321  absl::Uniform(gen, U0, U1);
322  */
323 }
324 
325 TEST_F(RandomDistributionsTest, Exponential) {
326  std::vector<double> values(kSize);
327 
329  for (int i = 0; i < kSize; i++) {
330  values[i] = absl::Exponential<double>(gen);
331  }
332 
333  const auto moments =
335  EXPECT_NEAR(1.0, moments.mean, 0.02);
336  EXPECT_NEAR(1.0, moments.variance, 0.025);
337  EXPECT_NEAR(2.0, moments.skewness, 0.1);
338  EXPECT_LT(5.0, moments.kurtosis);
339 }
340 
341 TEST_F(RandomDistributionsTest, PoissonDefault) {
342  std::vector<double> values(kSize);
343 
345  for (int i = 0; i < kSize; i++) {
346  values[i] = absl::Poisson<int64_t>(gen);
347  }
348 
349  const auto moments =
351  EXPECT_NEAR(1.0, moments.mean, 0.02);
352  EXPECT_NEAR(1.0, moments.variance, 0.02);
353  EXPECT_NEAR(1.0, moments.skewness, 0.025);
354  EXPECT_LT(2.0, moments.kurtosis);
355 }
356 
357 TEST_F(RandomDistributionsTest, PoissonLarge) {
358  constexpr double kMean = 100000000.0;
359  std::vector<double> values(kSize);
360 
362  for (int i = 0; i < kSize; i++) {
363  values[i] = absl::Poisson<int64_t>(gen, kMean);
364  }
365 
366  const auto moments =
368  EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
369  EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
370  EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
371  EXPECT_LT(2.0, moments.kurtosis);
372 }
373 
374 TEST_F(RandomDistributionsTest, Bernoulli) {
375  constexpr double kP = 0.5151515151;
376  std::vector<double> values(kSize);
377 
379  for (int i = 0; i < kSize; i++) {
380  values[i] = absl::Bernoulli(gen, kP);
381  }
382 
383  const auto moments =
385  EXPECT_NEAR(kP, moments.mean, 0.01);
386 }
387 
388 TEST_F(RandomDistributionsTest, Beta) {
389  constexpr double kAlpha = 2.0;
390  constexpr double kBeta = 3.0;
391  std::vector<double> values(kSize);
392 
394  for (int i = 0; i < kSize; i++) {
395  values[i] = absl::Beta(gen, kAlpha, kBeta);
396  }
397 
398  const auto moments =
400  EXPECT_NEAR(0.4, moments.mean, 0.01);
401 }
402 
403 TEST_F(RandomDistributionsTest, Zipf) {
404  std::vector<double> values(kSize);
405 
407  for (int i = 0; i < kSize; i++) {
408  values[i] = absl::Zipf<int64_t>(gen, 100);
409  }
410 
411  // The mean of a zipf distribution is: H(N, s-1) / H(N,s).
412  // Given the parameter v = 1, this gives the following function:
413  // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
414  const auto moments =
416  EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
417 }
418 
419 TEST_F(RandomDistributionsTest, Gaussian) {
420  std::vector<double> values(kSize);
421 
423  for (int i = 0; i < kSize; i++) {
424  values[i] = absl::Gaussian<double>(gen);
425  }
426 
427  const auto moments =
429  EXPECT_NEAR(0.0, moments.mean, 0.02);
430  EXPECT_NEAR(1.0, moments.variance, 0.04);
431  EXPECT_NEAR(0, moments.skewness, 0.2);
432  EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
433 }
434 
435 TEST_F(RandomDistributionsTest, LogUniform) {
436  std::vector<double> values(kSize);
437 
439  for (int i = 0; i < kSize; i++) {
440  values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
441  }
442 
443  // The mean is the sum of the fractional means of the uniform distributions:
444  // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
445  // [64..127][128..255][256..511][512..1023]
446  const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
447  64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
448  (2.0 * 11.0);
449 
450  const auto moments =
452  EXPECT_NEAR(mean, moments.mean, 2) << moments;
453 }
454 
455 } // namespace
kSize
static constexpr Tag kSize
Definition: protobuf/src/google/protobuf/descriptor.cc:873
absl::str_format_internal::LengthMod::j
@ j
absl::IntervalOpenOpenTag
Definition: abseil-cpp/absl/random/internal/uniform_helper.h:60
absl::conjunction
Definition: abseil-cpp/absl/meta/type_traits.h:230
uint16_t
unsigned short uint16_t
Definition: stdint-msvc2008.h:79
absl::Beta
RealType Beta(URBG &&urbg, RealType alpha, RealType beta)
Definition: abseil-cpp/absl/random/distributions.h:268
absl::Gaussian
RealType Gaussian(URBG &&urbg, RealType mean=0, RealType stddev=1)
Definition: abseil-cpp/absl/random/distributions.h:331
testing::Test
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:402
absl::Exponential
RealType Exponential(URBG &&urbg, RealType lambda=1)
Definition: abseil-cpp/absl/random/distributions.h:300
absl::random_internal::ComputeDistributionMoments
DistributionMoments ComputeDistributionMoments(absl::Span< const double > data_points)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:39
EXPECT_EQ
#define EXPECT_EQ(a, b)
Definition: iomgr/time_averaged_stats_test.cc:27
absl::FormatConversionChar::e
@ e
autogen_x86imm.f
f
Definition: autogen_x86imm.py:9
int64_t
signed __int64 int64_t
Definition: stdint-msvc2008.h:89
max
int max
Definition: bloaty/third_party/zlib/examples/enough.c:170
EXPECT_NE
#define EXPECT_NE(val1, val2)
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:2028
gen
OPENSSL_EXPORT GENERAL_NAME * gen
Definition: x509v3.h:495
min
#define min(a, b)
Definition: qsort.h:83
g
struct @717 g
value
const char * value
Definition: hpack_parser_table.cc:165
testing::internal::Invalid
T Invalid()
Definition: bloaty/third_party/googletest/googlemock/include/gmock/internal/gmock-internal-utils.h:356
fix_build_deps.r
r
Definition: fix_build_deps.py:491
absl::random_internal::NonsecureURBGBase
Definition: abseil-cpp/absl/random/internal/nonsecure_base.h:96
EXPECT_LT
#define EXPECT_LT(val1, val2)
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:2032
A
Definition: miscompile_with_no_unique_address_test.cc:23
values
std::array< int64_t, Size > values
Definition: abseil-cpp/absl/container/btree_benchmark.cc:608
absl::LogUniform
IntType LogUniform(URBG &&urbg, IntType lo, IntType hi, IntType base=2)
Definition: abseil-cpp/absl/random/distributions.h:374
EXPECT_NEAR
#define EXPECT_NEAR(val1, val2, abs_error)
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:2143
absl::Zipf
IntType Zipf(URBG &&urbg, IntType hi=(std::numeric_limits< IntType >::max)(), double q=2.0, double v=1.0)
Definition: abseil-cpp/absl/random/distributions.h:435
run_grpclb_interop_tests.l
dictionary l
Definition: run_grpclb_interop_tests.py:410
regress.m
m
Definition: regress/regress.py:25
testing::internal::Expect
void Expect(bool condition, const char *file, int line, const std::string &msg)
Definition: bloaty/third_party/googletest/googlemock/include/gmock/internal/gmock-internal-utils.h:282
i
uint64_t i
Definition: abseil-cpp/absl/container/btree_benchmark.cc:230
absl::Bernoulli
bool Bernoulli(URBG &&urbg, double p)
Definition: abseil-cpp/absl/random/distributions.h:241
absl::str_format_internal::LengthMod::ll
@ ll
TEST_F
#define TEST_F(test_fixture, test_name)
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:2367
absl::Uniform
absl::enable_if_t<!std::is_same< R, void >::value, R > Uniform(TagType tag, URBG &&urbg, R lo, R hi)
Definition: abseil-cpp/absl/random/distributions.h:123


grpc
Author(s):
autogenerated on Fri May 16 2025 02:58:16