abseil-cpp/absl/random/internal/distribution_test_util_test.cc
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/internal/distribution_test_util.h"
16 
17 #include "gtest/gtest.h"
18 
19 namespace {
20 
21 TEST(TestUtil, InverseErf) {
22  const struct {
23  const double z;
24  const double value;
25  } kErfInvTable[] = {
26  {0.0000001, 8.86227e-8},
27  {0.00001, 8.86227e-6},
28  {0.5, 0.4769362762044},
29  {0.6, 0.5951160814499},
30  {0.99999, 3.1234132743},
31  {0.9999999, 3.7665625816},
32  {0.999999944, 3.8403850690566985}, // = log((1-x) * (1+x)) =~ 16.004
33  {0.999999999, 4.3200053849134452},
34  };
35 
36  for (const auto& data : kErfInvTable) {
38 
39  // Log using the Wolfram-alpha function name & parameters.
40  EXPECT_NEAR(value, data.value, 1e-8)
41  << " InverseErf[" << data.z << "] (expected=" << data.value << ") -> "
42  << value;
43  }
44 }
45 
46 const struct {
47  const double p;
48  const double q;
49  const double x;
50  const double alpha;
51 } kBetaTable[] = {
52  {0.5, 0.5, 0.01, 0.06376856085851985},
53  {0.5, 0.5, 0.1, 0.2048327646991335},
54  {0.5, 0.5, 1, 1},
55  {1, 0.5, 0, 0},
56  {1, 0.5, 0.01, 0.005012562893380045},
57  {1, 0.5, 0.1, 0.0513167019494862},
58  {1, 0.5, 0.5, 0.2928932188134525},
59  {1, 1, 0.5, 0.5},
60  {2, 2, 0.1, 0.028},
61  {2, 2, 0.2, 0.104},
62  {2, 2, 0.3, 0.216},
63  {2, 2, 0.4, 0.352},
64  {2, 2, 0.5, 0.5},
65  {2, 2, 0.6, 0.648},
66  {2, 2, 0.7, 0.784},
67  {2, 2, 0.8, 0.896},
68  {2, 2, 0.9, 0.972},
69  {5.5, 5, 0.5, 0.4361908850559777},
70  {10, 0.5, 0.9, 0.1516409096346979},
71  {10, 5, 0.5, 0.08978271484375},
72  {10, 5, 1, 1},
73  {10, 10, 0.5, 0.5},
74  {20, 5, 0.8, 0.4598773297575791},
75  {20, 10, 0.6, 0.2146816102371739},
76  {20, 10, 0.8, 0.9507364826957875},
77  {20, 20, 0.5, 0.5},
78  {20, 20, 0.6, 0.8979413687105918},
79  {30, 10, 0.7, 0.2241297491808366},
80  {30, 10, 0.8, 0.7586405487192086},
81  {40, 20, 0.7, 0.7001783247477069},
82  {1, 0.5, 0.1, 0.0513167019494862},
83  {1, 0.5, 0.2, 0.1055728090000841},
84  {1, 0.5, 0.3, 0.1633399734659245},
85  {1, 0.5, 0.4, 0.2254033307585166},
86  {1, 2, 0.2, 0.36},
87  {1, 3, 0.2, 0.488},
88  {1, 4, 0.2, 0.5904},
89  {1, 5, 0.2, 0.67232},
90  {2, 2, 0.3, 0.216},
91  {3, 2, 0.3, 0.0837},
92  {4, 2, 0.3, 0.03078},
93  {5, 2, 0.3, 0.010935},
94 
95  // These values test small & large points along the range of the Beta
96  // function.
97  //
98  // When selecting test points, remember that if BetaIncomplete(x, p, q)
99  // returns the same value to within the limits of precision over a large
100  // domain of the input, x, then BetaIncompleteInv(alpha, p, q) may return an
101  // essentially arbitrary value where BetaIncomplete(x, p, q) =~ alpha.
102 
103  // BetaRegularized[x, 0.00001, 0.00001],
104  // For x in {~0.001 ... ~0.999}, => ~0.5
105  {1e-5, 1e-5, 1e-5, 0.4999424388184638311},
106  {1e-5, 1e-5, (1.0 - 1e-8), 0.5000920948389232964},
107 
108  // BetaRegularized[x, 0.00001, 10000].
109  // For x in {~epsilon ... 1.0}, => ~1
110  {1e-5, 1e5, 1e-6, 0.9999817708130066936},
111  {1e-5, 1e5, (1.0 - 1e-7), 1.0},
112 
113  // BetaRegularized[x, 10000, 0.00001].
114  // For x in {0 .. 1-epsilon}, => ~0
115  {1e5, 1e-5, 1e-6, 0},
116  {1e5, 1e-5, (1.0 - 1e-6), 1.8229186993306369e-5},
117 };
118 
119 TEST(BetaTest, BetaIncomplete) {
120  for (const auto& data : kBetaTable) {
122 
123  // Log using the Wolfram-alpha function name & parameters.
124  EXPECT_NEAR(value, data.alpha, 1e-12)
125  << " BetaRegularized[" << data.x << ", " << data.p << ", " << data.q
126  << "] (expected=" << data.alpha << ") -> " << value;
127  }
128 }
129 
130 TEST(BetaTest, BetaIncompleteInv) {
131  for (const auto& data : kBetaTable) {
132  auto value =
134 
135  // Log using the Wolfram-alpha function name & parameters.
136  EXPECT_NEAR(value, data.x, 1e-6)
137  << " InverseBetaRegularized[" << data.alpha << ", " << data.p << ", "
138  << data.q << "] (expected=" << data.x << ") -> " << value;
139  }
140 }
141 
143  std::vector<std::pair<double, double>> cases = {
144  {0.0000001, 8.86227e-8 * 1.41421356237},
145  {0.00001, 8.86227e-6 * 1.41421356237},
146  {0.5, 0.4769362762044 * 1.41421356237},
147  {0.6, 0.5951160814499 * 1.41421356237},
148  {0.99999, 3.1234132743 * 1.41421356237},
149  {0.9999999, 3.7665625816 * 1.41421356237},
150  {0.999999944, 3.8403850690566985 * 1.41421356237},
151  {0.999999999, 4.3200053849134452 * 1.41421356237}};
152  for (auto entry : cases) {
154  entry.second, 1e-8);
155  }
156 }
157 
158 TEST(ZScore, WithSameMean) {
160  m.n = 100;
161  m.mean = 5;
162  m.variance = 1;
164 
165  m.n = 1;
166  m.mean = 0;
167  m.variance = 1;
169 
170  m.n = 10000;
171  m.mean = -5;
172  m.variance = 100;
174 }
175 
176 TEST(ZScore, DifferentMean) {
178  m.n = 100;
179  m.mean = 5;
180  m.variance = 1;
182 
183  m.n = 1;
184  m.mean = 0;
185  m.variance = 1;
187 
188  m.n = 10000;
189  m.mean = -5;
190  m.variance = 100;
191  EXPECT_NEAR(absl::random_internal::ZScore(-4, m), -10, 1e-12);
192 }
193 } // namespace
absl::random_internal::DistributionMoments
Definition: abseil-cpp/absl/random/internal/distribution_test_util.h:37
absl::random_internal::erfinv
double erfinv(double x)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:110
absl::random_internal::ZScore
double ZScore(double expected_mean, const DistributionMoments &moments)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:403
xds_manager.p
p
Definition: xds_manager.py:60
z
Uncopyable z
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3612
absl::random_internal::BetaIncomplete
double BetaIncomplete(const double x, const double p, const double q)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:367
absl::FormatConversionChar::e
@ e
TEST
#define TEST(name, init_size,...)
Definition: arena_test.cc:75
absl::random_internal::BetaIncompleteInv
double BetaIncompleteInv(const double p, const double q, const double alpha)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:380
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
data
char data[kBufferLength]
Definition: abseil-cpp/absl/strings/internal/str_format/float_conversion.cc:1006
value
const char * value
Definition: hpack_parser_table.cc:165
absl::random_internal::MaxErrorTolerance
double MaxErrorTolerance(double acceptance_probability)
Definition: abseil-cpp/absl/random/internal/distribution_test_util.cc:409
absl::str_format_internal::LengthMod::q
@ q
EXPECT_NEAR
#define EXPECT_NEAR(val1, val2, abs_error)
Definition: bloaty/third_party/googletest/googletest/include/gtest/gtest.h:2143
regress.m
m
Definition: regress/regress.py:25


grpc
Author(s):
autogenerated on Fri May 16 2025 02:58:16